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ABSTRACT

An algorithm to implement radix four division and radix
four square-root in a shared hardware for IEEE
standard for binary floating point format will be
described. The algorithm is best suited to be
implemented in either off-the-shelf components or
being a portion of a VLSI floating~point chip. Division
and square-root bits are generated by a non-restoring
method while keeping the partial remainder, partial
radicand, quotient and root all in redundant forms. The
core iteration involves a 8-bit carry look-ahead adder,
a multiplexer to convert two’s complement to sign
magnitude, a 19-term next quotient/root prediction
PLA, a divisor/root multiple selector, and a carry save
adder. At the end, two iterations of carry look-ahead
adder across the length of the mantissa are required to
generate the quotient/root in a correctly rounded form.
Despite its simplicity in the hardware requirement, the
algorithm takes only about 30 cycles to compute double
precision division or square-root. Finally, extending the
algorithm to radix eight or higher division/square-root
will be discussed.

INTRODUCTION
Division and square-root are among the required
operations in IEEE floating point standard.  Using

Newton-Ralphson iteration method to compute these
functions [1] does not satisfy the IEEE standard on the
accuracy of the final result, even though the iteration has
the speed advantage (converges quadratically) over many
other algorithms, which often converge linearly. To obtain
a correctly rounded number as specified by IEEE,
hardware implementations of these two functions are
generally done in a linear iterative algorithm, where one
or more quotient/root bits are produced in each iteration.
Naturally, the algorithm that can produce more and more
bits per iteration, and/or can shorten the time to do one
iteration, will give a better overall performance, but,
usually at the expense of more complexity in the
implementation. Higher radix non-restoring division
(SRT) explained in a classic paper by Atkins [2] has been
the basis of many hardware solutions. Radix 8 SRT
division has been implemented in a VLSI chip - Weitek
WTL2264 [3]. Restoring radix four division shared with
radix two square-root has been built and reported by
Taylor [4]. Non-restoring radix two square-root is
described by Majerski [5]. The algorithm described in this
paper will show how a radix four square-root fits nicely
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into a radix four SRT division hardware; resulting in a
square-root performance that matches exactly with the
divide performance.

ALGORITHM AND IMPLEMENTATION

This paper will not discuss how the result exponent is
obtained since it is quite trivial to implement. It will
emphasize on how the quotient and root bits are formed
as well as the associated rounding technique at the end.

PIVISION

In this paper, division is implemented with radix 4 SRT :
2 quotient bits are produced per iteration; the partial
remainder is kept in a redundant form : the sum and
carry from carry save adders; the quotient bits are kept in
a redundant form (Q and Q-1 form); and the next
quotient bits are predicted using a symmetric prediction
PLA.

Basic SRT division algorithm [2] is solving the recursive
relationship :

pj+1= r o p] qj+]* d (l)
with the range restriction :
. = n *

| p]+1 | < T_j_ d (2)
where

pi = partial remainder in j-th cycle

( po = dividend)

r = radix

qj = quotient digit selected in j—th cycle

d = divisor

n = number of divisor multiples

( not including zero )

The P-D (Partial Remainder — Divisor) Plot with r = 4 and
n = 2 is shown in figure 1. To find the boundaries
defining each redundant region, substitute the above
equation with the minimum and maximum of p(j+1) :

2
I » pj=i—3—*d—qj+1*d (3)

with q(j+1) = -2, -1, 0, +1, 42
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This radix four SRT division is implemented with minimal
redundancy (measure of redundancy = 2/3), i.e., with the
choice of divisor multiples to be times one and times two
of the divisor only. Although having a times three of the
divisor as a divisor multiple choice (maximally
redundant) will simplify the radix four next quotient
prediction PLA, the generation of this multiple is
non-trivial.  This non-trivial generation, however, has
been done to implement radix 8 SRT division in Weitek
chip WTL2264.

