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Abstract. In this paper we address the problem of adding two n-bit numbers when the bit arrival times are arbitrary
(but known in advance). In particular we address a simplified version of the problem where the input arrival times
for the ith significant bits of both addends are the same, and the arrival times ¢; have a profile of the form:
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This profile is important because it matches the signal arrival time profile of the reduced partial products in a
parallel multiplier before they are summed in the final adder.

In this paper we present a design strategy specific to arrival time profiles generated by partial product reduction
trees constructed by optimal application of the Three Dimensional Method presented by Oklobdzija, Villeger, and
Liu and subsequently analyzed by Martel, Oklobdzija, Ravi, and Stelling. This strategy can be used to obtain adders
for any arrival time profile that matches the above form, as well as a broad class of arrival time profiles where even
greater variation in the input times is allowed.

Finally, we show that our designs significantly out-perform the standard adder designs for the uniform signal

arrival profile, yielding faster adders that (for these profiles) are also simpler and use fewer gates.

1. Introduction

The problem of constructing fast and efficient adders
when all input bits arrive at the same time is one that
has been well studied [1]. A related problem that is
also important in the construction of high performace
machines is the design and implementation of efficient
adder circuits when the bit arrival times are arbitrary
(but known in advance). One situation of this type
is the final adder for a parallel multiplier. The design
of the final adder for a parallel multiplier is important
because any improvements in final adder performance
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directly impact multiplication time, and multiplication
is a commonly used and expensive operation.

In [2] Oklobdzija et al., suggested a new approach,
the Three Dimensional Method (TDM), for Partial
Product Reduction Tree (PPRT) design that produces
PPRTs that outperform the current best designs. In
the TDM the PPRT is designed by interconnect-
ing (3,2)-adders (full adders) in a globally optimal
way based on careful modelling of input-to-output
delays. Specifically, delays are measured in equiv-
alent XOR delays. If a <b<d are the inputs to
a (3,2)-adder then the sum output is generated at
time s = max(b + 2,d + 1) and the carry at time
¢ =d + 1. The TDM approach was subsequently ana-
lyzed by Martel et al. in [3], and optimal TDM PPRT
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designs for reducing the partial products to two rows
typified.

The usual practice has been to add the last two rows
of partial products using as the Final Adder (FA) one
of the fast schemes such as Carry Lookahead (CLA) or
Conditional Sum (CSA). This concept was first chal-
lenged by Oklobdzija in [4], where it was shown that
under the non-equal signal arrival profile some of the
commonly known fast schemes for addition do not per-
form well. For example, if the LSB arrives first and
MSB last, with the signal delay increasing by % equiv-
alent XOR delay per bit, then the CLA adder will be
slower than a Ripple Carry Adder (RCA). Given that
the signal arrival profile to the final adder is more com-
plex, the problem of constructing the FA becomes more
complicated. This is augmented by the fact that the op-
timal FA is really a “hybrid” consisting of a number of
blocks that can encompass several different types of
adders. Such adders were introduced and analyzed
by Stelling and Oklobdzija in [5], where they devel-
oped optimal adders using Ripple-Carry, Carry-Skip,
and Carry-Select blocks under a simple timing model.
Here we extend that model to achieve more realistic
results. In this paper we will examine the design of
optimal adders that may contain Ripple-Carry, Carry-
Skip, and Carry-Select blocks.

1.1. Adder Goals

In [3] the PPRT circuits for m-by-m bit multiplica-
tion were evaluated based on the corresponding vec-
tors (fo, th, - - - » tan—2) Of the output times of the latest
output signal for each column. (All inputs to the PPRT
were assumed to be available at time 0, and ¢; is the time
at which the last output bit for column i was generated.)
Following their useage, we say that a TDM PPRT cir-
cuit with output time vector V. = (vo, V1, -, Vom—2)
is undominated in its class if there is no other TDM
PPRT circuit which takes the same inputs and generates
an output time vector U = (g, U1, - - - » Uam—2) Such
thatw; <v; Vi € {0,1,...,2m—=2)},and V # U.A
“Latest-Earliest” heuristic was introduced for evaluat-
ing the output vectors of the undominated circuits in a
class. By this heuristic V comes before U if the largest
value which does not appear in exactly the same posi-
tions in V and U either first appears later in U, or first
appears in the same position of both V and U, but last
appears later in U. The optimal vectors by this heuris-
tic both have the minimum maximum delay value and
follow the well known profile pattern for other PPRT

designs whereby the signals for the least and most sig-
nificant bits are generated earliest, with the middle sig-
nals appearing later. In fact, they are of the following,
stricter, pattern: fo < 1 < ---
t

<l =l =0 =
> tp+l =z 2 hm-a.

