
Computer Arithmetic
Midterm Exam: May 31, 2004

T.J.H. Kluter

May 31, 2004

Contents

1 Assignment 1.16 3
1.1 Part a . 3
1.2 Part b . 4

2 Assignment 2.18 6
2.1 Part a . 6
2.2 Part b . 6

3 Assignment 2.21 8

4 Assignment 3.24 9
4.1 Part a . 9
4.2 Part b . 9
4.3 Part c . 9
4.4 Part d . 10

5 Assignment 4.18 13
5.1 Part a . 13

2

Chapter 1

Assignment 1.16

1.1 Part a

Assume a7 , b7 and s7 are the sign bits of a two complements summator, adden-
dum and result respectively. Than an overflow v in the adder occures in case
the result is negative whilst the summator and addendum are both positive,
or in case the result is positive whilst the summator and addendum are both
negative. So v is defined as formulated in Equation 1.1.

v = s7 · a7 · b7 + s7 · a7 · b7

= s7 · (a7 + b7) + s7 · g7

= s7 · t7 + s7 · g7

(1.1)

For the two’s complement addition the summation is defined as in Equation 1.2,
and the carry out of a bit position is defined as in Equation 1.3.

s7 = p7 · c7 + p7 · c7 ⇔ s7 = p7 · c7 + p7 · c7 (1.2)

c8 = g7 + t7 · c7 ⇔ c8 = t7 + g7 · c7 (1.3)

Substitution of Equation 1.2 into Equation 1.1, and the knowledge that t7 ·p7 =
0, and g7 · p7 = 0, delivers:

v = t7 · p7 · c7 + t7 · p7 · c7+
g7 · p7 · c7 + g7 · p7 · c7

= t7 · c7 + g7 · c7

(1.4)

By introducing the terms g7 · c7 · c7 and t7 · c7 · c7, which both equal to 0, into
Equation 1.4, and the usage of Equation 1.3, we see that:

v = c7 · (t7 + g7 · c7) + c7 · (g7 + t7 · c7)
= c7 · c8 + c7 · c8

= c7 ⊕ c8

(1.5)

QED.

3

1.2 Part b

For one’s complement numbers the sommation S of two one’s complement num-
bers A and B, is defined as S = A + B when cout = 0 and S = A + B + 1
when cout = 1. We clearly see a non-linearity in the definition of the one’s
complement summation function. For simplicity let’s assume that cin = 0. It
can easily being showed that the following discussion also holds in case cin = 1.
Taking the definition of the one’s complement summation, we can build a one’s
complement adder by using a two’s complement adder in a ”feedback” configu-
ration as shown in Figure 1.1.

Figure 1.1: One’s complement adder build from a Two’s complement feedback
adder

It can be shown that the one’s complement adder of Figure 1.1 stabalizes very
quickly, and thus does not form an oscillator. For simplicity let’s assume that
our A, B and S terms are three-bits one’s complement numbers. It can be shown
that the following discussion holds for any n-bits one’s complement numbers.
Under the assumption of the three-bits one’s complement numbers we can build
a one’s complement adder, from the one shown in Figure 1.1, as the two shown
in Figure 1.2. Note that the adder shown on the left produces exactly the same
result as the one shown on the right!

Figure 1.2: Three bits one’s complement adder

In Figure 1.2 V denotes the Overflow output. We also know that the summation
is lineair and symetric, e.g. S = A+B ⇔ S = B +A. Table 1.1 list all possible
one’s complement additions, and clearly shows that v = c2⊕ c3 is the definition
for the overflow in a one’s complement addition. Note that the numbers shown
underlined are the real outputs of the one’s complement addition.