The block diagram of divide operation can be seen from
figure 2. The recursive iteration given in (1) causes the
selected divisor multiple to be subtracted from the current
Partial Remainder (PR) to form the next PR. On each
iteration, the subtraction is done in parallel bit by bit
using Carry Save Adders (CSA), instead of performing a
full mantissa width Carry Look-ahead Adder (CLA).
Consequently, the iteration cycle time can be made much
shorter, and also the cycle time will become relatively
independent of the length of the mantissa prectsion. The
CSA technique causes the PR to be in redundant sum and
carry forms. This creates extra hardware complexities.
First, an extra set of register is needed to hold the carry
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Fig 2 BLOCK DIAGRAM of SHARED RADIX-4 DIVISION and SQUARE-ROOT

bits. Second, the PR still needs to be converted into a
non-redundant form in every cycle to predict the next
quotient digit, but, due to the size of the comparison
constant in the overlapped redundant region of figure 1, a
small 8 bit CLA on the upper bits is quite sufficient.
Third, at the end of divide iterations, when the actual sign
of the PR and the sticky bit need to be known, a full
mantissa width CLA is needed to convert the PR into a
non-redundant form. And last, a slightly more complex
next quotient prediction PLA is needed. Obviously, the
trade—off here is hardware complexity versus speed. For
VLSI implementation, the extra complexity is minimal
indeed; moreover, the speed advantage becomes more
apparent for longer mantissa width (e.g. double precision,
extended precision).

As the quotient digit is produced every cycle,
conventionally the redundant digits are stored in positive
and negative shift registers. The final quotient is then
obtained by subtracting the content of the negative from
the positive registers using a full mantissa width CLA.
The algorithm described here keeps these redundant
quotient digits in a slightly modified form, i.e. the "Q”
and "Q minus 1 (Q-1)" form (figure 3). The bit strings
are converted into Q and Q-1 forms sequentially as the
positive/negative quotient digits are generated every cycle.
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One advantage of this technique is that the final quotient
may be readily available at the end of the iterations, thus
eliminating the need to perform a full mantissa width
CLA. The other is that it shares well with the root
formation in the square-root. The disadvantage is almost
none.

To summarize the total delay for each divide iteration
cycle : At the beginning of each cycle, an 8 bit CLA is
performed on the sum and carry forms of the current PR,
and the result is then converted from two’s complement
into sign magnitude (figure 4). The magnitude part is
then passed to the 19 term "next quotient prediction PLA
(table 1)”. The PLA outputs then select the divisor
multiple. In parallel, these PLA outputs are transformed
into Q and Q-1 forms and stored into the quotient
registers. Using CSA, the selected divisor multiple is
subtracted from the current PR to form the next PR. The
result is stored in the PR registers, and the cycle repeats.
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SQUARE-ROOT

A close analog to division, the radicand is similar to the
dividend, the partial radicand is to the partial remainder,
the root is to the divisor, and also the root is similar in
formation as the quotient. Square-root iteration requires
the root bits to be known each time, because the root bits
must be available to form the next partial radicand.
Naturally, a one bit at a time restoring  binary
square-rooting is the simplest to implement, since the
non-redundant root is readily formed and can be used
directly in the subtraction of the current Partial Radicand
(PR) to form the next PR. A redundant one bit at a time is
slightly more complex, since the redundant root bits must
be converted on the fly every time into a non-redundant
form [3].

An extension of restoring one bit at a time square-root
into a higher radix is possible by performing parallel
CLAs on the full precision PR based on all possible root
combinations. For instance, restoring radix four
square~rcot would require 3 parallel CLAs to obtain
comparisons on {01, 10, 11} possible next root digit
combinations. This approach requires a lot of hardware
and the iteration cycle time will be long due to the delay
in performing full width CLA.

Higher radix non-restoring square-rooting process with
redundant root selection has ihe speed advantage because
redundancy permits less number of partial radicand bits
to be compared. Therefore, a shorter CLA, independent
of the length of the mantissa precision, is sufficient to
predict the next root digit.

