1612
High-Speed Addition in CMOS

Nhon T. Quach and Michael J. Flynn

Abstract—This paper describes a fully static Complementary Metal-
Oxide Semiconductor (CMOS) implementation of a Ling type 32-bit
adder. The implementation described herein saves up to one gate delay
and always reduces the number of serial transistors in the worst-case
(critical) path over the conventional carry look-ahead (CLA) approach
with a negligible increase in hardware.

Index Terms— Carry look-ahead, conditional-sum adders, group-
generate, high-speed CMOS binary adder, modified Ling addition,
multiple output Domino logic.

[. INTRODUCTION

For high-speed addition, Ling type adders [1}-[2] have been
demonstrated to have advantages over conventional CLA adders in
emitter-coupled logic (ECL) [3]. Ling’s approach results in a drastic
load reduction in the input stage circuitry, thereby allowing direct
generation of group generate from the input operands. Because this
approach takes advantage of the dot-or capability of ECL, it is not as
suitable for CMOS adders. A straightforward application of Ling’s
scheme to CMOS adders can lead to an increase in hardware or
delay time, or both.

In this paper, we present an implementation of a fully static CMOS
adder using a modified Ling scheme. Our implementation saves up
to 1 gate delay and always reduces the number of serial transistors
in the critical path over the conventional CLA approach with a
negligible increase in hardware. In CMOS, because the number of
serial transistors from the output to the power or the ground node
is one of the major speed limiting factors, reducing it in the critical
path is therefore of interest.

In Section II, we show how Ling’s approach can be modified for
CMOS technology by way of a 32-bit adder design. Our approach,
however, is independent of the number of bits in the adder. In Section
III, we compare the present adder with other adders reported in
the literature. Section IV contains a summary. In this paper, AND is
denoted by juxtaposition, Or by V, EXCLUSIVE-0OR by ', negation
by overbar, and []'_, p; by pi—,. Index i € (0, 32) is used for bits
(carry-in is treated as go and actual sums range from 1 to 32), index
J € (0, 10) for groups, and index A € (0, 2) for blocks, exclusively
and respectively.

II. THE ADDER

The adder is divided into 4 blocks, of sizes 9, 9, 9, and 6
bits, respectively. Since carry-in is treated as ¢y, Block 0 has only
8 bits. Each block is subdivided into three 3-bit groups, except
for the last 6-bit block, which has two 3-bit groups. Within each
group and cach block, the local sum logic uses the conditional-
sum algorithm [4]. Fig. 1 shows the structure and numbering
convention of the adder. The ECL adders reported in [1] and
[3] have a 4-bit group; owing to the limited fan-in capability of

Manuscript received June 15, 1990; revised December 15, 1990. This work
was supported by NSF Contract MIP88-22961.

The authors are with the Department of Electrical Engineering, Stanford
University, Stanford, CA 94305.

IEEE Log Number 9105496.

IEEE TRANSACTIONS ON COMPUTERS, VOL. 41, NO. 12, DECEMBER 1992

p26 p17
333 222222 [21] |fa—rip
21¢ 654321 098
Gyq{Gy Gg||G7]| |G
Block 3 Block 2 Block 1
GbY, | |Pby GbY| [PbY Gby| |Pby
(] <
Cout
-~ Global Carry Look-ahead

Fig. 1. Structure and naming convention of present CMOS adder. Carry-in

is defined as ¢o.

tully static CMOS circuits, 3-bit groups are used in the present
adder.’

Some definitions: ¢, = a,b,. p, = a, Vb,. gy = ;. and
so that S; = s, - ¢;_. In the definitions, a,.b,
are the /th bits of the input operands and .. S, are the ith bits of the
local and final sum, respectively.

s, = a, b;.

A. Global-Carry

For ease of discussion, we illustrate our approach on Group 8 in
Block 2 of the adder (see Fig. 1). The conventional group-generate
equation for the group is [4]

G = g26 V gaspoe V g2apespee. (@)

Using the identity g, = p,¢, and extracting p¢, we rewrite (1) as
Gx = p2sGE where GY = g26 V g25 V g2ap25. The essence of Ling’s
approach is to propagate the G term only. This is because Gx can
be expanded as

G = asebas V azshas V avgbagass V azqbogbos. 2)

Equation (2) contains 4 terms and a total of 10 literals, with the
largest term having 3 literals. This can be implemented in CMOS in
1 complex gate [5]. Equation (1) on the other hand, when expanded,
contains 7 terms and a total of 24 literals, with the largest term
containing 4 literals. In CMOS, the number of literals in a minterm
corresponds to the number of N-channel serial transistors; (2) is
therefore preferable to (1) for direct generation of group generate
from the input operands. Generating group generate directly saves 1
gate delay in the critical path because the g, and p; terms are not
implemented.

The reader may have realized that a straightforward implementation
of (2) in fully static CMOS has 4 P-channel transistors in series,
severely limiting its usefulness. But the P-channel transistor network
can be simplified as the relationship of p; and ¢,.7,p, = p,, can
again be put to usc. Fig. 2 shows an implementation of (2); only 3
P-channel transistors arc in series. The equation for group propagate
in conventional CLA is Ix = pus4_us. Ling uses a modified group
generate, I, defined as I’ = pas_»s. G and I} are, respectively,
the reduced and left-shifted versions of G; and P;. To see why group
generate is defined this way, consider the block-generate equation for
Block 2:

Gby = Ge VG-PuV G PP 3)

Though a fan-in of 4 is often used in fully static CMOS, we have chosen to
use a fan-in of 3 to avoid having 4 P-channel devices in series. Our approach
is independent of the group size, however.

