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Abstract —We present new design and analysis techniques for the synthesis of parallel multiplier circuits that have smaller
predicted delay than the best current multipliers. In [4], Oklobdzija et al. suggested a new approach, the Three-Dimensional Method
(TDM), for Partial Product Reduction Tree (PPRT) design that produces multipliers that outperform the current best designs. The
goal of TDM is to produce a minimum delay PPRT using full adders. This is done by carefully modeling the relationship of the output
delays to the input delays in an adder and, then, interconnecting the adders in a globally optimal way. Oklobdzija et al. suggested a
good heuristic for finding the optimal PPRT, but no proofs about the performance of this heuristic were given. We provide a formal
characterization of optimal PPRT circuits and prove a number of properties about them. For the problem of summing a set of input
bits within the minimum delay, we present an algorithm that produces a minimum delay circuit in time linear in the size of the inputs.
Our techniques allow us to prove tight lower bounds on multiplier circuit delays. These results are combined to create a program that
finds optimal TDM multiplier designs. Using this program, we can show that, while the heuristic used in [4] does not always find the
optimal TDM circuit, it performs very well in terms of overall PPRT circuit delay. However, our search algorithms find better PPRT
circuits for reducing the delay of the entire multiplier.

Index Terms —Multiplier design, partial product reduction, algorithms, circuit design.

——————————   ✦   ——————————

1 INTRODUCTION

HE design of efficient logic circuits is a fundamental
problem in the design of high performance processors.

The design of fast parallel multipliers is important, since
multiplication is a commonly used and expensive opera-
tion. This is particularly critical for specialized chips that
support multiplication intensive operations, such as digital
signal processing and graphics. It can also be useful for
pipelined CPUs, where faster multiplier components and
multipliers can result in smaller clock cycles and/or shorter
pipelines. There have been many research projects and pa-
pers on the design of fast parallel multipliers; these results
are surveyed in [1], [3], [17]. Continuing research in the area
has led to a steady improvement in the designs for Partial
Product Reduction Trees (PPRTs) for parallel multiplier
designs, as evidenced in the progression of work in [18], [2],
[12], [10], [11], [6]. However, almost all of this prior work
focused on finding good basic building blocks
(compressors) that could be connected in a regular pattern
to build a PPRT. A compressor operates in a single column
of the PPRT, taking as input some number (b) of bit signals
for the column and a number (ci) of carry-in signals from
the previous column. It outputs some lesser number (o < b)
of signals in its column, as well as a like number (co = ci) of
carry-out signals. These compressors are made up of full

adders that are interconnected in a way to minimimize the
compressor’s delay. In contrast, our approach is to design a
faster PPRT by finding a globally optimal way of intercon-
necting the low-level components (adders).

We now discuss the design problem in more detail (a
complete description is given in Section 2). Parallel multi-
plication problem of two n-bit numbers is done in three
steps: Computing the partial products; using a PPRT to add
(2n - 1) columns of bits, giving two bits for each column
(carrys from each column are incorporated into the next);
and adding the two (2n - 1)-bit numbers using a final
(carry-propagate) adder (see Fig. 1). The basic problems we
address here relate to designing fast PPRTs. Our results
also apply to asymmetric multiplication, where the bit sizes
of the two factors differ, and to the Multiply-Accumulate
(MAC) operation.

In [4], the Three-Dimensional Method (TDM) for glob-
ally designing the PPRT of a parallel multiplier circuit is
described. The goal of the TDM is to produce a minimum
delay PPRT using full adders ((3, 2) adders) and a small
number of half adders ((2, 2) adders). In [4], it was shown
that the TDM has the advantages of minimizing the num-
ber of devices required for the PPRT and allowing the use
of standard ASIC formats and utilities for generating lay-
outs for tree-based. The speed improvements are achieved
by carefully modeling the relationships of the output delays
to the input delays in an adder, and then interconnecting
the adders in a globally optimal way. They describe a lin-
ear-time heuristic for constructing PPRTs that outperform
the best current designs. However, the question of whether
the algorithm always derives the optimal TDM-based PPRT
was left open. In this paper, we describe a number of new
techniques for designing and analyzing PPRTs. Specifically,
we describe:
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1) An optimal class of circuits that can be used in con-
structing PPRTs.

2) A linear time algorithm for producing a delay-
optimal circuit for summing a set of input bits. This
circuit uses a network of full adders to implement a
general parallel counter.

3) A program that finds optimal PPRT circuits.

Using the program, we have found optimal PPRT cir-
cuits for multiplying two numbers of size up to 40 bits.
With improvements, we will be able to solve larger prob-
lems. Our results show that the heuristic in [4] gives PPRT
circuits with optimal or near-optimal overall delay. How-
ever, our program finds PPRT circuits with better delay
profiles. The techniques we developed allow the program
to sharply prune the search space of PPRT circuits and,
thus, allow optimal circuits of larger sizes to be designed.

The basic component we use in our PPRT design is a Full
Adder, which takes three input bits available at times a £ b £ d
and produces a sum bit at time s = max(b + x2, d + x3) (x2 ≥
x3 ≥ 0) and a carry bit at time c = d + y3 (y3 ≥ 0), where x2, x3,
and y3 are technology dependent (the subscript i is used for
the incremental delay that gets added to the ith input of the
gate). We denote such a full adder by g = (a, b, d), and use
subscripting to refer to a specific adder (e.g., gi = (ai, bi, di)
with sum output si and carry output ci). This very general
model applies to current technology and is likely to hold for
any foreseeable technologies. Except where noted, our re-
sults hold for this general model, and, in fact, apply so long
as the function for c is nondecreasing in d, and the function
for s is nondecreasing in b and also nondecreasing in d for
fixed b. Some of our results apply only to more restricted
cases that reflect current technology.

Based on current technology, the time needed by an ad-
der to generate its outputs from its inputs can be normal-
ized to XOR delay units, corresponding to the number of
XOR gates (or approximate equivalent) traversed by the
input signals. Thus, the values “x2 = 2” and “x3 = 1” can be
used as the delays for the sum, corresponding to the num-
ber of XOR gates traversed by the b and d inputs, respec-
tively (see Fig. 2). Similarly, the value “y3 = 1” can be used
for the carry delay, corresponding to the time needed for
the d input to traverse two NAND gates, each having delay
roughly half that of an XOR gate [19]. Under these condi-
tions, the global optimization problem can be viewed as
minimizing the number of equivalent XOR gates on the
longest path in the PPRT circuit. Thus, our more restricted
results apply to any technology where the number of
equivalent XOR gates on a path remains the critical delay of
the circuit, and the relative delays of XOR and NAND gates
remain unchanged. Both these assumptions have continued
to hold during the rapid development of logic technologies in
the past [3]. We will refer to the case with the normalized
values of x2 = 2, x3 = 1, y3 = 1 as the standard problem, and will,
for simplicity, assume the standard problem in all examples.

Optimizing for delay using the full adder model de-
scribed above leads to improved performance in real circuit
designs. In [4], designs in 1 micron CMOS-ASIC technology
were simulated using a timing simulator from LSI Logic
[19]. The simulated delays closely matched those predicted
by using the delays of the standard full adder model de-
scribed above, and the new design outperformed compet-
ing designs by 11-25 percent. Thus, the optimization prob-
lem we address here seems to be a sound model of actual
circuit delays, and can provide substantial improvements in
performance. Further, the PPRT designs we develop use
local connections between gates and are similar in overall
structure to classical PPRT designs. Thus, there should be
no special problems in their layout or wiring.

