--- ---

John Owens's calculated h-index is 59. This page was automatically generated on 2024-05-11.

3377Owens:2007:ASOA Survey of General-Purpose Computation on Graphics Hardware
2863Owens:2008:GCGPU Computing
1325Rixner:2000:MASMemory Access Scheduling
1139Harris:2007:PPSParallel Prefix Sum (Scan) with CUDA
1010Liu:2020:EODEnergy-based Out-of-distribution Detection
847Sengupta:2007:SPFScan Primitives for GPU Computing
647Owens:2007:RCFResearch Challenges for On-Chip Interconnection Networks
631Wang:2016:GAHGunrock: A High-Performance Graph Processing Library on the GPU
505Khailany:2001:IMPImagine: Media Processing with Streams
449Kapasi:2003:PSPProgrammable Stream Processors
414Rixner:2000:ROFRegister Organization for Media Processing
395Zhang:2011:AQPA Quantitative Performance Analysis Model for GPU Architectures
366Kapasi:2002:TISThe Imagine Stream Processor
358Rixner:1998:ABAA Bandwidth-Efficient Architecture for Media Processing
335Zhang:2010:FTSFast Tridiagonal Solvers on the GPU
290Stuart:2011:MMOMulti-GPU MapReduce on GPU Clusters
283Kepner:2016:MFOMathematical Foundations of the GraphBLAS
263Alcantara:2009:RPHReal-Time Parallel Hashing on the GPU
262Gupta:2012:ASOA Study of Persistent Threads Style GPU Programming for GPGPU Workloads
251Davidson:2014:WPGWork-Efficient Parallel GPU Methods for Single-Source Shortest Paths
231Lefohn:2006:GGEGlift: Generic, Efficient, Random-Access GPU Data Structures
180Owens:2005:SAAStreaming Architectures and Technology Trends
171Tzeng:2010:TMFTask Management for Irregular-Parallel Workloads on the GPU
166Muyan-Ozcelik:2008:FDRFast Deformable Registration on the GPU: A CUDA Implementation of Demons
155Silberstein:2008:ECOEfficient Computation of Sum-products on GPUs Through Software-Managed Cache
153Wang:2017:GGGGunrock: GPU Graph Analytics
153Park:2006:DSIDiscrete Sibson Interpolation
151Samant:2008:HPCHigh performance computing for deformable image registration: Towards a new paradigm in adaptive radiotherapy
143Kapasi:2000:ECOEfficient Conditional Operations for Data-parallel Architectures
142Kass:2006:IDOInteractive Depth of Field Using Simulated Diffusion on a GPU
136Patel:2012:PLDParallel Lossless Data Compression on the GPU
133Ebeida:2011:EMPEfficient Maximal Poisson-Disk Sampling
126Owens:2002:MPAMedia Processing Applications on the Imagine Stream Processor
124Ebeida:2012:ASAA Simple Algorithm for Maximal Poisson-Disk Sampling in High Dimensions
123Davidson:2011:AAMAn Auto-tuned Method for Solving Large Tridiagonal Systems on the GPU
122Sengupta:2006:AWSA Work-Efficient Step-Efficient Prefix Sum Algorithm
118Yang:2018:DPFDesign Principles for Sparse Matrix Multiplication on the GPU
113Stuart:2009:MPOMessage Passing on Data-Parallel Architectures
99Owens:2000:PROPolygon Rendering on a Stream Architecture
97Davidson:2012:EPMEfficient Parallel Merge Sort for Fixed and Variable Length Keys
97Phillips:2009:RAPRapid Aerodynamic Performance Prediction on a Cluster of Graphics Processing Units
96Lefohn:2007:RSMResolution-Matched Shadow Maps
86Pan:2017:MGAMulti-GPU Graph Analytics
85Stuart:2010:MVRMulti-GPU Volume Rendering using MapReduce
82Alcantara:2011:BAEBuilding an Efficient Hash Table on the GPU
80Yang:2022:GAHGraphBLAST: A High-Performance Linear Algebra-based Graph Framework on the GPU
76Khailany:2003:ETVExploring the VLSI Scalability of Stream Processors
75Ashkiani:2018:ADHA Dynamic Hash Table for the GPU
74Patney:2008:RRAReal-Time Reyes-Style Adaptive Surface Subdivision
74Kapasi:2001:SSStream Scheduling
74Stuart:2011:ESPEfficient Synchronization Primitives for GPUs
71Budge:2009:ODMOut-of-core Data Management for Path Tracing on Hybrid Resources
69Wang:2016:ACSA Comparative Study on Exact Triangle Counting Algorithms on the GPU
69Mattson:2000:CSCommunication Scheduling