0018-9340/92803.00 © 1992 IEEE

IEEE TRANSACTIONS ON COMPUTERS, VOL. 41, NO. 12, DECEMBER 1992

Using the definition of P} and G}, we can rewrite (3) as
Gba = pas(Gs V G1P; V G§ Py Py) = pasGhs. 4

Hence, the use of P; affords a more efficient implementation of block
generate. Equation (4) is easier to implement than (3) because G are
available, but G; are not. Also, pas in (4) propagates further down
into the final-carry equation:

Cy = Gby V Gby Pby V Gbo Pby Pb,
which can be rewritten as
C2 = p26C3 &)
where
Cs = Gb; V Gb} Pb} V Gbg Pb} Pb3. (6)

The final-carry equations Co, C1, and Couy can be derived similarly
as

Co = psGbg (@)
and
C1 =p1rCY ¥
where
Cl = Gb] vV PbiGb; ©
and
Cout = p32Coye (10)
where
Cou = Gb3 V Gb3 Pb; V Gb; Pb3 Pbs V Gbg Pbl Pb3 Pby. (11)

The definitions of Gby, and Pb; in (6), (7), (9), and (11) follow those
of the conventional Gb;, and Pb; with a simple modification: P; and
G are replaced by P; and G7, respectively. For example:

Gb] S G5 \ G4P5 \2 G3P4P5

Gbi = Gs VGIP; VG3P P} (12)
and
Pbl = P3—5
Pb; = P:Ls-

Ling’s scheme calls for either the implementation of Cj from
Pbi, Gb, and C; [(5)-(11)] or the modification of the local sum
logic to account for the fact that C; are propagated [1]. Neither
options are attractive. The former fails to reduce the number of serial
transistors in the critical path and the latter adds complexity to the
local sum logic, increasing hardware and delay time.

In the present implementation, only the Cj, Pby,Gbi, P} and
G terms are implemented in the carry look-ahead circuitry without
modifying the local sum logic. The p terms in (5), (7), (8), and (10)
are implemented in the local group-carry equations, both of which
are noncritical paths. In the following section, we show that this is
possible and in fact desirable because of reuse of the P; and G
terms. The ability to reuse the P and G terms is one of the salient
features of the present adder.

1613

t [>o0 6
f I <Q a24
o ;:221 LJ"
I 1 S b24
b26 ©—-} o= h _": |'—0

Fig. 2. Typical CMOS implementation of group-generate.

B. Local Group-Carry

We can prove for the general case that the p terms in
the final-carry equations (5), (7), (8), and (10) can be imple-
mented in the local group-carry equations for all blocks in the
adder. For case of discussion, however, we show that this is
possible for Block 2. That is, we show that only C7 needs
to be propagated to Block 2 and p;7 needs only be propagated to
Group 6. Equations for the other blocks can be derived similarly.

The final-sum equation for bit 24 in Group 8 (see Figs. 1 and 3) is

Soa = 8524 B (G7 V PrGs V Py PsCh)

= s24 @ {p23[G7 V P (G5 Vv Fs CT)]}- (13)
Defining
gbr = p23(G3 V P/ Gy) (14)
and
pbr = p23[G7 V P7 (GG V Fs)] 15)

and expanding (13) in terms of C7 using Shannon’s theorem [6],
we get

S2a = C1 (524 @ gb7) V C (524 @ pbr).

The equations for S5 and Sa¢ can be derived similarly. The Sa¢
one is given below:

S26 = C1{gb[s26 @ (925 V p2sges)]
V gbr[s2e @ (g25 V pasp24)]}
V CT {pbs[s26 @ (gos V p2sgas)]

V pbr{sae D (g25 V p2sp2s)]}. (16)

Hence, only C7 in (8) needs to be propagated globally to Block 2.
p17 can be accounted for locally in Group 6 in G and P§ in (14) and
(15). Both equations can be implemented in 2 complex gate delays
since P} and G require only 1. In the present implementation, all
complex gates have at most 3 serial transistors and are roughly of the
same complexity as that shown in Fig. 2. One complex gate delay is
roughly equal to two 2-input NAND gate delays at a load of 0.5 pF
from SPICE simulation. The GV Pg term in (15) is actually available
from Group 7 within the same block and can be reused at a cost of
1 complex gate delay, increasing the number of gate delays of pbs
from 2 to 3. Fig. 3 shows an implementation of Group 8.

In Fig. 3, we have used s25 as the local propagate (globally, we
used p;), allowing a more efficient implementation of (g25 V p2sg24)

1614

a24 b24

a25 b25

2-1 mux

s24 b s25 b S26_b

Fig. 3. Logic diagram of Group 8.

and (gas V pasp24) in (16). Because the present approach does not
modify the local sum logic, there is no increase in hardware in Fig. 3
when compared with an implementation that uses the conventional
conditional-sum (CSA) algorithm.” In terms of number of gate delays,
Sao is no worse than Sz¢. The equation for Sio is similar to (16):

Sz =C 3 {gbo[Ts0(s32 7+ gs1) V gso(ss2 7 pa1)]
V gbo[Tyo (532 = g31) V gsolsse 2 p31)]}
V Co{pbo[Pao (532 3 g31) V pavlsan ps1)]
V pbo[Pyo(s32 <= g31) V psolssz = pa Ny an

where gbs = p20G% and pbs = p2s(Gs V I}, From the previous
discussion, P} and G are available in 1 complex gate delay, Pby,
and Gb} in 2, and C} in 3. The final sum selection multiplexor is
counted as 1 gate delay. Hence, the present adder has a total of 4
complex gate delays.