In this paper we will address the design of efficient
adders for such a profile. By efficient we mean that the
adder design should be fast, of small area, and use low
power. When alternative designs have the same speed,

we prefer the simpler design (with fewer gates).
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2. Adders for TDM PPRT Profiles

In [2, 3], TDM PPRT designs were analyzed based on
the time delay of an XOR gate, with the delay of NAND
and NOR gates being approximately 0.5 XOR delays.
In this paper we will also use this convention, although
our results do not rely on it. By this convention, a carry
ripples through a full adder ((3,2) adder) with 1 XOR
delay (1 NAND delay plus 1 NOR delay). Based on
this convention, the Latest-Earliest TDM PPRT output
profile (and hence final adder input profile) for 32-bit
multiplication is given in Fig. 1.

As can be seen from the figure, starting with the out-
put bits for column 1 (the PPRT generates a single bit
for column 0), the delays first increase with the col-
umn numbers and then decrease. Also, after column 4,
the number of columns with integer delay i is increas-
ing with i. As the multiplication size m increases, the
changes to the delay profile consist generally of the in-
sertion of columns of higher delay near the middle of
the profile. In the following sections we will first show
how to construct an adder for profiles of this form, and

Latest-Earliest Output Profile For TDM PPRT

XOR Delays

Figure 1. The output profile of the Latest-Earliest TDM PPRT.
There is only one output bit for position 0, and two output bits for
positions | through 62.



then we will generalize the approach for a more general
(less restricted) class of profiles.

All n-bit adder schemes can be characterized as be-
ing made up of blocks that each take as input a carry-in
bit (except possibly the first block) and some input bits
corresponding to the n columns in the block, and gen-
erate sum bits for the block and a carry-out value that
is propagated in some fashion to appropriate blocks
with more significant bits. For such designs as Ripple-
Carry, Carry-Skip, and Carry-Lookahead the column
input bits are the initial inputs and/or signals gener-
ated from them (e.g., carry generate and carry propa-
gate signals). Carry-select blocks take as input a carry-
in bit, alternative sum bits, and alternative carry-out
bits and generate sum bits and a carry-out bit. These
blocks are typically (but need not be) subdivided into
smaller blocks, and so on, until some smallest sub-
block (generally a full adder, sometimes called a (3,2)-
adder). In this paper we will only consider designs
where the smallest block is a (3,2)-adder. (Our work
in progress includes Conditional-Sum Adders which
use alternative (faster) circuits for generating sum and
carry values). We will, however, allow the basic blocks
(and even sub-blocks within a block) to be of various
types. Le., some blocks may be Ripple-Carry blocks,
some Carry-Skip blocks, and others Carry-Lookahead
or Carry-Select blocks. By using a Hybrid adder in
this fashion we will achieve significantly faster addition
while maintaining the overall simplicity and regularity
within blocks required for compact and power-efficient
circuits.

Before describing our approach in detail, we make
the following definitions, which we will use exten-
sively. Some of these definitions are generalizations
of definitions that have been used elsewhere [6] in re-
lation to adders where all input signals arrive at the
same time.

Definition. Given an input profile T = (f, .. ., ta),
and blocks By, . . ., By of sizes by, . . ., by respectively,
we define for bit by, in block B;:

o [{by) is the internal-carry delay of bit by, in block B;,
i.e., it is the maximum delay at which a carry gen-
erated entirely within B; (or one of its sub-blocks)
can arrive at position by. Similarly, the internal-carry
delay of block B; (the maximum delay associated
with generating a carry within B; and propagat-
ing it within the same block) is denoted /(B;) =
maxp,es, 1 (bn);
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o G(B;, B;)isthecarry-generate delay of block B; and
B;, the maximum delay associated with generating
a carry within B; and propagating it to block B;;

e P(B;, Bj) is the carry-propagate delay for blocks
B; and B; (j > i), the maximum delay associated
with propagating a carry that arrives at B; from any
previous block to Bj;

o A(by) is the carry-assimilate delay of bit by, in block
B;, the maximum delay associated with propagating
a carry within B; to position b, block B; when that
carry arrives at B; from any previous block. Analo-
gously to / (B;), we define the carry-assimilate delay
of B; as A(B;) = maxp,cp, A(bp);

o Lp(B;)is the latest delay possible that a carry signal
can depart B; to a later (or enclosing) block; and

o L 4(B;) is the latest delay possible that a carry gener-
ated in any block before (or enclosing) B; can arrive
at B,’.