4

A B S Rn,0 C2,0 Rn,1 C2,1 C3,0 V
000b 000b 0+0 000b 0 001b 0 0 0
000b 001b 0+1 001b 0 010b 0 0 0
000b 010b 0+2 010b 0 011b 0 0 0
000b 011b 0+3 011b 0 100b 1 0 0
000b 100b 0-3 100b 0 101b 0 0 0
000b 101b 0-2 101b 0 110b 0 0 0
000b 110b 0-1 110b 0 111b 0 0 0
000b 111b 0-0 111b 0 000b 1 0 0
001b 001b 1+1 010b 0 011b 0 0 0
001b 010b 1+2 011b 0 100b 1 0 0
001b 011b 1+3 100b 1 101b 1 0 1
001b 100b 1-3 101b 0 110b 0 0 0
001b 101b 1-2 110b 0 111b 0 0 0
001b 110b 1-1 111b 0 000b 1 0 0
001b 111b 1-0 000b 1 001b 1 1 0
010b 010b 2+2 100b 1 101b 1 0 1
010b 011b 2+3 101b 1 110b 1 0 1
010b 100b 2-3 110b 0 111b 0 0 0
010b 101b 2-2 111b 0 000b 1 0 0
010b 110b 2-1 000b 1 001b 1 1 0
010b 111b 2-0 001b 1 010b 1 1 0
011b 011b 3+3 110b 1 111b 1 0 1
011b 100b 3-3 111b 0 000b 1 0 0
011b 101b 3-2 000b 1 001b 1 1 0
011b 110b 3-1 001b 1 010b 1 1 0
011b 111b 3-0 010b 1 011b 1 1 0
100b 100b -3-3 000b 0 001b 0 1 1
100b 101b -3-2 001b 0 010b 0 1 1
100b 110b -3-1 010b 0 011b 0 1 1
100b 111b -3-0 011b 0 100b 1 1 0
101b 101b -2-2 010b 0 011b 0 1 1
101b 110b -2-1 011b 0 100b 1 1 0
101b 111b -2-0 100b 1 101b 1 1 0
110b 110b -1-1 100b 1 101b 1 1 0
110b 111b -1-0 101b 1 110b 1 1 0
111b 111b -0-0 110b 1 111b 1 1 0

Table 1.1: All three bits one’s complement additions

5

Chapter 2

Assignment 2.18

2.1 Part a

From Lings summation and propagate function we know that:

si = ti · hi + ti · hi + gi · ti−1 · hi−1 (2.1)

and:
hi = gi + ti−1 · hi−1 ⇔ hi = gi · ti−1 + gi · hi−1 (2.2)

Using these both Equations, and the knowledge that ti · gi = 0, we find:

si = ti · gi · ti−1 + ti · gi · hi−1 + ti · gi+
ti · ti−1 · hi−1 + gi · ti−1 · hi−1

= ti · gi · (ti−1 + hi−1) + (ti + gi) · ti−1 · hi−1

= pi · (ti−1 · hi−1) + pi · ti−1 · hi−1

= pi ⊕ (ti−1 · hi−1)

(2.3)

By definition we know that:

hi = gi + ti−1 · hi−1 = ci+1 + ci (2.4)

and:
ci+1 = gi + pi · ci = gi + ti · ci (2.5)

Using both equations results in:

gi+ti−1 ·hi−1 = gi+ti ·ci+ci ⇔ gi+ti−1 ·hi−1 = gi+ci ⇒ ci = ti−1 ·hi−1 (2.6)

As ci = ti−1 · hi−1 and Lings summation is si = pi ⊕ (ti−1 · hi−1) this results in
si = pi ⊕ ci which is the definition of the addition, QED.