{II. CoMPARISON WITH OTHER ADDERS

Table | compares the present adder with conventional CLA,
conditional-sum, carry-select, and Multiple-Output Domino Logic
(MODL) adders [7] in terms of complex gate delays and number
of serial transistors in the critical path. The present adder has fewer
complex gate delays than other adders. These adders were chosen
because their delay times have the same order of growth, O(logn),
as the present adder. In the comparison, we have assumed that the
CLA adder is implemented in a complex gate oriented media (i.e.,
MOS LSI or VLSI) and the carry-select adder uses a 4-bit group
and conventional carry look-ahead to propagate the global carry. To
be fair, we have further assumed that the conditional-sum adder has
a similar organization as the present adder but without using the
modified Ling approach and that the MODL adder uses conditional-
sum logic locally.

Because CLA, conditional-sum adder, and carry-select adder do
not generate group generate directly, they have one more gate delay
than the present adder. CLA requires another gate delay to generate
the local sum, increasing its gate delay from 5 to 6. The MODL adder
though generates group generate directly, it does so by using a small
2-bit group [7], requiring more levels in the global carry generation
process than the present adder.

Comparison of complex gate delays in CMOS adders can be
misleading because they depend on both fan-in and fan-out. A

2Since we used CSA for the local sum logic, it is fair to compare our adder
with CSA, knowing that CSA consumes more hardware than CLA [4].

[EEE TRANSACTIONS ON COMPUTERS, VOL. 41, NO. 12, DECEMBER 1992

TABLE 1
COMPARISON OF CMOS ADDERS IN TERMS OF GATE DELAYS
AND NUMBER OF SERIAL TRANSISTORS IN CRITICAL PATH

Gate Delay* Number of Serial Transistors

Adders from c;;, to S32 from ¢;, to Sz
CLA 6 21
Condition-Sum Adder 5 16
Carry-Select Adder 5 18
MODL Adder 5 18
Present Adder 4 14

*Complex gate delay. As explained in the text, this is not a good
measure of adder speed. Number of serial transistors is a better measure.

better measure is the number of serial transistors which a signal
must traverse in the critical path. This means that for fully static
CMOS circuits, we evaluate both P-channel and N-channel transistors
for critical paths. For dynamic CMOS circuits [5], which include
DOMINO circuits, we only evaluate the N-channel transistors. Hence,
this comparison scheme is slightly biased against fully static CMOS
circuits. Admittedly, comparing CMOS adders in terms of serial
transistors in the critical path is crude but it does allow us to quickly
evaluate the potential performance of an algorithm for further study.
A fair comparison scheme should consider area, power consumption,
speed, and design turnaround time.

In counting the number of transistors in series, the discharge
N-channel transistors in DOMINO logic are not included. Inverters
are counted as 1 transistor and XOR gates as 2. The number of serial
transistor count for NAND, NOR, and complex gates is the number of
transistors in the longest N-channel or P-channel chain for static and
dynamic CMOS circuits. When there are pass gates [5] involved, the
situation is a little more complicated. The input-output (source-drain)
path of a pass gate is counted as 0.5 transistors* and the control-output
(gate-drain) path as 1 transistor. By the same token, 2-1 multiplexors
are counted as 2 transistors from the select-output path, but as 0.5
from the input-output path. A similar comparison scheme has been
suggested by Oklobdzija and Barnes [8], but the accounting details
were not given.

From Table I, the present adder has a fewer number of serial
transistors in the critical path than others. To count the number of
serial transistors in the critical path, (6), (12), and (17) can be used.
The input signal must traverse G} in 4 transistors (Fig. 2), Gb}. in
another 4 transistors [(12) plus an inverting buffer], and C7 in yet
another 4 transistors [(6) plus an inverting buffer], giving a total
of 12 transistors. All other terms in (17) arrive sooner than C3. The
final sum selection multiplexors contribute 2 more transistors. Hence,
the critical path from cin to Ss2 in the adder has 14 transistors,
as indicated in Table I. As with other adders, the inverting output
buffers in Fig. 3 are not counted because they are only included
for driving considerations. The path from cis to Coue has the same
number of serial transistors as the path from ci, to S32. This can be
seen by rewriting (11) as Coue = p32[Gb3 V Pb3(Gbs vV Gb Pbs v
Gby Pb} Pb3)]. This ¢ to Cour path, however, is not the critical
path because it has a much smaller capacitive loading than that from
Cin 10 S32.

We have laid out an 11-bit adder in an advanced bipolar/CMOS
process with 1.0 um drawn channel length. This 11-bit adder was
used as an exponent adder in a 53 x 53 bit multiplier. The bipolar

31f both the inputs and their complements are available, the XOR gate delay
is 1.

4 When there are several pass transistors in series, one has to take capacitive
loading into account as suggested in [8]. This situation never arose in the
present study.

IEEE TRANSACTIONS ON COMPUTERS, VOL. 41, NO. 12, DECEMBER 1992

devices were exclusively used in the Wallace tree and the final
carry-propagate adder. The 11-bit CMOS adder was laid out in a
standard-cell fashion and occupied roughly 700 x 550 um?. No
automatic compaction was performed on the layout. Based on this
adder, the delay of the whole 32-bit adder operated at 5 V driving
a 0.3 pF load at room temperature is estimated using SPICE to be
around 4.0 ns.