Paterson et al. [7], [8], [9] also looked at optimal delay
circuits for adding multiple columns of bits down to two
bits per column. However, they considered designs where
the columns use identical circuits, rather than designs that
optimize across all columns which is our focus. Using global
optimization, we are able to design multiplication circuits
whose delays beat the upper bounds provable for their
more restricted circuits. Similarly, our design approach for

Fig. 1. The basic design of the parallel multiplier. Each column of par-
tial product bits is added in a circuit that generates two sum bits and a
number of carry bits that feed into the adder circuit for the next column.
The output bits from the columns are summed in a fast adder to pro-
duce the final result of the multiplication.

Fig. 2. Adder delays in the standard problem. Two inputs available at
time 0 traverse two XOR gates and one input available at time 1 trav-
erses a single XOR gate. Therefore, for inputs a £ b £ d, the sum s is
available at time s = max(b + 2, d + 1).



STELLING ET AL.:  OPTIMAL CIRCUITS FOR PARALLEL MULTIPLIERS 275

the circuit corresponding to each column uses a different
model than theirs: We assume that the carries coming into
each column can come at arbitrary times rather than from
an identical column circuit. Thus, for the single column
problem, our results are orthogonal to their work.

Our approach also recognizes that, with the TDM (as
with other typical PPRT designs), the latest sum bits for the
columns do not all arrive at the same time. As a result, we
are not just concerned with the maximum delay for any
column, but also with the profile of the individual column
delays and its impact on the output delay of the final adder.
We address this issue further in Subsection 2.1 and Section 6.

In the next section, we describe the multiplier design
problem in more detail. In Section 3, we study properties of
optimal carry vectors and of circuits used in optimal TDM
designs. In Section 4, we study the objective of minimizing
only the delay of an output bit in designing adder circuits
and present an optimal strategy for doing this. In Section 5,
we present a lower bound for the global problem derived
by analyzing a relaxed version of the problem. In Section 6,
we describe our program that uses the prior results to
search for optimal PPRT circuits. Finally, in Section 7, we
present some open problems related to this work.

2 THE MULTIPLIER SETTING

We now give a more detailed description of the PPRT de-
sign problem. In the long multiplication method, we com-
pute the partial products and arrive at (2n - 1) addition
problems (one for each column of the long multiplication
table and incorporating the (possible) carries generated by
the preceding columns), the results of which are input to
the final adder, which outputs the product. We number the
columns right to left (least significant to most significant)
from 0 to 2n - 2 (see Fig. 1). We assume that all of the n2

partial product bits are available at time 0, thus ignoring
variations in their propagation delays.

All the bits in column i represent ith significant bits in
the product and, thus, have weight 2i. A full adder working
on three inputs of weight 2i for any i ≥ 0 produces a sum bit
of weight 2i and a carry bit of weight 2i+1. The carry bits
from the full adders summing the bits in column i are, thus,
fed as inputs to the addition problem in column (i + 1). The
sorted list of times at which the carry bits are produced in a
circuit is called its carry vector. Thus, the inputs for each
column consist of the partial product bits for that column
available at time zero and the carry bits from the previous
column available at the times designated in the carry vec-
tor. The problem of building a fast PPRT using the TDM
therefore reduces to one of finding column circuits that use
full adders to yield the two sum bits with little delay and
generate “good” carry vectors.

2.1 Two Addition Problems
The PPRT of a parallel multiplier outputs two bits for each
column i (except column 0, with one bit). These bits are
used to form two (2n - 1)-bit numbers X and Y, which are
fed into a carry propagate adder to produce the final multi-
plication value (see Fig. 1). The total time to carry out the
multiplication is the time to generate partial product bits,

complete the column additions in the PPRT, and add the
two final (2n - 1)-bit numbers.

In the TDM, each column circuit takes as input the par-
tial product bits corresponding to that column and any
carry bits generated by the previous column and adds them
to produce two sum bits and a number of carry bits for in-
put to the next column. Fig. 3a illustrates a circuit that takes
10 input bits of weight 2i. The circuit produces two output
bits of weight 2i at times 4 and 5, and four carry bits of
weight 2i+1 at times 1, 2, 3, and 4.

In this section, and continuing through Section 3, we de-
scribe ways to decrease multiplication time by minimizing
the time when the last sum bit from any column is pro-
duced. In Section 6, we look at a more global optimization
that, by considering the times when the last sum bit from
each column is produced, jointly optimizes the PPRT with
the final adder to give an optimal multiplier.

2.2 Adjusting the Parity
It is not possible to produce two sum bits from a circuit that
uses full adders alone (and all inputs of those adders) when
the number of bits to be summed is odd. Consider, e.g., the
case when three bits are to be summed. Using a full adder
on these bits produces a single sum bit. A full adder
“consumes” three of the bits to be summed and produces
one new bit to be summed, thus reducing the number of
bits to be summed by two. If we start with an even number
of bits to be summed, we can use full adders to get down to
two sum bits as required for each column. Note that if we
have 2(i + 1) bits to be summed, we can do this using i full
adders each of which produces a carry bit. However, start-
ing with an odd number of bits results in a state where only
one bit remains.

We fix this parity problem using a half adder, which
takes two input bits and produces a sum bit and a carry bit.
(We use a half adder because it is faster and more efficient
than using only two inputs of a full adder.) We denote by
(a, b) a half adder that takes in two bits at times a £ b, and
produces a sum bit at time s = b + v2 (v2 ≥ 0) and a carry bit
at time c = b + w2 (w2 ≥ 0) [4]. As in the case of full adders,
for analysis relating to current technology, we use values
corresponding to normalized XOR delay units, i.e., v2 = 1
and w2 = 0.5 (for one AND gate). Since the half adder re-
duces the number of bits to be summed by one, a single half
adder fixes the parity problem when the number of bits to
be summed is odd. Following [4], we use the half adder on

Fig. 3. Under the delays of the standard model, circuit A produces a
better carry vector than circuit B, while B achieves better final delay
than A in summing all the input bits to two bits.
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the earliest two inputs in the input vector if necessary to
change the parity of the number of bits to be even. To add
(2i + 1) bits for a column in this way, we use a single half
adder and (i - 1) full adders, generating a total of i carry
bits. We leave as future work the issue of using the half-
adder on other (later) inputs.

The number of input bits and gates for the columns are
shown in Table 1. Note that the number of half adders and
full adders used varies only with the size of the multiplica-
tion, and not with the manner in which they are inter-
connected.

2.3 Circuit Notation and Definitions
We now present a formal description of the TDM.

DEFINITION. A TDM PPRT uses column circuits to produce two
sum bits for each column (except column 0). The (acyclic)
circuit for each column uses the minimum number of full
adders (plus one half adder on the earliest inputs when the
number of inputs is odd) needed to produce the output bits
from the partial product bits for that column and the carry-
in bits (if any) from the previous column.

The following definitions and notations will be used to
simplify our discussion of column circuits. (For conciseness,
we use circuit to mean a column circuit in a TDM PPRT.)
We denote by I the vector representing the bits input to a
circuit. We use C(I) to denote the circuit C applied to input
vector I. The values in I correspond to the times at which the
signals are available in non-decreasing order. If C has m full
adders and I consists of k input bits, then C(I) will produce
a vector Vs of the times when the (k - 2m) output sum bits
become available in nondecreasing order, and a similar
vector Vc for the m carry bits. (If C has (m - 1) full adders
and one half adder, then Vs will have (k - 2m + 1) output
sum bits and Vc has m carry bits.)

We now prove a number of properties about circuits of
adders that we will apply in the construction of column
circuits for PPRTs.