2.2 Part b

The recursions for the adder generation for a conventional adder and a Ling
adder for a group of four is shown in the Table below.
We know that a ti term has a fanin of 1, and a gi term has a fanin of 2. We
can clearly see from the Table presented that the Ling recursion removes one

6

Conventional carry: Conventional sum: Ling carry: Ling sum:
c1 = g0 + t0 · c0 s0 = p0 ⊕ c0 h0 = g0 + c0 s0 = p0 ⊕ c0

c2 = g1 + t1 · g0 + t1 · t0 · c0 s1 = p1 ⊕ c1 h1 = g1 + g0 + t0 · c0 s0 = p1 ⊕ (h0 · t0)
c3 = g2 + t2 · g1 + t2 · t1 · g0+ s2 = p2 ⊕ c2 h2 = g2 + g1 + t1 · g0+ s2 = p2 ⊕ (h1 · t1)

t2 · t1 · t0 · c0 t1 · t0 · c0

c4 = g3 + t3 · g2 + t3 · t2 · g1+ h3 = g3 + g2 + t2 · g1+
t3 · t2 · t1 · g0+ s3 = p3 ⊕ c3 t2 · t1 · g0+ s3 = p3 ⊕ (h2 · t2)

t3 · t2 · t1 · t0 · c0 t2 · t1 · t0 · c0

cout = c4 cout = h3 · t3

product term of each sum-term of the carry generation, and bubbles it towards
the sum calculation. For s0 we clearly see that there is no difference between
the conventional and the Ling adder, as both have no carry generation, and
for the sum we have the same structure. For s1 we see also that there is no
difference, as the conventional carry generation uses a fanin scheme of [2,2] ,
whilst the Ling uses a scheme of [1,1]. In the sum generation the normal scheme
is [1,1], whilst the Ling must use here [2,2], making the area and fanin of both
scheme’s equal. For s2 we see the first advantage of Ling, the normal carry
generation uses here a [2,3,3] scheme, whilst the Ling uses a [2,2,2] scheme. In
the summation the normal scheme we still find [1,1,1], whilst the ling gives a
[1,3,2] scheme. Overall, we can say that Ling removes here 2 ”AND” product
terms in the carry generation, and introduces one in the sum generation, which
results in the area savings of one ”AND” product term, and a fanin saving of
1. Equally for s3 the Ling recursion removes 3 ”AND” product terms in the
carry generation, and intruduces one in the sum generation, which results in
the area savings of two ”AND” product terms, and a fanin saving of 2. Finally
for the carry out generation the Ling saves four ”AND” product tems, and only
intruduces one in the carry out generation. Thus saving 3 ”AND” produc terms,
and a fanin saving of 3.
We can see that Ling saves a total of 6 ”AND” product terms in Area and a
total of 6 fanin savings, when we look at a block of four bits.

7

Chapter 3

Assignment 2.21

Denote gi = ai · bi and pi = ai ⊕ bi. For the carry we get ci+1 = gi + pi · ci−1

and for the sum si = pi ⊕ ci. When we consider the prefix adders than we can
formulate:

c1 = g0 + p0 · c0 (3.1)
c2 = g1 + p1 · c1 = (g1 + p1 · g0) + (p1 · p0) · c0 = G1 + P1 · c0 (3.2)

c3 = g2 + p2 · c2 = (g2 + p2 ·G1) + (p2 · P1) · c0 = G2 + P2 · c0 (3.3)
cn+1 = gn + pn · cn = (gn + pn ·Gn−1) + (pn · Pn−1) · c0 = Gn + Pn · c0 (3.4)

And Thus:
sn = pn ⊕ cn = pn ⊕ (Gn−1 + Pn−1 · c0) (3.5)

In case we have c0 = 0 this reduces to sn = pn ⊕ Gn−1 the well known prefix
equation, and result for the requested s = x + y addition. In case c0 = 1 this
equation states: sn = pn ⊕ (Gn−1 + Pn−1) which can be implemented by only
one extra stage, and which delivers the result for the requested z = x + y + 1
addition. This means that by only adding n-”OR” gates and n-”XOR” gates
we can determine s = x+y and z = x+y +1 with the same prefix adder, which
has no carry in functionality.

8

Chapter 4

Assignment 3.24

4.1 Part a

We can determine the range of results by taking min|z| = −4 − 3 · 3 + 5 ·
(−4) = −33 and max|z| = 3 − 3 · (−4) + 5 · 3 = 30. Using two’s complement
representation, the value 30 can be represented in 6 bits, but the value -33 needs
7 bits to be represented. The least number of bits to represent z is therefore 7.