IV. SuMMARY

In summary, we have presented a fully static CMOS implementa-
tion of a Ling type adder. The implementation has a fewer number
of complex gate delays and a fewer number of serial transistors in
the critical path than other conventional adders of the same order
of growth complexity (i.e., conditional-sum adder, CLA, carry-select
adder, and multiple-output domino logic adder). Compared with a
conventional conditional-sum adder, the increase in hardware in the
present implementation is negligible.

The key idea presented in this paper that allows Ling’s scheme
to be used for CMOS adders is that the factored p term in Ling’s
equation can be propagated locally, reducing the number of serial
transistors in the critical carry propagation path. Another minor
observation is that by using s; as the local propagate, the present
implementation saves hardware in the local sum logic over the
conventional conditional-sum adder (Fig. 3).

ACKNOWLEDGMENT

The authors wish to thank M. Horowitz, A.R. Todesco, and the
referees for their valuable comments on the paper. The comments
from one of the referees were particularly incisive and helpful.

REFERENCES

[1] H. Ling, “High speed binary adder,” IBM J. Res. Develop., vol. 25, no. 3,
pp- 156-166, May 1981.

[2] R.W. Doran, “Variants of an improved carry-look-ahead-sum adder,”
IEEE Trans. Comput., vol. 37, no. 9, pp. 1110-1113, Sept. 1988.

[3] G. Bewick, P. Song, G. DeMichel, and M.J. Flynn, “Approaching a
nanosecond: A 32-bit adder,” in Proc. Int. Conf. Comput. Design, 1988,
pp. 221-224

[4] S. Waser and M. J. Flynn, Introduction to Arithmetic for Digital Systems
Designers. New York: Holt, Rinehart and Winston, 1982.

[5] J.P. Uyemura, Fundamentals of MOS Digital Integrated Circuit.
ing, MA: Addison-Wesley, 1988, ch. 6-9.

[6] E.J. McCluskey, Logic Design Principles with Emphasis on Testable
Semicustom Circuits. Englewood Cliffs, NJ: Prentice-Hall, 1986, ch. 2.

[7] 1.S. Hwang and A.L. Fisher. “A 3.1 ns 32 b cmos adder in multiple
output domino logic,” in Proc. IEEE Int. Solid-State Circuit Conf. Rec.,
1988, pp. 140-141.

[8] V.G. Oklobdzija and E.R. Barnes. “Some optimal schemes for alu
implementation in vlsi technology,” in Proc. of the 7th Symp. Comput.
Arithmetic, June 1985, pp. 2-8.

Read-

1615

Concurrent Error Detection and Correction
in Real-Time Systolic Sorting Arrays

Sy-Yen Kuo and Sheng-Chiech Liang

Abstract—A novel approach to on-line error detection and correction
for high throughput VLSI sorting arrays is presented. The error model
is defined at the sorting element level and both functional errors and
data errors are considered. Functional errors are detected and corrected
by exploiting inherent properties as well as newly discovered special
properties of the sorting array. Coding techniques are used to locate data
errors. All the checkers are designed to be totally self-checking and hence
the sorting array is highly reliable. Two-level pipelining is employed which
makes the design very efficient and suitable for real-time application. The
structure is very regular and therefore, is very attractive for VLSI or
WSI implementation.

Index Terms— Coding, concurrent error detection and correction, di-
agnosis, systolic sorting, totally self-checking.

1. INTRODUCTION

Many applications in real-time digital signal and image processing
need a high performance and special purpose architecture for parallel
sorting on a huge amount of input data. Sorting arrays which
consist of a number of identical processing elements with regular
interconnections and high concurrency factors [1}, such as the odd-
even transposition sort [2], the bitonic sort [3], and the perfect
shuffle sort [4], are good candidates for real-time applications.
Studies by Kung [5] indicate that both regular cell structures and
simple interconnections will dominate the cost in VLSI or WSI
implementations. Although both the perfect shuffle sort and the
bitonic sort use less sorting elements (O(N log,? N)) than the odd-
even transposition sort (O(N?)), the wiring complexities of the first
two sorters make them more costly to implement than the odd-even
sort since, for large NV, the wiring space will dominate the silicon
area.

Reliability, availability, and continuous operation are also very
important in real-time applications. On-line error detection is the
first step to increase the reliability. In order to increase the system
availability, off-line diagnosis after on-line error detection should be
avoided and the system should be able to automate the recovery
process. In this paper, we present a highly reliable sorting array
which can detect multiple errors and correct a single error for on-line
applications. Since the array is based on the odd-even transposition
sort, it has a regular structure and simple interconnection links. Both
the regularity and the simplicity are preserved by the presented fault
tolerance technique so that redundancy can be included into the
system easily. Also, it can be reconfigured easily to tolerate the faulty
sorting elements located by the on-line fault diagnosis procedure and
can be degraded gracefully after redundancy is exhausted.

Extra cost incurred by bringing in fault tolerance features is mini-
mized by exploiting the inherent properties of the embedded sorting
algorithm. Properties such as nondecreasingly or nonincreasingly
ordered output sequence are used to check the functional correctness
of the sorting array. In contrast with assuming that a faulty sorting
element will transmit its inputs to the outputs unchanged or a faulty
element can be located by some external circuits and then bypassed

Manuscript received July 26, 1990; revised November 11, 1991.