65Davidson:2012:TTFToward Techniques for Auto-tuning GPU Algorithms
65Davidson:2011:RPFRegister Packing for Cyclic Reduction: A Case Study
63Patney:2009:PVTParallel View-Dependent Tessellation of Catmull-Clark Subdivision Surfaces
61Jenkins:2011:LLFLessons Learned from Exploring the Backtracking Paradigm on the GPU
61Owens:2002:CGOComputer Graphics on a Stream Architecture

58Moerschell:2008:DTMDistributed Texture Memory in a Multi-GPU Environment
56Szumel:2005:TAMTowards a Mobile Agent Framework for Sensor Networks
55Lefohn:2005:IEPImplementing Efficient Parallel Data Structures on GPUs
51Awad:2019:EAHEngineering a High-Performance GPU B-Tree
45Tzeng:2012:AGTA GPU Task-Parallel Model with Dependency Resolution
44Ebeida:2011:EAGEfficient and Good Delaunay Meshes From Random Points
43Yang:2018:IPEImplementing Push-Pull Efficiently in GraphBLAS
43Yang:2015:FSMFast Sparse Matrix and Sparse Vector Multiplication Algorithm on the GPU
42Abdelkader:2020:VVMVoroCrust: Voronoi Meshing Without Clipping
40Riffel:2004:MFMMio: Fast Multipass Partitioning via Priority-Based Instruction Scheduling
39Owens:2002:CRAComparing Reyes and OpenGL on a Stream Architecture
38Wu:2015:PCOPerformance Characterization of High-Level Programming Models for GPU Graph Analytics
38Ebeida:2011:ICRIsotropic conforming refinement of quadrilateral and hexahedral meshes using two-refinement templates
36Lefohn:2005:DASDynamic Adaptive Shadow Maps on Graphics Hardware
32Ashkiani:2018:GLAGPU LSM: A Dynamic Dictionary Data Structure for the GPU
31Stone:2011:GPAGPGPU parallel algorithms for structured-grid CFD codes
31Stuart:2011:EMTExtending MPI to Accelerators
31Owens:2005:AOGAssessment of Graphic Processing Units (GPUs) for Department of Defense (DoD) Digital Signal Processing (DSP) Applications
30Glavtchev:2011:FSLFeature-Based Speed Limit Sign Detection Using a Graphics Processing Unit
29Lin:2019:BDLBenchmarking Deep Learning Frameworks and Investigating FPGA Deployment for Traffic Sign Classification and Detection
29Stuart:2010:GCGPU-to-CPU Callbacks
28Zhang:2011:AHMA Hybrid Method for Solving Tridiagonal Systems on the GPU
28Tzeng:2012:FCHFinding Convex Hulls Using Quickhull on the GPU
26Awad:2020:DGODynamic Graphs on the GPU
26Geil:2018:QFAQuotient Filters: Approximate Membership Queries on the GPU
26Ashkiani:2016:GMGPU Multisplit
26Gosink:2009:DPBData Parallel Bin-Based Indexing for Answering Queries on Multi-Core Architectures
25Kniss:2005:OTOOctree Textures on Graphics Hardware
24Osama:2019:GCOGraph Coloring on the GPU
24Patney:2010:FCAFragment-Parallel Composite and Filter
23Patney:2015:PAFPiko: A Framework for Authoring Programmable Graphics Pipelines
23Gupta:2009:TOFThree-Layer Optimizations for Fast GMM Computations on GPU-like Parallel Processors
23Park:2005:AFFA Framework for Real-Time Volume Visualization of Streaming Scattered Data
22Wang:2015:FSAFast Parallel Suffix Array on the GPU
22Phillips:2010:UTSUnsteady Turbulent Simulations on a Cluster of Graphics Processors
21Gosink:2008:BIABin-Hash Indexing: A Parallel Method For Fast Query Processing
20Ebeida:2014:KDS$k$-d Darts: Sampling by $k$-Dimensional Flat Searches
20Muyan-Ozcelik:2010:ATAA Template-Based Approach for Real-Time Speed-Limit-Sign Recognition on an Embedded System using GPU Computing
20Ma:2007:UVRUltra-Scale Visualization: Research and Education
19Wang:2016:FPSFast Parallel Skew and Prefix-Doubling Suffix Array Construction on the GPU
19Serebrin:2002:ASPA Stream Processor Development Platform
18Zhang:2011:APEA Parallel Error Diffusion Implementation on a GPU
17Wang:2019:ADIAccelerating DNN Inference with GraphBLAS and the GPU
17Ashkiani:2017:GMAGPU Multisplit: an extended study of a parallel algorithm
17Gupta:2011:CAMCompute \& Memory Optimizations for High-Quality Speech Recognition on Low-End GPU Processors