Note that these definitions all pertain to the time at
which carry-in signals become available to a column
or block. We also define:

o C(by) is the latest delay possible at which the carry-
out bit for position by, within block B; can be gener-
ated; and

e S(by) is the latest delay possible at which the sum
bit for position b, within block B; can be generated.

The sum signal for each column is generated at some
delay after the arrival of the carry-in signal for the col-
umn or block. Our goal in designing a Hybrid Adder is
to minimize the maximum of the S(b,) by minimizing
the maximum of the carry delays over all blocks, sub-
ject to any power, space, and complexity constraints
we wish to impose. Depending on the block struc-
tures used, the various delays above may or may not
be relevant to a given design. For example, P(B;, B;)
may not be an appropriate measure for two blocks in a
Carry-Lookahead Adder, since for three blocks By, Bi,
and B; (h < i < j), B; may not be on the critical path
for propagating carries from By to B;. In our descrip-
tion of the Hybrid Adder design we must be careful
to identify which delays are relevant to each block or
combination of blocks. Note that the definitions above
make no assumptions about the structure of the blocks,
but that L 4(B;) depends on G(By, B;) for all blocks
By, h < i, and could also depend on P(By, B;) for
some blocks By, k < i.
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2.1.  Hybrid Adders using Ripple-Carry
and Carry-Skip Blocks

We show how we apply these definitions for some stan-
dard (and well-known) types of adders. First we apply
it to a Ripple-Carry Adder block B; containing bits
oo, s available at times ¢,,...,t. Using 1 XOR
delay as our time unit, we then have that:

e [(b,)=0, and I(b;)= max(I(bj-1),tj-1) + 1 for
r < j<s.Thus, I(B)=1(b)= max, < j<y—1{¢; +
s—=J)h

e G(Bi, B;) is relevant only for j =i+ 1, and G(B;,
Biy1) = max (! (by), 1) + 1 = maxrsjg.\-(tj + 5 —
j 4+ =max(I(B), )+ L;

e P(B;, B;) is relevant only for j=i+1, and P(B;,
Bisy) = max(Ls(B)+s—r+1,max,<j<(t; + 5
—Jj+ D)

o A(b,)= L A(By), and A(b]) = max(A(bj_l), l’j_[)
+1forr+1 < j <s. Thus, A(By) = A(by) =
max(L4(B;) +s — r,max,<j<s(tj +5 — j));

e L 4(Bo) =0 (assuming no carry in to the adder, oth-
erwise the latest time at which it can arrive);

e Lp(B;) = La(Biy1) = max(G(B;, Bi+1), P(Bi,
Bi1)) for i > 0; and

o S(b;) = max(min(z;, max(/(bj), A(b)))) + 2,
max(t;, I (b;), A(bj)) + 1).

Observation 1. 1f I(B;), G(B;, Bix1), P(Bi, Bit1),
and A(B;) are ail < t,,, then a Ripple Carry Adder
will suffice for the block, because those values will all
be less than the corresponding values for block B;.i,
and Lp(B;)=LA(Biy;) will also be < t,4;. Le., if
La(B)), to tys1, ..., 1t are all on or below the line
t =+ (fs41) — (s+ 1)) (the line of slope 1 that passes
through the point ((s +1), #,+1y)), then all of the delays
associated with B; will be < #(;41).

We now examine Carry-Skip blocks. First, we as-
sume that in Carry-Skip blocks the skips can al-
ways be completed (for any size block) by time
max(max,<j<(t;) + 2, max(L 4(B;) + 1). The delay
of 1 corresponds to a NAND with the propagate sig-
nal to get the complemented skip signal followed by a
NAND with the complemented generated carry-out to
give a single carry-out signal. The delay of 2 cor-
responds to the delays of two NOR gates to com-
bine the input bit signals to get the propagate signal
plus the 1 delay previously described. (This assump-
tion is reasonable for small blocks and blocks where