We use the following definition when comparing input
or output vectors:

DEFINITION. For two vectors V = (v1, v2, º, vk), U = (u1, u2,  º,
uk), we say that V dominates U iff vi £ ui "i Œ {1, 2, º, k}.
We write V £ U to denote that V dominates U. If the two
vectors are unequal, then V strictly dominates U, and we
can write V < U. Two vectors are incomparable if there
exists i, j such that vi < ui and vj > uj. For a set of equal
length vectors S, a vector V Œ S is said to be undomi-
nated in S if no other vector in S strictly dominates it.

For example, if U = (1, 2, 3), V = (2, 2, 3), and W = (1, 2, 4)
then U < V, U < W, and V and W are incomparable.

We also extend the definition of dominance to circuits
and gates: If m-adder circuits C(I) and C¢(I) produce vectors
Vc and Vs , and ¢Vc  and ¢Vs , respectively, then C(I) dominates

C¢(I) iff V Vc c£ ¢  and V Vs s£ ¢ , and we use the notation C(I) £

C¢(I). C(I) strictly dominates C¢(I) if C(I) £ C¢(I) and V Vc cπ ¢  or

V Vs sπ ¢ , and we can write C(I) < C¢(I). If no m-adder circuit
for I strictly dominates C(I), then we say that C(I) is an un-
dominated circuit.

Our main focus is on finding PPRTs for minimum delay
parallel multipliers and, therefore, on minimum delay
PPRT circuits. Thus, for column circuits in a TDM PPRT, we
will only be concerned with the output delay of the latest
sum bit and the carry vector. (The delay of the final adder
depends on the delay of the latest (sum) input bit for each of
the columns, and each column circuit depends on the carry
bits from the previous column.) Note that an undominated
column circuit for input I need not be part of an optimal
PPRT, since two circuits C(I) and C¢(I) may be incomparable.
However, if we construct a multiplier circuit by summing the
bits in each column i (which are the original bits of weight 2i

and the carry bits from column i - 1), then, for column cir-
cuits C(I) £ C¢(I), we have that C(I) generates its latest sum
output at the same or earlier time than C¢(I) and produces an
equal or better carry vector. Thus, it is clear that we can al-
ways construct an optimal circuit by using an undominated
circuit for each column. Similar to the case for circuits, we say
that for two gates gi and ¢gi , gi dominates ¢gi  (g gi i£ ¢ ) if c ci i£ ¢
and s si i£ ¢ . Note that, in the case of gates, we remove the
restriction that the inputs be the same. This leads us immedi-
ately to the following observation:

OBSERVATION 2.1. The outputs si and ci of gate gi depend only on
the inputs bi and di. Therefore, gi dominates gj if bi £ bj and
di £ dj.

We now introduce notation that simplifies our analysis
of circuits on the gate level. Given an input vector I, we
consider strategies for constructing circuits for I. In our
constructions, it is convenient to think of the circuits as be-
ing constructed in the following way: The first gate, g1, has
all three of its inputs from I0 = I, we now update I0 to I1,
which has the three inputs to g1 removed, but s1, the output
sum bit of g1, is added. We then construct g2 using three
inputs from I1, and update I1 to get I2, and so on.

2.4 Trade-Off Between Delay and Good Carry
Vectors

We now examine the problem of designing the column circuits
for the TDM PPRT. Suppose we aim to produce the two bits
from each column within delay d. Then, the circuit for each
column must, for its given input vector I, produce the two sum
bits in delay d¢ £ d along with a “good” carry vector. An opti-
mal carry vector in this case must be undominated in the set of
carry vectors for circuits C(I) which produce their sum bits in
time £ d¢. Such a carry vector may not be undominated in the
set of all carry vectors generated by circuits for I.

TABLE 1
NUMBER OF INPUT BITS AND GATES IN A PPRT

FOR n-BIT MULTIPLICATION (2 £ i £ 2n - 2)

Column i: i £ n - 1 i = n i ≥ n + 1

# Partial Product Bits i + 1 i - 1 2n - i - 1
# Carry-In Bits i - 2 i - 2 2n - i - 1
Total Input Bits 2i - 1 2i - 3 4n - 2i - 2

# Half Adders 1 1 0

# Full Adders i - 2 i - 3 2n - i - 2

Total Half Adders n - 1
Total Full Adders (n - 1)(n - 3)
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There is often a trade-off between making the carry vec-
tor good in the sense that it is undominated and minimiz-
ing the delay of the output bits in a circuit. For example, in
Fig. 3, circuit A generates a carry vector that strictly domi-
nates the carry vector of circuit B but does not achieve as
good delay for the two sum bits. The design of the PPRT
thus involves a judicious choice of the delay of the sum bits
produced in each of the columns coupled with a strategy
for finding a circuit that achieves that delay and produces
an undominated carry vector, i.e., a PPRT with optimal de-
lay will have column circuits, each of which produces an
undominated output vector consisting of the carry vector
concatenated with the larger of the two sum outputs.

2.5 Three-Greedy Approach
In [4], a heuristic for TDM design is proposed that we will
call the three-greedy approach. The three-greedy approach is
as follows: Take for the inputs of each gate gi the three
smallest values in Ii-1. For example, the adder circuit shown
in Fig. 3a is three-greedy. Gate g1 = (0, 0, 0) takes as its in-
puts the three smallest values in I0 = I = (0, 0, 0, 0, 1, 1, 1, 1,
2, 4), and generates a sum bit at time 2. Thus, I1 = (0, 1, 1, 1,
1, 2, 2, 4), and we build gate g2 = (0, 1, 1). Similarly, I2 = (1, 1,
2, 2, 3, 4), g3 = (1, 1, 2), I3 = (2, 3, 3, 4), g4 = (2, 3, 3), and Vs =
(4, 5). Also, Vc = (1, 2, 3, 4).

Note that the three-greedy strategy produces undomi-
nated circuits, since the three-greedy approach produces
the lexicographically smallest carry vector, but it may be
possible to produce circuits with better sum delays and/or
incomparable carry vectors using other strategies.

3 OPTIMAL COLUMN-ADDITION CIRCUITS

In this section, we consider properties of circuits that sum a
vector of input bits and produce undominated output vec-
tors. As mentioned earlier, the optimal PPRT uses undomi-
nated circuits to sum the bits in each column. We show that
we need only consider a restricted class of addition circuits
that have certain nice properties.

We now discuss the two-greedy strategy, which is defined
as follows: Always construct gate gi using the two smallest
values in Ii-1 plus a third value in Ii-1. The key fact we prove
is that, for any column circuit C(I), there exists a two-greedy
column circuit C¢(I) that dominates C(I). Thus, in searching
for optimal combinations of column circuits, we can restrict
our attention to two-greedy circuits. (In Fig. 3 circuit A is
three-greedy and both circuits are two-greedy.)

3.1 The Two-Greedy Strategy
In this section, we prove several properties of two-greedy
circuits. We begin with a few definitions.

DEFINITION. A lexicographic ordering of the gates of a circuit
C(I) (or, loosely, a lexicographical ordering of C(I)) is one
in which, for each pair of gates gi = (ai, bi, di) and gj = (aj,
bj, dj), gi precedes gj in the ordering whenever:

• ai < aj;
• ai = aj and bi < bj; or
• ai = aj, bi = bj, and di < dj.

If ai = aj, bi = bj, and di = dj, then the gates can appear in ei-
ther order. We assume that all the circuits C(I) which we

discuss have their gates numbered in lexicographic order.
While this may seem to conflict with the construction
numbering of gates that we used in Subsection 2.3, we
shall show that every circuit is dominated by a circuit
(possibly itself) for which the lexicographic order is also a
construction order.