17Szumel:2006:TVPThe Virtual Pheromone Communication Primitive
16Muyan-Ozcelik:2011:RSRReal-Time Speed-Limit-Sign Recognition on an Embedded System Using a GPU
16Khailany:2000:ISAImagine: Signal and Image Processing Using Streams
15Abdelkader:2017:ACRA Constrained Resampling Strategy for Mesh Improvement
14Wang:2020:FGSFast Gunrock Subgraph Matching (GSM) on GPUs
13Abdelkader:2018:SCFSampling Conditions for Conforming Voronoi Meshing by the VoroCrust Algorithm
13Pan:2018:SBSScalable Breadth-First Search on a GPU Cluster
12Osama:2022:EOPEssentials of Parallel Graph Analytics
12Geil:2014:WGCWTF, GPU! Computing Twitter's Who-To-Follow on the GPU
12Ebeida:2013:SDSifted Disks
11Zhang:2012:PDEPlane-dependent Error Diffusion on a GPU
10Mahmoud:2021:RAGRXMesh: A GPU Mesh Data Structure
10Yih:2018:FVGFPGA versus GPU for Speed-Limit-Sign Recognition
10Ebeida:2016:DDTDisk Density Tuning of a Maximal Random Packing
10Muyan-Ozcelik:2016:MREMultitasking Real-time Embedded GPU Computing Tasks
9Odemuyiwa:2023:ASDAccelerating Sparse Data Orchestration via Dynamic Reflexive Tiling
9Wang:2019:FBTFast BFS-Based Triangle Counting on GPUs
9Ashkiani:2016:PATParallel Approaches to the String Matching Problem on the GPU
8Lin:2022:BAPBuilding a Performance Model for Deep Learning Recommendation Model Training on GPUs
8Seitz:2019:SMFStaged Metaprogramming for Shader System Development
8Osama:2023:SWPStream-K: Work-centric Parallel Decomposition for Dense Matrix-Matrix Multiplication on the GPU
8Liu:2018:OLAObject Localization and Motion Transfer learning with Capsules
7Chen:2022:AATAtos: A Task-Parallel GPU Scheduler for Graph Analytics
7Owens:2007:TMSTowards Multi-GPU Support for Visualization
6Owens:2004:GTFGPUs tapped for general computing
5Awad:2023:AAIAnalyzing and Implementing GPU Hash Tables
5Seitz:2022:SUSSupporting Unified Shader Specialization by Co-opting C++ Features
5Lin:2018:BDLBenchmarking Deep Learning Frameworks with FPGA-suitable Models on a Traffic Sign Dataset
5Weber:2015:PRAParallel Reyes-style Adaptive Subdivision with Bounded Memory Usage
4Osama:2023:APMA Programming Model for GPU Load Balancing
4Chen:2022:SIPScalable Irregular Parallelism with GPUs: Getting CPUs Out of the Way
4Ebeida:2014:EIHExercises in High-Dimensional Sampling: Maximal Poisson-disk Sampling and $k$-d Darts
4Mak:2014:GAEGPU-Accelerated and Efficient Multi-View Triangulation for Scene Reconstruction
4Phillips:2011:AO2Acceleration of 2-D Compressible Flow Solvers with Graphics Processing Unit Clusters
4Szumel:2003:OTFOn the Feasibility of the UC Davis Metanet
3Brock:2019:RVRRDMA vs.\ RPC for Implementing Distributed Data Structures
3Abdelkader:2018:VITVoroCrust Illustrated: Theory and Challenges (Multimedia Exposition)
2Awad:2022:AGMA GPU Multiversion B-Tree
2Owens:2018:TPGTechnical Perspective: Graphs, Betweenness Centrality, and the GPU
2Muyan-Ozcelik:2017:MFMMethods for Multitasking among Real-time Embedded Compute Tasks Running on the GPU
2Wang:2017:MALMini-Gunrock: A Lightweight Graph Analytics Framework on the GPU
2Gegan:2016:RGTReal-Time GPU-based Timing Channel Detection using Entropy
2Kemal:2016:MSAMultidisciplinary simulation acceleration using multiple shared memory graphical processing units
2Seitz:2013:AGIA GPU Implementation for Two-Dimensional Shallow Water Modeling
2Owens:2004:OTSOn The Scalability of Sensor Network Routing and Compression Algorithms
1Wapman:2023:HCAHarmonic CUDA: Asynchronous Programming on GPUs
1Silberstein:2011:ASCApplying Software-Managed Caching and CPU/GPU Task Scheduling for Accelerating Dynamic Workloads
1Owens:2006:TIAThe Installation and Use of OpenType Fonts in \LaTeX
1Awad:2021:BGHBetter GPU Hash Tables
1Liu:2019:UOSUnsupervised Object Segmentation with Explicit Localization Module

---