L4(B;) > max,<j<,(t;). In situations where the as-
sumption does not hold functions based on the circuit
that minimizes the maximum delays for the block can
be easily derived. The optimal circuits for those situ-
ations vary greatly with the input profile, and will not
be discussed here other than to say that the basic case
above suffices for final adders which take their inputs
from PPRTs based on current designs and technology.)
For Carry-Skip blocks we have that:

o I(b,)=0, and I (b;) = max(I/(h;_1),t;-y) + 1 for
r < j <s.Thus, [(B;)=1(b,) = max,<j<—1(t;+
s =)

e G(B;, Bj) isrelevant only for j =i + 1, and G(B;,
Biy1) = max(I (by), ty,)+140.75 = max, <<, (t; +
5 — j + 1) +0.75 (the 0.75 is for NOT and NAND
gates to combine the generated and skipped carries
between blocks);

e P(B;, B)) isrelevant only for j =i + 1, and P (B,
Biy1) = max(max,<;<,(t;) +2, La(B;) + 1) as de-
scribed above;

o A(b,)=L(B;), and A(bj) = max(A(b_,»-l), t/'_1)
+ Lforr + 1< j <s. Thus, A(B)) = A(b,) =
max(La(B;) +s —r,max,<j<(t; +5 = J));

o L,4(By) = 0 (assuming no carry in to the adder,
otherwise the latest time at which it can arrive); and

o Lp(B;) = La(Bis1) = max(G(B;, Biy1), P(By,
Biy1)) fori > =0; and

e S(bj) = max(min(t;, max(/(b;), A(b;))) + 2,
max(tj, 1([7]), A(b,)) + 1).

Observation 2. If B; is a Carry-Skip block over po-
sitions b, ..., b, in an optimal Hybrid Rippie-Carry/
1-Level Carry-Skip Adder, it must be that L4(B;) >
max,<;»(t;) + 1. Otherwise, if we let by be the least
significant bit in B; such that #, > L4(B;) — L. Then
(by assumption) P(B;, Bit1) = max(max,<;<,(f;) +
2, La(Bi) + 1)= max,<j<,(t;) + 2 > t + 2. But we
can split B; into two blocks B; (over bits b, through
br—;) and B;» (over bits by through b,) that combined
have simpler structure than B; (since the skip trees are
smaller) and achieve delays:

o G(By, Bir) < G(B;, Biy1) and G(Bi, Bi+1) <
G (B;, Bi4)) (because By and B;» include (disjoint)
subranges of B;;

o P(B,‘I, B,‘H) < P(B,', B,'_H) (bCCﬂUSG P(B,'f, B,'") =
maX(mﬂX,-ijk_l(tj)’JrZ, La(BH)+1) = Ls(B)+
< +2< P(B[‘, B,'_H); and

e P(By, Biy1) < P(B;, Biyy) (because P (B, Bit1)
= max(maxg<j<,(t;) + 2, La(By) + 1) = max



(Maxg<j<,(t;) + 2, La(B;) + 2) = maxg<j<(t;)
+2 < P(B;, Biy1)).

(Note that one of B, and B;» could be a Ripple-Carry
block.)

Observation 3. For a Carry-Skip Block B; over
columns r, ..., s as defined above, a necessary condi-
tion to minimize the maximum of /(B;), G(B;, Biy)),
P(B;, B;4)),and A(B;) is that B; (given r and the value
of L 4(B;)) be such that:

* P(B,‘, B,’+1) < max(LA(B,-), t.\'-H) + 2, and
e G(B;, Biy1) < P(B;, Biy) + 1.

Otherwise either B; could be a Ripple-Carry block or B;
could be splitinto two blocks B and B;» that combined
have simpler structure than B; (since the skip trees are
smaller) and achieve delays:

o G(By, Br) < G(Bi, Biy1) and G(Bjv, Biyy) <
G (B;, Biy1) (because B; and B;» include (disjoint)
subranges of B;);

e P(By, Bir) < P(Bi, Bi11); and

o P(Bi, Biy1) < P(Bi, Biy)) + 1 <G(B;, Biyy) (by
assumption).

(Note that one of B;: and B;» could be a Ripple-Carry
block.)

Observation 4. For a Hybrid Adder with Ripple-
Carry and Carry-Skip blocks as defined above, a suf-
ficient condition for the maximum of /(B;), G(B;,
Bi+1), P(B;, Biy1), and A(B;) over all blocks to be less
than some limit 4 is that the size b; of any Carry-Skip
block B; be such that G(B;, Bi+1) > P(B;, Biy() —
| = L A(B;) unless it would require that / (B;) > d or
A(B;) > d, in which case b; is set as large as possible
subject to those constraints.