The following definitions give some of the ways that
gates can be related to each other:

DEFINITION. Gate gj is an immediate descendant of gate gi if si
is an input to gj. Similarly, gj is a descendant of gi if gj is
an immediate descendant of gi or of a gate gk that is a de-
scendant of gi. Two gates are said to be independent if
neither gate is a descendent of the other.

We begin by proving that, when constructing a gate gi,
we can always use three values in Ii-1, rather than using an
input that is the sum bit from a higher numbered gate. A
circuit is topologically ordered iff, when the gates are num-
bered in lexicographic order, no gate gi has an input that is
the sum bit from gj where j > i.

LEMMA 3.1. For any circuit C(I) that is not topologically or-
dered, there is a topologically ordered circuit C¢(I) such
that C¢(I) £ C(I).

PROOF. If C(I) is not topologically ordered, then there exists
a gate gi with input sj, where i < j. We now show that
we can restructure the circuit C(I) to make it topologi-
cally ordered without degrading the outputs of the
circuit. We start by showing how to remove the feed-
back from gj to gi.

By definition, ai £ aj < sj. Thus, sj = bi or sj = di.

Case 1. sj = di.

Case 1a. bi £ bj. (See Fig. 4.)
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Thus, by Observation 2.1, ¢gi  dominates gj (since bi

£ bj). Further, ¢ £c cj i  and ¢ £s sj i  (because bi £ bj), so ¢gj

dominates gi. Therefore, the sum and carry values

from ¢gi  and ¢gj  are at least as good as those for gj and

gi. Thus, replacing gj and gi by ¢gi  and ¢gj  and using ¢sj

to replace si results in a circuit �( )C I  that dominates
C(I) (see Fig. 4).

Case 1b. bi > bj (fi ai < aj). By rearranging inputs, we can get

¢ =g a b di i j j( , , ) , and ¢ = ¢g a b sj j i i( , , ) . Now gi¢ has the

same sum and carry as gj , thus, ¢ =s si j  (≥ bi) and ¢gj

has the same sum and carry as gi. Thus, replacing

gates as in Case 1a yields a circuit �( )C I  with the same
sum and carry vectors as C(I).

Case 2. sj = bi (£ di). In this case, we rearrange inputs to get
¢ =g a b di i j j( , , ) , and ¢ = ¢g a s dj j i i( , , ) . As above, ¢gi  has

the same sum and carry as gj, thus, ¢ =s si j  and ¢gj  has

the same sum and carry as gi. Thus, as in Case 1b, the

new circuit �( )C I  has the same sum and carry vectors
as C(I).

Thus, in all cases, we have removed the feedback
from gj to gi without degrading the circuit. We now
show that repeated applications of these transforma-
tions remove all feedback. Consider the vector con-
sisting of the inputs to the k lexicographically ordered
gates of C(I): (a1, b1, d1, a2, b2, d2, º, ak, bk, dk). Clearly,

the vector for the new circuit �( )C I  resulting from the
transformation is lexicographically smaller than the
vector before the transformation (since the inputs to

¢gi  < the inputs to gi and g1, º, gi-1 remain the same).
Also, the vector is bounded from below by the vector
for the three-greedy circuit. Therefore, the number of
applications of the transformations is bounded, and re-
peated applications of those transformations to the
lexicographically smallest (i, j) pair violating the topo-
logical ordering property will convert C(I) to the de-
sired topologically ordered circuit C¢(I) £ C(I), proving
the lemma. �

LEMMA 3.2. For any topologically ordered circuit C(I) that is not
two-greedy, there is a two-greedy circuit C¢(I) such that
C¢(I) £ C(I).

PROOF. The proof of the lemma is similar to that of the pre-
vious lemma. We demonstrate swaps on a topologi-
cally ordered circuit C(I) that is not two-greedy to
convert it to a circuit C¢(I) that is two-greedy such that
C¢(I) £ C(I). (Note that, by definition, all two-greedy
circuits are topologically ordered.) The details are
omitted. �

The prior two lemmas show that, given any circuit C(I),
we can convert it to a circuit C¢(I) £ C(I) such that, if the
gates of C¢(I) are numbered lexicographically, each gate gj

in C¢(I) has as inputs the two smallest values in Ij-1 plus a
third input from Ij-1, i.e., C¢(I) can be constructed for the
input vector I = I0 using the two-greedy strategy.

OBSERVATION 3.3. Let C be a circuit constructible in lexico-
graphic order using a two-greedy approach. If gi appears
before gj in the lexicographic ordering of C, then gi is cre-
ated before gj in a two-greedy lexicographic construction of
C and, as a result, ai £ bi £ aj £ bj.

3.2 Other Constraints on Undominated Circuits
We have already shown that any adder circuit that is not two-
greedy is dominated by a two-greedy circuit, so that we need
only consider two-greedy circuits when searching for all un-
dominated circuits for a column. We now give additional con-
straints that we can use to further restrict the search.

In Subsection 2.4, we presented evidence that there may be
a number of undominated circuits for a given input. As a re-
minder, consider the input vector I = (0, 0, 0, 0, 1, 1, 1, 1, 2, 4) as
in Fig. 3. By Lemma 3.2 and Observation 3.3, we know that
any undominated output can be achieved by a circuit that
has 0, 0 as the first two inputs to g1. The three-greedy strategy
uses a third 0 as the final input, resulting in c1 = 1 and s1 = 2
(as in Fig. 3a). This minimizes c1 over all choices of d1. Al-
ternatively, choosing d1 = 1 also results in s1 = 2, yet
“consumes” an input of later delay, thus possibly improv-
ing the sum and/or carry of later gates (as in Fig. 3b). This
example helps show why the two-greedy approach is at-
tractive, and suggests that, if di is not chosen by the three-
greedy strategy, then di should be close to the three-greedy
value and/or be subject to other constraints.

The following lemmas formalize the above intuition by
providing rules that eliminate from consideration circuits
that are guaranteed to be dominated by other circuits that
conform to the rules. These rules reduce the number of cir-
cuits that need to be constructed (in addition to the three-
greedy circuit) for an input vector I when attempting to find
all undominated circuits C(I). In particular, Corollary 3.8 en-
sures that we can restrict our search to certain “regular”
circuits for I. The proofs for the following use similar tech-
niques to those used in the proofs for Lemmas 3.1 and 3.2
and are omitted.

(a) (b)

Fig. 4. Subcircuit (a) is not topologically ordered. Subcircuit (b) reflects
the modifications made for Case 1a in the proof of Lemma 3.1. Note
that both subcircuits take the same input, but that the output from sub-
circuit (b) dominates the output from subcircuit (a).
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LEMMA 3.4. Let C(I) be a two-greedy circuit. Then, there is a
two-greedy circuit C¢(I) £ C(I) in which, for each pair of
gates gi and gj, if i < j and di £ bj, then di £ aj.

COROLLARY 3.5. Let C(I) be a two-greedy circuit. Then, there is a
two-greedy circuit C¢(I) £ C(I) in which, for each pair of
gates gi and gj, if i < j and di = bj, then aj = bj = di.

PROOF. Immediate from Lemma 3.4. �

LEMMA 3.6. Let C(I) be a two-greedy circuit. Then, there is a
two-greedy circuit C¢(I) £ C(I) in which, for each pair of
gates gi and gj, if i < j, then di £ dj.

LEMMA 3.7. Let C(I) be a two-greedy circuit, and let x2 £ 2x3.
Then, there is a two-greedy circuit C¢(I) £ C(I) such that,
for each pair of gates gi and gj, if i < j and bj < di £ dj, then
dj < di + x2 - x3.