The authors are with the Department of Electrical Engineering, National
Taiwan University, Taipei, Taiwan, R.O.C.

IEEE Log Number 9200319.

0018-9340/92$03.00 © 1992 IEEE

1616

as in [6] and [7], a faulty sorting element in our error model can
either pass or swap data incorrectly. Also, we discovered an important
robust property of the odd-even transposition sorting array in which
a single error can be masked automatically and multiple errors can be
detected concurrently without disturbing the normal circuit operation.

In addition to checking the order of the outputs, the code-preserving
property in data manipulation is employed to check whether the out-
put data has been modified. Errors which violate the code-preserving
property can be detected by using an appropriate coding technique.
Depending on how critical the applications are, the requirements of
fault coverage as well as the corresponding coding techniques will
be different. Three example coding techniques are evaluated and the
results are shown in Section VI. The total overhead of the proposed
approach based on our analysis is much lower than previous fault
tolerance techniques for other pipelined array processors [8], even if
the checkers in the array are designed to be totally self-checking to
increase the reliability.

II. ARRAY ARCHITECTURE AND CELL REALIZATION

In order to have a high performance system, the two-level pipelin-
ing technique [9] which is frequently used in sorting arrays to achieve
very high throughput [10] is employed in the design here. In addition
to the use of the pipelined odd-even transposition sort as the word-
level structure (Section 1I-A), the systolic data flow concept [5] is
used for the bit-level pipelining (Section II-B). In this paper, we use
the term C'S element to represent a word-level compare-swap clement
and the term cell to represent a bit-level compare-swap element. Also,
without loss of generality, we will assume that the sorted output
sequence is in nonincreasing order.

A. Array Architecture

The word-level pipelines can be achieved by one of the parallel
sorting algorithms such as the odd-even transposition sort, the bitonic
sort, the perfect shuffle sort, or the balanced sort. An example odd-
even transposition sorter with N = 5 (without loss of generality, .V
is assumed to be an odd number) is shown in Fig. 1. The parallel
odd-even transposition sorting array consists of a cascade of N stages
with N(V = 1)/2 CS elements in each stage to sort V' input data
clements [2]. Each C'S element in the sorting array compares two n-
bit input numbers x and y and swaps these two values if » < y. Data
registers (D) in Fig. 1 are used as delay buffers so that input data
sets can be synchronized by the system clock and pipelined through
stages of the sorting array.

B. Cell Realization

In the word-level, there are only two types of elements in the
sorting array: data registers (D) and compare-swap elements (C'S).
For each C'S element, n bit-level comparisons are required to
compare two n-bit binary numbers. Since the goal here is to have
high throughput systems, the systolic data flow concept is also applied
in the bit-level pipelines. A matrix of single-bit data registers (d) is
cascaded before the input stage to synchronize the data flow as shown
in Fig. 2. (Note that this matrix of d registers is required only before
the C'S elements of the first stage.) These data registers are arranged
as a lower right triangular matrix such that input data bits can enter
the systolic sorting array in a skewed fashion. That is, for a C'S
element, when ¢, has finished processing x,, and y,, the comparison
results can pass to cell c,_; together with the two inputs z,_, and
yn—1 at the same time. Therefore, ¢, can process the next inputs a,
and b, when c, _; is processing x,,—; and y,—;. The n cells of each
('S element are chained together by the swap control lines r and s.

IEEE TRANSACTIONS ON COMPUTERS, VOL. 41, NO. 12, DECEMBER 1992

u D: data register

t

p

" X c max(x.y)
' y S min(x.y)

CS: compare-swap element

Odd-even transposition sort: word-level structure.

Logical operations of a cell ¢; in a C'S element are described in the
following: 1) Signals .4, and 7,4, from cell ¢4, to cell ¢; indicate
whether any of the more significant bits than bit i has been swapped
ornot. 2) Inputs &, and y; are the 7th bits of the two input words r and
y 10 a ('S element, respectively. 3) The signal r; indicates whether
(Tnes+.2) = (Yn.---.y) ornot (r; = 0 or 1, respectively) and s,
indicates whether (r,.--+.2,) < (yn.---.y:) or not (s; = 1 or 0,
respectively). 4) a; and J; are two output data bits from cell ¢; with
«; > ;. Therefore, we have the bit-level cell structure and logical
equations as shown in Fig. 3.

The swap control signals s, ry from cell ¢; indicate whether the
two inputs, r and y, have been swapped (s; = 1, r; = 1) or not
(s1 = 0). We call s, the swap-indicator since it alone can tell us if
there is any swap operation performed in the corresponding stage.

III. PROPERTIES OF THE SORTING ARRAY

A. Error Model

The error model is defined at the C'S element level. A C'S
element which contains physical faults can generate errors such as
swapping its inputs incorrectly, modifying the data values, or both,
and can be classified as a functional error, a data error, or a hybrid
error, respectively. For example, stuck-at faults on the two swap
control lines can cause functional errors and stuck-at faults on the
communication links can cause data errors. Effect of faults on links
between stages / and i + 1 is lumped into stage i + 1 such that
errors in communication links are also representable in this word-
level error model. Faults in communication links are less common
[11] but more severe since, in a sorting array, a faulty communication
link will cause the entire output data useless unless a reconfiguration
process followed by a recovery process is applied.