Figure 2(a) shows the delays associated with an op-
timal adder design for using one level of Carry-Skip
blocks to add two 62-bit numbers whose signals are
all available at time O in total time equivalent to 15.75
XOR delays. Figure 2(b) shows the output delays of
the same adder when applied to the profile of Fig. 1,
giving a maximum output delay of 25.75 XOR delays.
Thus when applied to the profile the latest output is later
by one less than the delay the latest input signal, even
though many of the signals arrive significantly earlier.
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Now we use the formulas above to construct a Hybrid
Adder for the profile in Fig. 1 using Ripple-Carry and
Carry-Skip blocks. First we note that based on the
input signal profile vector, Observation | applics to

columns I, ..., 5Sand nowhere else (Column 0 has only
one bit as input). Thus, we can set By as a Ripple-
Carry block including at minimum columns 1, . . ., 5.

If By included only those bits then we would have that
L p(By) =5 =ts. However, we would then have by Ob-
servation 2 that B, would include only one position (bg)
(because t; = 5). The resulting maximum carry-in de-
lay to the block starting with position b7 is the same (6)
in both cases, so we use the simpler design whereby
By covers by, ..., bs. Observation I does not apply
past column 6, so we will use Carry-Skip blocks for
the later columns. Our approach is to first construct a
preliminary design using block sizes based exclusively
on the values G(B;, B;+;) and P(B;, B;+,). The max-
imum of those values will give us a lower bound on
the delay d of the latest output signal of the optimal
Hybrid Adder that uses Ripple-Carry and Carry-Skip
blocks. An upper bound will be provided by the maxi-
mum / (B;) and A(B;) values for that same design. We
can then use binary search on the possible values of d
to find the smallest achievable value.

For By, we have already seen that L4(B)) = Lp
(Bo) = 5. Using the formulas above, we have that the
minimum possible value of P(By, By)is La(B))+1 =
6. By Observations 3 and 4 we use block size b, such
that LA(BI) < G(B,‘, BH—I) < LA(BI) +2 = 7, i.C.,
by = 2. By repeated application of the principles in
the observations we get the preliminary design and de-
lays depicted in Fig. 3(a). By searching on the val-
ues between the lower bound of 20.75 (P (B3, Bi4))
and the upper bound of 27.25 (the maximum value of
S(bi)) we obtain the design in Fig. 3(b), with latest
output at 23.75 XOR delays (versus 25.75 for the op-
timal Uniform Input design). Thus we have achieved
almost 8% improvement using an adder of comparable
complexity.

This design is optimal among all Hybrid Adders that
use only Ripple-Carry and 1-level Carry-Skip blocks.
We now consider the situation where we also allow
designs that include one Carry-Select block.

2.2.  Using Carry-Select Blocks

The principles described above can be appled to multi-
level Carry-Skip blocks, Carry-Lookahead blocks, and
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Optimal 1-Level Carry-Skip Adder for Uniform (All 0) Input
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Figure 2. The delays of the optimal 62-bit 1-Level Carry-Skip Adder for uniform inputs when applied to (a) uniform inputs and (b) the 32-bit

Latest-Earliest TDM PPRT output profile.

Carry-Select blocks. It is this last possibility that we
will now examine.

The terms defined above can be easily applied
to Carry-Select blocks. For this analysis the delay
functions are based on the values of the delay func-
tions for the underlying sub-blocks of the Carry-Select
block, the time of the carry-in L 4(), additional delays
corresponding to the increased load (due to the num-
ber of output lines [7]) on the gate that generates L 4 (),

and the delay of the multiplexors used. (Multiplexors
have approximate delay of 1 XOR from the select line
and 0.75 XOR delays from the data lines, and invert-
ing multiplexors have approximate delay of 0.5 XOR
delay from the select line and 0.875 XOR delays from
the data lines [7].) Due to the nature of Carry-Select
blocks, we can limit our analysis of a Carry-Select
block B; containing bits b,, .. ., b, to finding S(b;) for
each bit in B; and C(B;) (and by implication L p(B;)).
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Preliminary Final Adder Design
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Figure 3. The delays of the (a) preliminary and (b) optimal 62-bit Hybrid Adder using Ripple-Carry and 1-level Carry-Skip blocks for the

32-bit Latest-Earliest TDM PPRT output profile.

When there can be confusion regarding which block a
signal corresponds to, we will use the identifying sub-
script of the appropriate block. For example, the sum
signal for b; out of Carry-Select block B; will be re-
ferred to as S;(b;), and the sum signal for b; out of
sub-block B;.; (and input to B;) will be referred to as
Sik(bj).