Note that Lemma 3.7 applies to the standard problem as
described earlier, i.e., x2 = 2, x3 = 1, y3 = 1. When x2 £ 2x3, we
define the following class of circuits:

DEFINITION. A two-greedy circuit C for a vector I that has no pairs
of gates of the form excluded by Lemma 3.1, Lemma 3.2,
Lemma 3.4, Lemma 3.6, and Lemma 3.7 is said to be in
regular form, or, loosely, simply said to be regular.

COROLLARY 3.8. If x2 £ 2x3, then, for any circuit C(I), there is a
regular circuit C¢(I) £ C(I).

PROOF. If C(I) is not regular, then we alternately apply the
transformations from the proofs of Lemmas 3.1, 3.2,
3.4, 3.6, and 3.7 until we derive a regular circuit C¢(I).
We know that a regular circuit C¢(I) must eventually
result from this process by the same argument as was
first used in the proof of Lemma 3.1. �

The above lemmas can be used to severely limit an ex-
haustive search for an optimal solution to the standard
problem, since they allow us to restrict the search to regular
circuits for each input I. In the next two sections, we de-
scribe a lower bound that can be used in conjunction with
the above lemmas in a branch-and-bound search.

4 OPTIMAL DELAY CIRCUITS

In this section, we consider the problem of finding, for a
given vector I, the minimum delay circuit C(I) that outputs
k sum bits. Thus, for input vector I and integer k ≥ 1, we
want a circuit of full adders that reduces I to k output bits of
weight 1 and a carry vector. In this section, we are not con-
cerned with the delays of the carry vector generated by the circuit,
and we restrict our attention to circuits consisting entirely of full
adders.

To simplify notation, in this section, we will denote the
input vector by V = (v1, v2, º, vn). We assume the standard
problem previously described, where x2 = 2 and x3 = 1. We
define a canonical circuit for each value of delay that can
sum the maximum number of input bits available at time 0
within the given delay. We then show some properties of
canonical circuits and develop measures for evaluating a
given vector of input bits I. We show how to use these
measures to efficiently determine the minimum delay in
which a circuit made up of full adders can reduce the input
bits given by I to a specified number of bits (k ≥ 1).

4.1 Canonical Circuits for a Given Delay
We define S(t) as the maximum number of bits available at
time zero that can be added with full adders to produce a
single sum by time t. We can write a simple recurrence for
S(t) as follows:

S(0) �  = �S(1) �  = 1
S(t) = S(t - 1) + 2S(t - 2)    t ≥ 2             (4.1)

The recurrence follows from the observation that the best
way to accommodate the most inputs completing in delay t
is to have the last adder with output t from this circuit be
(t - 2, t - 2, t - 1). Each of the three inputs to the last adder
in this circuit is the output of a circuit of delay t - 2 or t - 1
that sums the maximum possible number of inputs. (The

recurrence solves to S t
t t

( ) ( )=
+ + -2 1

3

1
 for t ≥ 0.) This observa-

tion can also be used to easily infer that the circuit that
sums S(t) input bits all available at time zero with delay t is
unique. This unique circuit is termed the Canonical circuit for
delay t and is denoted C(t).

We denote by Si(t), 1 £ i, the maximum number of sub-
circuits of C(t) that can be replaced by input bits available at
time i. For i = 1, this is the number of (0, 0, 0) adders (each
of which can have its third input bit replaced by a 1) plus
two times the number of (0, 0, 2) adders. For i > 1, Si(t) is
the number of times C(i) occurs as a subcircuit of C(t). An
illustration of C(4), in which input bits of delay one replace
input bits of delay zero in all S1(4) = 5 situations, where this
can be done without affecting the time of the final sum bit,
is given in Fig. 5. Similarly, we can see from Fig. 5 that S2(4)
= 3, the number of (0, 0, 1) gates in C(4).

LEMMA 4.1. If we define S(t) = 0 for all t < 0, then Si(t) = S(t - i),

i.e., Si(t) = 0 for t < i and S t i
t i t i

( ) ( )- =
- + -+ -2 1

3

1
 for t ≥ i.

PROOF. By construction. Proofs of the lemmas and corollar-
ies in this section will be omitted due to space limita-
tions. �

Note that, after substituting S1(t) ones for zeroes in C(t),
all adders in the resulting circuit have inputs of the form (k, k,
k + 1) and generate their sum output at time k + 2.

Fig. 5. The canonical circuit for delay four in which input bits of delay
one replace input bits of delay zero in all cases where it does not affect
the delay for the final sum bit.
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OBSERVATION 4.2. If our goal is to produce k sum bits within
delay t, then, at most, k ◊ S(t) bits available at time zero can
be summed (by using k copies of C(t)) and, at most, k ◊ S1(t)
= k ◊ S(t - 1) of those time zero bits can be replaced by bits
available at time 1. Similarly, if our goal is to produce k
sum bits within delay t using input bits of delay i, then, at
most, k ◊ S(t - i) = k ◊ Si(t) bits can be summed.

We define the weight of a vector of input delays V = (v1, v2,
º, vn) as W(V) = S(v1) + S(v2) + º + S(vn). Thus, any circuit
that can sum inputs with delay V to produce a final sum bit
with delay t could, by replacing each vi with C(vi), sum
W(V) inputs each of delay zero in time t. Thus, a lower
bound on the time to sum inputs of delay V is given by the
smallest t where S(t) ≥ W(V). By a similar definition and
interpretation, we let the i-weight of V be Wi(V) = Si(v1) +
Si(v2) + º + Si(vn).

LEMMA 4.3. If, for any v Œ V, Wv(V) > k ◊ Sv(t), then inputs with
delay V cannot be summed to k bits with delay d £ t.

This lemma is useful for proving lower bounds on mul-
tiplier circuits, since it bounds the delay for a column given
a carry vector from the previous column. We now show
that the lower bound given by Lemma 4.3 is achievable.

LEMMA 4.4. If, for all values v Œ V, Wv(V) £ k ◊ Sv(t), then in-
puts with delay V (possibly with some additional bits avail-
able at time zero) can be summed to k bits with delay d £ t.

We now show that, with appropriate data representa-
tion, we can compute Wv(V) for all values v Œ V in time
linear in the number of values in V.

LEMMA 4.5. Let V be represented as a list of ordered pairs (vi, ki),

1 £ i £ m in decreasing order of vi, where ki = (the number

of elements of V with value vi). If, in constant time, we can

multiply by 2j, 1 £ j £ v1 (e.g., by shifting bits to the left),

then we can calculate W Vvi
( )  for all i, 1 £ i £ m, in O(m)

time.

Since we can derive the above representation of V from
an unsorted vector in O(n log m) time, we get the following
theorem.

THEOREM 4.6. Given a vector V of n input delays with m distinct
values, we can, in O(n log m) time, find the smallest time t
for which we can generate k output bits each of delay £ t.

Finally, we show that, if W(V) £ S(t), then inputs with
delay V can be summed to a single bit with delay d, t £ d £
(t + 1).

THEOREM 4.7. If W(V) £ S(t), then W V S tv vi i
( ) ( )£ + 1  for all vi,

1 £ i £ n.

COROLLARY 4.8. If W(V) £ S(t), then Wj(V) £ Sj(t + 1) for all j,
1 £ j £ t.

COROLLARY 4.9. If W(V) £ S(t), then inputs with delay V
(possibly with some additional bits available at time zero)
can be summed to k bits with delay d £ (t + 1).