B. Properties

Due to the limitation of space, all the proofs of theorems are
omitted and can be found in [12]. The first well known property is that
the systolic sorting array based on the odd-even transposition sort with
-V stages and (N —1)/2 elements in each stage is a valid sorting array
and a random input sequence will be correctly ordered at the outputs.
The second property is that the sorting array is a code-preserving
sorter. This is due to the fact that the sorting array consists of C'S
elements and data registers only, no logical or arithmetic operation
which can modify data values is performed during normal circuit
operations. Therefore, the order of input sequence may be modified
at the outputs but the coded input values should be preserved.

These two properties inherently exist in all sorting arrays and any
sorter can be examined functionally according to these two properties.
In addition to these two general properties, we have derived a special
property for functional error checking which can be applied to all

IEEE TRANSACTIONS ON COMPUTERS, VOL. 41, NO. 12, DECEMBER 1992

rpa=0 Sp+1=0
Pn an LY —— o
b Yn —2n o]
qn n

Y
ap- Xn-1 . >
boy Ynei e B

vy
S B W

Cn-2
Yned >
e o N
y, gt a" |~

v

Fig. 2. Structure of a CS element and the matrix of data registers.

pipelined sorting algorithms and a robust property for the odd-even
transposition sort only, in which any single functional error can be
recovered automatically.

It should be noted that as was discussed in Section III-A, it is
possible for a C'S element to swap its inputs incorrectly such that
the entire output sequence from a sorting array is not nonincreasingly
ordered. From the odd-even transposition sort (Fig. 1), we can see
that two neighbor stages in the odd-even transposition sorting array
completely compare all pairs of adjacent inputs in two clock cycles.
Therefore, if two additional neighbor stages which include an odd-
numbered stage and an even-numbered stage are added after the last
stage of any sorting array, they can be used as a checker to check
whether the outputs from the sorting array are ordered or not. If
the output sequence is correctly ordered, no swap operation will be
executed in any C'S element of these two additional stages, otherwise,
some of these C'S elements will perform swap operations and it
represents that the output sequence from the sorting array is not
correctly ordered. We call these two stages the Nonincreasing-Order-
Checker (NOC).

Theorem 1: The nonincreasing-order-checker (NOC') can deter-
mine whether the output sequence from the sorting array is correctly
ordered or not. O

The second property is the robust property of the odd-even
transposition sort. This robust property is very important in on-line
real-time applications. For on-line applications, the probability of a
single error is much higher than multiple errors. If a single error can
be recovered automatically without interrupting the entire system, the
system availability will be increased significantly.

Theorem 2: The systolic sorting array for N inputs based on the
odd-even transposition sort with N + 2 stages can recover from a
single functional error in the first IV stages automatically. O

IV. FAULT TOLERANCE

By checking the two general invariant properties, the sorting array

1617

has the capability of concurrent error detection. By exploiting the
special property we derived in Theorem 2, the sorting array can
correct a single functional error during the normal operation. It is
difficult to correct data errors in a sorting array during the mormal
operation. Even if the faulty bits can be detected and corrected by
some coding techniques such as Hamming code, the output sequence
is no longer correctly ordered. Therefore, with the assumption that
the hardware used for off-line diagnosis and yield enhancement such
as the multiplexers and the bypass registers in each C'S element are
fault-free, we will present a fast on-line fault diagnosis procedure in
Section V-B to locate the faulty sorting elements.

As shown in Theorem 1, whether the output sequence is in
nonincreasing order or not can be detected by the NOC. Error
correction for a single functional error is done automatically as shown
in Theorem 2. Therefore, the two stages added to a sorting array can
be either a checker or a single error corrector. These two stages
are sufficient for a single error. But for multiple errors, two more
stages are required to detect other errors after the first error has been
corrected by the first two added stages.

The problem of who will check the checkers is very important
in mission critical applications. The two additional stages used to
recover a single error in the array will not be able to recover errors
in themselves. The errors in the NOC itself will generate a useless
result if the NOC does not have a self-checking capability to check
its own outputs. Therefore, from Theorems 1 and 2, the sorting array
for N inputs can be implemented with [V +4 stages for error detection
and correction. The first IV stages are for normal sorting functions.
Stages V + 3 and IV 4 4 are used as the NOC and will be designed
to be totally self-checking (I'SC) [13]. (The details on implementing
a T'SC checker will be discussed in Section V.) Stages N + 1 and
N + 2 which are used to correct a single functional error do not
need to be T'SC circuits since their outputs are checked by stages
N +3 and N + 4 (NOC). However, in the following theorem, we
will show that stage IV + 4 can be omitted from the sorting array if
stage N + 2 is implemented by T'SC circuits.

Theorem 3: The systolic sorting array with a total of three ad-
ditional stages, stages V 4+ 1, N + 2, and N + 3, where stages
N +2 and N + 3 are implemented by T'SC circuits can tolerate one
incorrect swap operation and check whether the output sequence is
nonincreasingly ordered or not. O

In addition to checking the correctness of the output order, we can
check whether the input data values are preserved during the normal
operation or not by using appropriate coding techniques. The choice
of a data error detection method is very flexible depending on the
properties of the sorting array, the type of errors to be detected, and
the fault coverage requirement.