4.2 Part b

We can rewrite the summation as: z = a− 4b + b + 4c + c. The bit-matrix for
this sommation is (as a , b and c are representable in three bits):

a2 a2 a2 a2 a2 a1 a0 a
b2 b2 b2 b2 b2 b1 b0 b
b2 b2 b2 b1 b0 0 0 -4b
0 0 0 0 1 0 0
c2 c2 c2 c2 c2 c1 c0 c
c2 c2 c2 c1 c0 0 0 4c

It can be shown that {a2, a2, a2, a2, a2, a1, a0} = {1, 1, 1, 1, 1, 0, 0}+{0, 0, 0, 0, a2, a1, a0}
for sign extenstions. Usign this property results in the first optimizations shown
in Table 4.1. Know we can add all constants to form one constant value, as
shown in Tables 4.2, 4.3 and 4.4. Finally by rewriting Table 4.4 a little bit we
achieve the final bit-matrix shown in Table 4.5.

4.3 Part c

Taking Table 4.5 We can use 5 Full Adders (0..4) to form the reduced Matrix
shown in Table 4.6. For the next reduction we can use FA (5) for the row of
four, and we can again use two HA’s (6..7) to form the reduced Matrix Show in
Table 4.7.

The schematic of the realised adder is depicted in Figure 4.1.

9

0 0 0 0 a2 a1 a0

1 1 1 1 1 0 0
0 0 0 0 b2 b1 b0

1 1 1 1 1 0 0
0 0 b2 b1 b0 0 0
1 1 1 0 0 0 0
0 0 0 0 1 0 0
0 0 0 0 c2 c1 c0

1 1 1 1 1 0 0
0 0 c2 c1 c0 0 0
1 1 1 0 0 0 0

Table 4.1: First table optimization

0 0 0 0 a2 a1 a0

0 0 0 0 b2 b1 b0

1 1 1 1 0 0 0
0 0 b2 b1 b0 0 0
1 1 1 0 1 0 0
0 0 0 0 c2 c1 c0

0 0 c2 c1 c0 0 0
1 1 0 1 1 0 0

Table 4.2: Second table optimization

4.4 Part d

The minimal precision of the CPA in Figure 4.1 is 5 bits, as the lsb is directly
provided by the csa-tree, and the sign bit is the inverse of the carry out of the
CPA, as result of the constant ’1’ on position 6 in Table 4.7. The best suited
CPA would be a carry-select based CPA.

10

0 0 0 0 a2 a1 a0

0 0 0 0 b2 b1 b0

0 0 b2 b1 b0 0 0
1 1 0 0 1 0 0
0 0 0 0 c2 c1 c0

0 0 c2 c1 c0 0 0
1 1 0 1 1 0 0

Table 4.3: Third table optimization

a2 a1 a0

b2 b1 b0

b2 b1 b0

c2 c1 c0

c2 c1 c0

1 1 1

Table 4.4: Final table optimization

a2 a1 a0

b2 b1 b0

1 1 1 c2 c1 c0

b2 b1 b0

c2 c1 c0

Table 4.5: Reordered final table optimization

s2 s1 s0

ca2 ca1 ca0

1 s4 s3

ca4 ca3 b0

c0

Table 4.6: Reduced final table optimization 1

s2 s1 s0

s6 ca0

1 ca6

ca4 s7 s5

ca7 ca5

Table 4.7: Reduced final table optimization 2

11

Figure 4.1: Schematic of the realized addition

12

Chapter 5

Assignment 4.18

5.1 Part a

Asume that the 12x12 two’s complement multiplication is defined as M = A,
where M is the multiplication result, A is the multiplier and B is the multi-
plicant. The bit-matrix for this multiplication without sign reduction, and the
matrices for the 5x5 two’s complement multiplication are shown in Figure 5.1.
The number of 5x5 multiply modules needed are 9.

Figure 5.1: Multiply matices

13