5 A LOWER BOUND USING A RELAXED PROBLEM

Recall that, under the standard problem, we model the full
adder such that the sum is generated at time s = max(b + 2,
d + 1) and the carry at time c = d + 1. Now, consider the design
of the multiplier circuit with a full adder that, for inputs a £
b £ d, produces a sum at time s = d + 1 and a carry at time c
= d + 1 as well. Note that we do not claim that such a full
adder can be built, but simply use this as a relaxed version
of the original problem. Using techniques as in Lemma 3.2,
we can show that, for this relaxed problem, the three-
greedy approach described in Section 2.5 (i.e., repeatedly
putting the three earliest bits into a full adder) is globally
optimal for both sum and carry.1 In fact, this strategy is
identical to that used in [4] in the design of a 16-bit multi-
plier circuit that completes within a delay of eight units.
Note that the three-greedy strategy can also be considered
carry-greedy, since this choice of inputs reflects a local
minimization of the carry vector generated.

The optimality of the three-greedy strategy for the re-
laxed problem motivates the following lower bound for the
original problem. Since the relaxed problem is a less con-
strained problem than the original, the optimal delay of a
multiplier for the relaxed problem is a lower bound on the
delay of the multiplier for the original problem. Further-
more, if we determine, using other techniques, a lower
bound on the carry vector being input into a certain column
in the multiplier, we can apply the three-greedy strategy to
subsequent columns under the relaxed and original sum
output models to derive lower and upper bounds for the
original problem. This strategy can also be combined with
the results of Lemma 4.4 and Corollary 4.9 to provide a
number of different approaches for computing partial
lower bounds to the original problem.

6 TDM PPRT DESIGN: PROBLEM DEFINITION AND
AN APPLICATION

We now address the problem of finding optimal TDM
PPRT circuits for multipliers of two n-bit numbers subject
to the standard problem conditions described earlier (e.g., s =
max(b + 2, d + 1), c = d + 1). As stated previously, the TDM
strategy is to generate two sum bits for each column by us-
ing full adders to add the partial product bits for that col-
umn plus the carry-in bits from the previous column. (As
noted earlier, one half adder will be used on the two earliest
inputs if the number of inputs is odd.) First, we examine the
problem at its most basic level, that of minimizing the delay
of the latest sum output bit generated in any column. We
will refer to this problem as the Mini-max problem. Later,
we will look at optimizing the vector of outputs from the
PPRT to minimize the total delay from the PPRT and the
final adder.

We have developed a program that solves the Mini-max
problem. For inputs n and m, the program searches for a
TDM PPRT circuit for an n-by-n multiplication in which the
maximum delay for the latest sum bit is £ m. If it finds such
circuits, then it prints them out; otherwise, it states that

1. If the number of inputs is odd, then we assume, as before, that the two
earliest are fed into a half adder.
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there is no such circuit. The program uses the results of the
previous sections to severely prune the search space for the
optimal PPRT. It does this as follows: Recall from Section 2.3
that an optimal PPRT circuit can always be constructed us-
ing only undominated column circuits. But, by Corollary 3.8,
we have that, given the standard problem, every column
circuit for an input vector I is dominated by a regular col-
umn circuit for I. Thus, only the regular column circuits
need be considered for each column when searching for
optimal PPRT circuits. The program does this as follows:

The program processes the columns of the PPRT in order
of increasing significance of bit value (i.e., 20, 21, 22, º). It
first generates the trivial circuit for columns 0, 1, and 2, and
the (unique) carry vector from column 2 for input to col-
umn 3. Then, for each i, 3 £ i £ (2n - 2), it computes each of
the regular circuits for column i. It does this by first gener-
ating the possible input vectors for column i (consisting of
the partial products of delay 0 for column i and each of the
carry vectors from column (i - 1)) and, then, generating all
regular circuits for each input vector. The program elimi-
nates all circuits for which the delay of the latest sum bit is
> m. The carry vectors from the remaining circuits are then
compared to each other, and one circuit is retained for each
undominated carry vector. If the sum delay for all circuits is
> m, then the program reports that the delay bound m cannot
be met by a TDM PPRT for size n-by-n multiplication. Oth-
erwise, it processes the next column. It continues processing
columns until either it learns m cannot be met or all col-
umns have been processed, in which case it reports one of
the satisfying TDM PPRT circuits.

The approach above severely restricts the number of cir-
cuits generated for each column compared to an unre-
stricted approach, or even one that limited the search to all
nonisomorphic circuits. However, if we let U(i, n) be the
number of undominated circuits for column i in a TDM
PPRT for an n ¥ n-bit multiplier, then U(i, n) grows rapidly
with i for i £ n. As a result, the space requirements (to store
the undominated carry vectors from column i) and time (to
compare each carry vector from a column against the others
to ensure that only undominated vectors are kept) also in-
crease tremendously with n. This growth has restricted the
sizes of n for which we have been able to solve the standard
problem exactly.

6.1 PPRT Delay Profile Problem
We can refine our notion of an optimal TDM PPRT by in-
corporating the times at which the latest bit for each col-
umn is generated, rather than just the latest sum bit over all
columns. We call the vector of these times for a TDM PPRT
circuit C its delay profile, and denote it by PC(n) = (p0, p1, º,
p2n-2). For any given multiplier size n with minimum
maximum TDM PPRT delay m, there can be a large number
of distinct profiles P(n) with maximum delay m, each gen-
erated by one or more TDM PPRT circuits. Since these out-
put profiles determine when the bits will be made available
to the final adder, we can also consider the problem of
finding the TDM PPRT circuits with the “best” profiles.
Clearly, we can restrict ourselves to undominated profiles,
since, if PA < PB, then any adder applied to inputs available
according to profile PA must yield its latest output bit no

later than the same adder applied to inputs available ac-
cording to profile PB. Additional considerations among un-
dominated profiles also exist, and are briefly discussed later
in this subsection. We call the problem of generating TDM
PPRT circuits with (all) undominated delay profiles the
Profile problem. We let 3(n) be the set of undominated pro-
file vectors PC(n) that can be generated by a TDM PPRT
circuit for an n-by-n multiplier.

We now address how the undominated profiles and
their corresponding circuits are generated. Later, we will
discuss additional criteria that can be used for evaluating
incomparable profile vectors Pi(n) and Pj(n). First, we intro-
duce some notation we will use to simplify discussion of
the program and how it works.

We let &i(n) be the set of TDM PPRT circuits for columns 0
through i of an n-by-n multiplication. As stated earlier, we
need only consider PPRT circuits that are made up of un-
dominated column circuits. Recall that a column circuit is
undominated if its output vector is undominated by any
other column circuit with the same input, and that the out-
put vector of a column circuit consists of the delay of the
latest sum bit it produces and its carry vector. We now ex-
tend this definition for circuits in &i(n). Each circuit in &i(n)
has as output two sum bits for each column 0, 1, º, i and a
carry vector from column i for input to column (i + 1). For
purposes of the Profile problem, the relevant outputs of a
circuit C Œ &i(n) are the partial profile vector PC of delays of
the latest sum bits generated in each of the columns (0
through i) and the carry vector VC from column i. We let RC =
(PC, VC) be the result of circuit C, and define 5i(n) as the
class of undominated results from circuits in &i(n). It is pos-
sible that a result R Œ 5i(n) could be generated by more
than one circuit from &i(n). Therefore, we define a set 8i(n)
containing one such circuit C Œ &i(n) for each undominated
result R Œ 5i(n).