V. DESIGN OF TOTALLY SELF-CHECKING CHECKERS

We have designed a data error detector and an NOC to detect
data errors and functional errors, respectively. It is always desirable
to design checkers which can detect errors in the checker itself as
well as in its inputs. This leads us to design checkers which are
totally self-checking (I'SC’). The concept of a totally self-checking
checker has been formalized in [14] as a circuit which is fault secure,
self-testing, and code disjoint [13].

A. Design of a Totally Self-Checking Data Error Detector

A general structure of the totally self-checking data error detector
for the systolic sorting array is shown in Fig. 4. Check bits from
the check symbol generator (CSG) are generated based on the
coding technique used. They are attached to the corresponding data
(information) and propagated through the array but are not processed
by the systolic sorting array before arriving the two-rail checker

1618

ris+l Si+1
Xi = &
Ci
yi £ l B
I Si
Fig. 3.

(TRC) (TRC is a two-level AND-OR circuit as in [13] and will be
described latter). At outputs, these input check symbols are compared
with the outputs from the complement check symbol generator (CSG
is a combination of C'SG which generates check bits for the received
data and an inverter at the output of each check bit) through a tree
of two-rail checkers. As discussed in the previous section that any
input data should not be modified by the systolic sorting array, sO
the check symbols generated by the C'SG should be complementary
to the check symbols generated by the C'SG if both the checker and
the sorting array are fault-free.

In the case that only one check bit is generated for each codeword
(for example, by using the single parity code to detect data error),
since N inputs will be processed in parallel. N\ 1-out-of-2 code
outputs [(01) or (10) for codeword outputs and (00) or (11) for
noncodeword outputs] will be generated in parallel during normal
operations. Therefore, a tree of two-rail checkers which maps .V input
pairs into one output pair can be used to combine these information
together and generate a single output (10) or (01) in the normal
operation and (00) or (11) as an error message. In order to have a
high fault coverage, usually more than one check bit of each data will
be generated by the C'SG and C'SG (for example, by using either
the Berger code, the modificd Berger code, or the low-cost code)
and therefore, an intermediate-level two-rail checker is required for
each codeword to map the outputs of check symbols and complement
check symbols into a single output pair. Sometimes, the combination
of inverters of the ' SG and the intermediate-level two-rail checkers
are called an equality checker [13] because it can check whether the
input check symbols are the same as the output check symbols or not.

Design of a TSC' checker for single bit parity code is quite simple
[14]. Designs of a totally self-checking checker for the modified
Berger code and a self-checking checker for the Berger code were
presented in [15] and [16], respectively. To avoid the problem of
two legal representations of zero during the calculation of residues,
either special definitions are required for the modulo 2" — 1 adder
in the check symbol generator [17] (where 2™ — 1 is the check
base of the residue code) or a code translator is added between the
equality checkers and the two-rail checkers to design an efficient
TSC' checker for the low-cost code.

It has been shown that the two-rail checker is a totally self-checking
checker [13]. The combination of the C'SG and the ('SG can be a
totally self-checking checker for different coding techniques such as
for the simple parity code [14], the modified Berger code [15], the
Berger code [16], and the low-cost code [17]. Since the output pair
from the C'SG and C'SG can generate all 0. 1 sequences needed to
test the two-rail checker tree, the combination of these two circuits
preserves properties of 75C' {13].

B. Design of a Totally Self-Checking Order Checker
To design a TSC' ('S element, the concept of duplication with

[EEE TRANSACTIONS ON COMPUTERS. VOL. 41. NO. 12, DECEMBER 1992

rio=rig+ (0 YD

si=Sia1 + Fisl (X - Vi)

Bi =si-yi+Si X

o =58 " Xi+Si Vi

Structure of a compare-swap cell and its Jogical functions.

comparison is used to generate m-variable (m = (N —1)/2) two-
rail code (or 1-out-of code). Every Boolean function f(r) has a
corresponding dual function fi(.r) such that f,(¥) = f(.r), If we
apply « to the function f and & to the function f4, the resulting
output should be complementary to each other and can be used as
inputs to a TSC' two-rail checker. Since all the cell elements are
simple combinational circuits, it is possible to duplicate all the cells
in the last two stages with complementary circuitry. This can be
further simplified since outputs ., and y; are checked by the data
error detector. Therefore, only the output information s; and r; which
indicate whether the cell ¢, performs swap or not should be duplicated
in order to design the TSC'C'S elements. These C'S clements which
are implemented according to the above method of designing 7SC'
circuit will generate paired swap-indicators in the form of the 1-out-
of-2 code. That is, if a ('S element has a functional error, its output
pair (s1,5;) will be either (00) or (11) and will be (01) or (10) if
it is fault-free.

The stage V + 2 which is used to correct a functional error should
be designed as T'SC' checkers as shown in Theorem 3. All output
pairs of (s1, %) from word-level TSC CS elements in this stage
will be either (01) if there is no swap operation or (10) if there is any
swap operation performed during normal operations and (00) or (11)
if there is an error in a ('S element. Since these 0,1 sequences can
completely test the two-rail checker (T RC') tree which are used to
map V' output pairs to form a single output pair, the combination of
TSC ('S elements with TSC two-rail checker constitutes a TscC
checker. The output pair from the two-rail checker indicates whether
there are functional errors [output pair is (11) or (00)] in this stage
or not [output pair is (01) or (10)}.

In addition to stage N + 2, C'S clements in stage N + 3 are also
designed as TSC' circuits to generate m -variable two-rail code such
that if there is no functional error in this stage, then the paired output
(s1,51) of each ('S element is either (01) or (10). In addition, if
the input sequence to this stage has been ordered correctly, then the
swap-indicators of all C'S clements in this stage should be all 0’s
and their complement signals are then all I's, ie., the paired output
(s1.51) for all C'S elements are (O1).