For example, if a Carry-Select block B; has (imme-
diate) sub-blocks B;.1, ..., Bis, and if we let d be the

additional delay associated with the gate that generates
L p(B;) due to the number of output lines, then we have
that:

o Si(bj) =max(La(B;)+ 1, Six(b;) + .875);

L] C,(bj) = max(L,;(Bi)—}- 1, C,h(B,h)+875) +d if
B; is the last sub-block of an enclosing Carry-Select
block; and

o Lp(B;) = max(La(B;)+ 1, Cin(Bin)+.875) +d.
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Optimal Hybrid Ripple-Carry/1-Level Carry-Skip/Carry Select Adder
for Uniform Input
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Figure 4. The delays of the optimal 62-bit Hybrid Adder for uniform inputs using I-level Carry-Skip and one Carry-Select block when applied
to (a) uniform inputs and (b) the 32-bit Latest-Earliest TDM PPRT output profile.

The delay from a NAND gate (which generates the
carry-out from a Carry-Skip block) is approximately
(.35 ns + .04 ns x (# output lines). For a Carry-Select
block over 30 columns there are 31 output lines (1 for
the carry-out) for a total delay of 1.59 ns, or approx-
imately 1.875 XOR delays, so that d = 1.375. If the
Carry-Select block instead is over only 21 columns,
then the 22 output lines imply a delay of 1.23 ns, so
that d = | XOR delay.

The design approach is similar to the one used previ-
ously. We know that the Carry-Select block will begin
immediately following one of the Carry-Skip blocks,
and that any optimal Hybrid Adder that uses a Carry-
Select block must perform at least as well as the optimal
Ripple-Carry/1-level Select solution. Thus we try to
achieve progressively smaller delay bounds beginning
with the optimal result from the design of Fig. 3(b).
As the bound is decreased some of the Carry-Skip
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Figure 5. The delays of the optimal 62-bit Hybrid Adder using Ripple-Carry, and 1-level Carry-Skip, and one Carry-Select blocks for the

32-bit Latest-Eartiest TDM PPRT output profile.

blocks may need to be changed to remain in com-
pliance with it, but the Carry-Select block will al-
ways begin immediately following an existing block, so
only a limited search is necessary. Figure 4(a) shows
the delays associated with an optimal Hybrid Adder
with Ripple-Carry, Carry-Skip, and one Carry-Select
block, with maximum sum output delay of 12.125
XOR delays. Figure 4(b) shows the delays that result
if that design is applied to the Latest-Earliest TDM
PPRT output profile, yielding a maximum delay of
22.625 equivalent XORs. An optimal design for the
Latest-Earliest TDM PPRT output profile is shown
in Fig. 5. This design has latest maximum delay of
20.25 XOR delays. Thus we have achieved better than
10% improvement over the original design for a uni-
form signal profile. The output profiles for all four of
the designs discussed are given together in Fig. 6 for
comparison.

3. Conclusions

We have shown that fast adder designs based on uni-
form signal delay profiles can give poor results when
used as the final adder in a parallel multiplier. The opti-
mal final adder is instead a hybrid structure containing
blocks that may consist of a variety of different adder
designs. We have given a generalized model for eval-
uating the delays associated with each block of such

a Hybrid Adder and applied it to signal profiles corre-
sponding to the final adder inputs of a parallel multiplier
using optimal TDM PPRT circuits. In our examples we
have normalized our results to equivalent XOR delays,
but our approach works equally well with the raw tim-
ing delays of the gates used in the designs.

We have shown how to design an optimal Hybrid
Adder made up of blocks of Ripple-Carry, Carry-Skip
(1-level), and Carry-Select Adders using an approach
that easily extends to blocks made up of other adders,
such as multi-level Carry-Skip, Carry-Lookahead, and
Conditional Sum. Our optimization method has pro-
duced an optimal structure for the case of a 32 x
32-bit multiplier. The improvement in speed is esti-
mated to be 10% over commonly used CLA scheme.
This improvement almost directly translates to total
multiplication time since our time measures are relative
to the time at which the Partial Product signals become
available to the PPRT in the parallel multiplier.

We are presently analyzing other adder designs that
are commonly used in Final Adders, namely Carry-
Lookahead and Conditional Sum Adders. Our prelim-
inary results show that for the final adder problem the
standard designs yield latest output bits of delay only
slightly better than the sum of the delay of the latest
input bit and the delay of the adder on a uniform input
profile. With our approach we have determined that we
can build faster adders using simpler circuitry, but we
have not yet completed optimal designs.
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