The general approach of the Profile program is similar to
that of the Mini-max program. The program processes the
columns of the PPRT in order of increasing significance of
bit value (i.e., 20, 21, 22, º). It first generates the trivial cir-
cuit for columns 0, 1, and 2 (the unique circuit in &2(n) =
82(n)). Then, for each i, 3 £ i £ (2n - 2), it generates 5i(n)
and 8i(n) from 5i-1(n) and 8i-1(n). 5i(n) and &i(n) are ini-
tialized as empty sets. We want to ensure that each regular
column circuit for column i is generated only once. To do
this, the program maintains a list of the unique carry vectors
in 5i-1, and separately records for each circuit C Œ 8i-1(n)
pointers to the corresponding partial profile and carry-out
vectors. The program thus can process the carry vectors one
at a time.

At a high level, it does this by processing each carry
vector Vs as follows: First, it creates the corresponding in-
put vector I for column i (consisting of the delay 0 partial
product bits for the column and the carry bit delays). Then,
it generates all regular column circuits for I, keeping only
the undominated ones. Each such column circuit is then
combined with each circuit Ci-1(n) which had carry vector
VC to give new circuits Ci(n). The results from these circuits
are compared to the previously generated (undominated)
results in 5i(n). If one of the new results is dominated by a
result in 5i(n), then it is discarded; if one of the new results
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strictly dominates a result R Œ 5i(n), then R is discarded, as
is the corresponding circuit from &i(n). The (undominated)
new output vectors that are not discarded are added to
5i(n), and their corresponding circuits to &i(n).

Once 5 32 2n n- = �( )  and &2n-2(n) have been completed,
the undominated profiles and their corresponding circuits
are output. The number of such profiles increases very
quickly with the size of the multiplication (5 for 8-by-8 bit
multiplication, 57 for 16-by-16 bit, 447 for 24-by-24 bit, 5,634
for 30-by-30 bit). Of these, we want to select one that will
give us the best parallel multiplier.

For the purposes of parallel multiplier design, we are
interested in the total delay for the PPRT and the final ad-
der. The optimal profile vector(s) will be the one(s) for
which a (possibly custom) final adder will generate the
product with minimum delay. We do not yet have a full
understanding of the optimal delay for a final adder given a
profile. Thus, we use heuristics to identify “good” profiles.
Since delays propagate (with the carry values) from least
significant to most significant bit, we will use the following
“latest-earliest” heuristic for ordering the profiles in 3(n).
Profile Pi comes before Pj if the largest value that does not
appear in exactly the same positions in Pi and Pj:

• Does not appear in Pi,
• First appears later in Pi, or
• First appears in the same position of both Pi and Pj,

but last appears later in Pj.

As an example, profile (1, 2, 3, 3.5, 3, 2) would come before
(1, 2, 2.5, 4, 3, 1) because delay 4 does not occur in the first pro-
file and occurs (in column 4) in the second profile. Similarly,
(1, 2, 3, 4, 3, 2) would come before (1, 2, 3.5, 4, 2, 1) because the
maximum delay 4 occurs in the same column of both profiles,
the next smaller delay of 3.5 occurs in the second profile but
not the first. Also, (1, 2, 3, 4, 2, 2) would come before (1, 2, 3, 4,
3, 1) because the maximum delay 4 occurs in the same column
of both profiles, the next smaller delay of 3 first occurs in the
same column of both profiles, but the last column of delay 3
occurs earlier in the first profile than in the second.

As a partial check on the quality of the profile ordering,
we also generate a super-optimal profile consisting of the
smallest delays for each column in any solution. These pro-
files conform closely to the latest-earliest profiles in all col-
umns except those with the maximum delay value (whose
position we have selected by the latest-earliest rule).

Given n, our profile program searches over TDM circuits
for the PPRT and gives the undominated profile vectors
P nŒ � ( )3  sorted in the order given by the latest-earliest
heuristic (as well as a circuit that will generate each vector P).
We have run the profile program successfully on problem
sizes up to 31-by-31 bits, and have used heuristics to get
solutions we believe to be optimal up to size 48-by-48 bits.
However, further improvements will be needed to deal
with time and memory constraints in order to solve larger
problems. The Mini-max program runs faster and uses less
memory, but it too requires considerable time for problem
sizes greater than 47-by-47 bits. The use of parallel pro-
gramming may help with both the Mini-max and Profile
problems by distributing the processing of input vectors for

a column over many processors, with dominated circuits
being pruned both at the “column” processors and as their
results are accumulated.

6.2 Results
We used the programs to determine the optimal solutions
to both the Mini-max and the Profile versions of the TDM
PPRT design problem. We have shown, using the Mini-max
program, that, for most sizes of circuits up to that for mul-
tiplication of two 57-bit numbers, the mini-max delay
achieved by the three-greedy method is optimal. Further, it
is within one XOR delay of the optimal for PPRT circuit
designs in those cases where it is not optimal. These results
are summarized in Table 2. The results for sizes up through
48 were found directly, using the Mini-max program. The
optimal results in the table for sizes 49 through 57 follow
from the fact that the optimal mini-max delay for those
sizes is no larger than the three-greedy mini-max delay and
is bounded from below by the mini-max delay for size 48.
Finally, the optimal results for sizes 58 and 59 are also
bounded from below by the mini-max delay for size 48, and
were found by a version of the Mini-max program that
limits its search to the five lexicographically smallest cir-
cuits for each carry-in vector processed. The best delay
found by that version of the program for problem size 60
was 14 (same as three-greedy), but we believe that the op-
timal delay for that size problem is 13 as well.

The Profile program shows that the output profile of the
three-greedy solution is strictly dominated by the profiles
of other TDM PPRT circuits for all problem sizes ≥ 6. This is
because a non-three-greedy circuit for column 4 yields a

TABLE 2
STANDARD PROBLEM RESULTS: MINI-MAX DELAYS

FOR THREE-GREEDY VS. OPTIMAL TDM PPRT CIRCUITS

Multiplication Maximum XOR Delay

Size in Bits 3-Greedy Optimal

7-8 5 5
9-10 6 6

11-12 7 7
13 7.5 7

14-16 8 8
17 9 8

18-20 9 9
21 9.5 9
22 10 9

23-26 10 10
27-28 11 10
29-35 11 11

36 12 11
37-44 12 12
45-47 13 12
48-57 13 13

58 13.5 13
59 14 13

60-76 14 ??
77-98 15 ??
99-128 16 ??

Times in Normalized XOR Delays



STELLING ET AL.:  OPTIMAL CIRCUITS FOR PARALLEL MULTIPLIERS 283

lower maximum value for that column than the three-
greedy circuit, while generating a carry-out vector that has
the same three-greedy result for column 5. Similar effects
also manifest in higher columns for larger size problems.

The current version of the Profile program solves prob-
lems of size 16 and 24 in just over one second and just over
16 minutes, respectively, on a DEC 5000/240, and in under
0.7 seconds and 6.75 minutes, respectively, on a DEC Al-
pha. We have been unable to run the program to get all
undominated profiles on problem sizes larger than 30 due
to memory constraints, but are working on a version that
uses less memory. (A previous version of the program used
less memory but took over nine days to solve a problem of
size 27). We have focused our main attention on finding the
latest-earliest circuit for each problem size. This is easily
accomplished in the obvious way when all undominated
TDM PPRT circuits are generated. We have extended these
results using a heuristic based on the observation that the
profiles for problems of size (n - 1) and n agree for the first
(n - 2) columns for all n £ 30. We derive the (believed) lat-
est-earliest solution for size (n + 1) by pruning out all cir-
cuits for which the column delays of (any of) the first (n - 1)
columns exceed the corresponding delays of latest sum bits
in the latest-earliest solution for the problem of size n and,
then, taking the latest-earliest of the derived circuits. In this
manner, we have been able to find good TDM PPRT circuits
for n up to 48. Although we do not know that the derived
solutions for sizes larger than 30 bits are the latest-earliest
solutions, their profiles are significantly better than the
three-greedy profiles. For example, the three-greedy profile
for size 45 has one column of delay 13 (column 49) and 22
columns of delay 12 (columns 39-48 and 50-61). By contrast,
the derived solution has 17 columns with the maximum
delay of 12 (columns 41-57). We believe the derived TDM
PPRT circuits are, in fact, the latest-earliest circuits, but do
not have a proof that that is indeed the case (even when we
limit our analysis to the standard model). Further examina-
tion has shown that, in addition to having the same profile,
the latest-earliest circuits of size (n - 1) and n agree exactly
for at least the first (n - 3) columns. We have also used this
observation to further extend our results (by specifying
actual column circuits, as opposed to just partial profiles).