During normal operation, the input sequence (o stage N +3 will be
in correct order if there is no functional error. Therefore, the inputs
to the AND-OR pair which is used to map m-variable two-rail code to
a single output pair as an error indicator will be all O’s for the OR
gate and all 1's for the AND gate (these two gates can be viewed as
a tree of two input gates if me > 2). The output pair (S, S) from
the AND-OR circuit should then be (10). This AND-OR circuit can be
shown to be code disjoint (this can be proved easily by expanding
the truth table 1o include all possible inputs) and fault secure. The
reason that it is fault secure is described in the following. Suppose
that a fault has occurred in the OR gate (or AND gate). Depending on
the input, a single fault in it may not produce an error or produce

IEEE TRANSACTIONS ON COMPUTERS, VOL. 41, NO. 12, DECEMBER 1992

Information
Check &

Symbol

Systolic
Sorting
Array

Check Symbgq

Generator

1619

Data Error Detector

Information

Check
Symbol

Totally Self-Checking
Two-Rail Checker

b

Data Error Indicator

t
1
t
t
(
«
1
'
T
i
i
t
t
t
t
(
¢
¢
i
1
i
1
1
I
0
0
'
t
t
1

Fig. 4. General structure of a totally self-checking data error detector.

an error value which is the 1’s complement of the correct value. In
the first case, the fault will not affect the output of the gate. In the
second case, a fault in the OR gate will not affect the output from the
AND gate and a codeword will not be produced. Therefore, for single
faults the output of the AND-OR pair is either the correct output or a
none codeword and consequently, it is fault secure.

It is impossible for this paired AND-OR circuit to be self-testing
under the condition that there is only one code input during normal
operation. Therefore, the NOC' which includes both the TSCCS
elements and the AND-OR circuit will not be a totally self-checking
checker because the swap-indicators and their complements from C'S
elements in stage IV + 3 can not generate all the input sets to test the
AND-OR circuit during normal operation. But it is indeed fault secure
and code disjoint which will increase the system reliability.

A complete word-level structure of the fault-tolerant sorting array
with N = 5 is presented in Fig. 5. Input data can be encoded with a
parity code, a Berger code, a modified Berger code, or a low-cost code
by the check symbol generator (C'SG) before entering the sorting
array. The output sequence is then checked by the TSC checkers
which include a DED to detect data errors in the output and an
NOC to check whether the output is nonincreasingly ordered. Stage
N +2 is implemented as totally self-checking circuits to check if all
the compare-and-swap functions performed by the C'S elements in
this stage are correct. The swap error signals from stage N + 2 will
generate an output pair 11 or 00 if there is an incorrect swapping
in this stage.

VI. EVALUATION AND DISCUSSION

The impact of the proposed fault tolerance techniques on fault cov-
erage, area and time overhead will be evaluated. Multiple functional
errors can be detected by the NOC and any single functional error is
masked by the first two additional stages as shown in Theorem 1 and
Theorem 2, respectively. Faults in the NOC will be either masked or
detected by the NOC itself due to the fault secure and code disjoint
properties. Coverage of data errors in the proposed sorting array will
depend on the complexity of the coding technique employed to detect
data errors. Since there is no arithmetic operation involved in the
sorting array and it is well known that some physical defects in the
VLSI circuits tend to generate unidirectional errors, only the simple
parity check code, the Berger code, and the modified Berger code will
be considered as potential coding techniques for data error detection.
For the simple parity code, only single bit error in each data word
will be detected. However, it incurs the least hardware overhead.
All unidirectional errors can be detected by the Berger code but the
overhead is at least 22% more than the modified Berger code which

R

c
N —]
P —8
U —

G
T‘—-_

CSG: Check Symbol Generator

DED: Data Error Detector
error

NOC
error

TRC: Two-Rail Checker

Fig. 5. A complete fault-tolerant sorting array with N + 3 stages.

has a 93% fault coverage [15]. Error detection for other types of errors
can be achieved by using more complicated codes such as the AN
code, the check sum code, and the low-cost code. However, even they
may have higher fault coverage and lower fault masking effect, the
requirement of multipliers, adders, or dividers makes them inefficient
for VLSI implementation. For example, with the same number of
check bits, the number of full adders required by the low-cost code
to detect undirectional multiple errors as well as errors produced by
arithmetic processors is almost twice of that required by the modified
Berger code [15].

In the following hardware overhead analysis, the determination of
overhead ratio will be on the gate level. Since comparisons of the
TSC Berger checker, the modified Berger checker, and the T'SC
low-cost code checker have been discussed in [15], we will only
discuss the overhead ratio for the parity and the modified Berger
codes. The number of check bits in the modified Berger code is
assumed to be 2. The number of gates in a 1-bit full adder and a half
adder in the check symbol generator of the modified Berger code is
5 and 2, respectively.

Based on the analysis in [12], examples of overhead ratios on
different values of n and N for the simple parity code are shown in
Table I where n is the number of bits in each word and P and A
are the numbers of gates of the extra circuits and the original array,
respectively.

From the table, it is observed that the difference between overhead
ratios for arrays with 8-bit words and 16-bit words is very small.
The overhead ratio drops in proportion to 1/N and therefore, the
overhead ratio is smaller for an array with larger inputs.