Our preliminary work on final adder design strongly
suggests that the optimal final adders for the derived latest-
earliest solutions will in most cases complete more quickly
than the optimal final adder for the three-greedy solution.
Also, the final adder will be simpler for those cases where
they generate the final sum with the same delay. In either
case, it is clear that the latest-earliest solution adds a good
alternative to the three-greedy solution for TDM PPRTs.

Fig. 6 contrasts the profiles for the three-greedy and lat-
est-earliest TDM PPRT circuits for 24-by-24 bit multiplica-
tion, demonstrating both that latest-earliest improves on the
delays of three-greedy for many columns (worse only for
column 44), and has only four columns with the maximum
equivalent XOR delay of 10, compared to eight columns for
the three-greedy solution. Fig. 7 shows the latest-earliest
profile of Fig. 6 compared to the super-optimal profile de-
scribed above, showing that the latest-earliest profile does
as well as any profile for almost all columns.

Fig. 8 gives the latest-earliest and derived profiles for the
standard multiplier sizes 8, 16, 24, and 32, as well as the
derived profile for size 48 (the largest we have completed
so far).

Fig. 6. Sum bit delay profiles for three-greedy and Latest-earliest TDM
PPRT circuits for a 24 ¥ 24 bit multiplier under the standard problem
(sum = max(b + 2, d + 1), carry = d + 1).

Fig. 7. Latest-earliest and Super-optimal TDM PPRT sum bit delay
profiles for a 24 ¥ 24 bit multiplier under the standard problem (sum =
max(b + 2, d + 1), carry = d + 1).

Fig. 8 The sum bit delay profiles for the latest-earliest and derived TDM
PPRT circuits for standard multiplier sizes (and largest completed)
given the standard problem.
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7 CONCLUSIONS

We have presented several techniques for analyzing the opti-
mality of multiplier circuits designed using full adder cells. We
develop the class of regular adder circuits for adding a vector
of bits of varying delays. We typify the outputs of these cir-
cuits based on the vectors of the delays of the sum and carry
bits that they generate, and use the notion of vector domina-
tion to describe optimal circuit outputs. We show that every
optimal TDM adder output can be generated by a regular ad-
der circuit, and describe how to use these results to build and
find optimal TDM PPRTs, both in terms of minimizing the
maximum overall delay (Mini-max problem) and in terms of
finding undominated sum delay profiles (Profile problem). We
have incorporated these results into programs that find opti-
mal circuits for the standard problem that assumes full adder
input-to-output delays based on equivalent XOR delays. We
used these programs to solve the Mini-max delay problem up
to size 57, and the optimal sum delay profile problem up to
size 30 percent. We have extended our results to size 48 per-
cent, using heuristics that seem to produce optimal or near-
optimal solutions. Based on the program results, we find that
the three-greedy heuristic works quite well for the mini-max
problem, though it yields suboptimal maximum sum delay for
a number of problem sizes (although it is always within one
equivalent XOR delay of optimal for the standard problem).
Also, the three-greedy heuristic results in suboptimal sum
delay profiles for all problem sizes ≥ 6.

Many interesting issues remain open. We plan to do a simu-
lation of a full design using the circuits produced by our pro-
gram to validate that our abstract model of delay results in good
performance in practice. We also plan to improve our search
program to solve larger problems to optimality. Additionally,
we will continue experimenting with a number of heuristics for
finding solutions that are better than the three-greedy solution,
yet possibly suboptimal, for larger problems. These heuristics all
look at different ways of limiting the number of regular circuits
generated in a column for each carry-in vector. One approach
we have used with some success is to provide a maximum
(partial) profile for columns 0 through i, for some i < n. This ap-
proach appears very promising because, for each size of n for
which our Profile program has found all undominated profiles,
the TDM PPRT circuit with the latest-earliest profile has had a
profile that is identical to the latest-earliest TDM PPRT circuit of
size (n - 1) for the first (n - 2) columns. Empirical investigation
has shown that the delay of the latest sum bit from a given col-
umn i increases with n until n reaches a threshold value at (i + 2)
or (i + 3), after which the maximum delay for column i remains
the same. Additionally, the column circuits for column i are em-
pirically the same for all latest-earliest TDM PPRTs where n ≥ i +
4. For example, the latest-earliest TDM PPRT solution for size 16
uses the same column circuits for columns 0 through 12 as for all
larger sizes that we have been able to solve. (Both of these em-
pirical results hold up through size 48, the largest size we have
solved so far using the profile pruning heuristic.) We have also
taken advantage of this by expanding our approach to include
specification of the circuits (and, hence, carry vectors) for some
of the columns. Later, we will consider alternative approaches to
more aggressive pruning, such as limiting the search to the k
lexicographically smallest column circuits, or limiting the differ-

ence (di - bi) in the inputs to a gate.
Our analytical results apply to a number of interesting

variations on the TDM PPRT design problem that bear addi-
tional investigation. In some of these cases, modification of our
programs could yield additional worthwhile results. One of
these is to investigate the impact of using more accurate delay
estimates for the sum and carry, so that s = max(b + x2, d + x3)
and c = d + y3 where x3 π y3 and x2 π 2x3. The results relating to
regular circuits all apply to the case where the sum bit is avail-
able at time max(b + x2, d + x3) and the carry bit is available at
time max(b + y2, d + y3). A special case of this is where both the
sum and carry are available at time max(b + x2, d + x3), as
might be the case for a full adder based on multiplexers rather
than XOR gates and NAND gates. Also, our analytical results
apply equally to asymmetric multiplication, where the two
numbers being multiplied are of differing bit sizes, and which
is of interest in the design of special processing units. We plan
to further investigate each of these situations.

Note that our results on the optimality of regular circuits
apply to both the sum and carry vectors produced. Thus, a
search over regular circuits is sufficient to find optimal
PPRT circuits for feeding the final carry-propagate adder.
An additional problem is to optimize the final carry-
propagate adder by taking into account the arrival time
profile of the input bits. We have examined this problem
and presented optimal hybrid adders that use Ripple-
Carry, Carry-Skip, Carry-Select, and Conditional Sum
blocks to produce final adders that exploit the good profiles
[5], [13], [14], [16]. These hybrid adders generate the sum
with significant delay improvement. For example, the
(provably optimal) hybrid adder for a 32-bit multiplier that
uses Conditional Sum blocks shows over 20 percent im-
provement in the incremental delay compared to traditional
Conditional Sum adders, translating into > 7.9 percent re-
duction in total multiplier delay [14], [16]. Similarly, we
have applied these innovations to Multiply-Accumulators
(MACs) [15], [16], giving optimal MACs with the same de-
lay as the optimal multiplier for almost all sizes of factors.

A final topic is to consider optimizing over a broader
class of design strategies that allow other uses of half add-
ers and even new components.
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