The binary square root extraction is based on ”completing
the square” [6]

2
Pijs1 = Po — Qi
-G+1) -(+1)
pj+l=r*p‘i~qj+12 *(ZQ]+q]+12 ) (4)

with the range restriction :

- n
ij+1l <= -rj—*Q (5)
where p; = partial radicand in j-th cycle
( po = radicand )
r radix

root digit selected in j-th cycle

Qi = partially developed root in j-th cycle
(Q = final root)

n = number of root multiples

( not including zero )

Thus the recursive relationship for square-root differs
from the SRT division recursion only in the formation of
the divisor/root multiples, and in the range restriction
given in (5) that affects the size of the uncertainty region
in the next root prediction PLA. Consequently, the
potential of sharing the same logic and hardware with
radix four division is enormous, and the performance
speed-up is very attractive.

P Y
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oc100/1 1+ 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1100
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10001 [l2Fmiin o s e g 5 8 1 3 11 11 F“‘ T
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10,10 {0 v a it g B 1 - i
018 2 22 2o ,O. 0.0 0 00 0 90 o0
> 11.00 2oeiigiioa g 2
2k , v +1 0.0 0 0 G 0 0 1
=15 0.0 0 0 a1
Note : There are 3 boxes of A : Normally = 2, i 1 1 1
but if negative and xbit = 1 -> 1 "‘2 0.0 0 Q 0 1 0 0
There is one box of B : Normally = 1 - 2 : 0 0 0
: e . Q-1
but if positive and xbit = 1 -> 2 - %
Total number of terms : 19 terms
Table 3.

TABLE 1. NEXT DIVISOR / ROOT SELECTION PLA

Refer to figure 2 for the operation diagram of radix four
square-root. Prior to initiating the square-root iterations,
the exponent of the radicand must first be examined. If
the unbiased exponent is odd, the mantissa is left shifted
by one bit. In order to start predicting the next 2 root bits,
the root prediction PLA needs to know approximately
where the root is. As shown in figure 1 on the x-axis,
five bits of the root (including the hidden bit) must be
known. There are many ways to obtain the initial 5 bits
of the root. A look~-up PLA is chosen to do this. Table 2
shows the look-up PLA table. The look-up PLA size is
28 terms with the most significant 6 bits of the mantissa
plus the LSB of exponent (the odd and even exponent bit)
as the inputs and the most significant 5 bits of the root as
the outputs. Reducing the complexity of this initial
look-up PLA is an interesting logic minimization
problem.

Three initial square-root iterations will be performed
using the 5 predicted root bits to obtain the partial
radicand. Subsequently, the next 2 root bits will be
produced by the root selection PLA on every iteration - a
similar iterative process as done in division.

One tricky point in performing higher radix square-root is
the generation of the root multiples (plus or minus times
one of the root and plus or minus twice the root). Using
equation (4), the root multiple can be calculated. Table 3
shows the root multiples to be selected. Since forming
root multiples requires immediately the non-redundant
form of the partially developed root (Qj), the advantage of
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CHOICE of ROOT MULTIPLES

storing the quotient/root digit string in "Q” and 7Q-1"
forms becomes clear. If the next root digit is positive, the
"Q” form is used to generate the root multiple. The
”Q-1” form is used if the next root digit is negative.

Again, similar to division, the delay path on each
square-root iteration is : an 8 bit CLA is performed on
the sum and carry of the current Partial Radicand (PR),
and the 2’s complement result is converted into a sign
magnitude. The magnitude part together with 4 initial
root bits (out of 5 bits excluding the hidden bit that are
obtained from the look-up PLA) g0 to the next root
prediction PLA (19 terms) to determine the next two root
bit and the next root multiple. The sign determines
whether subtraction or addition must be done to form the
next PR. The cycle then repeats.

Two examples of double precision s
using this algorithm is included in t
how the partial
iteration cycle.

quare-rooting process
' in the appendix, showing
radicand registers change on every

UNCERTAINTY REGION of the
NEXT QUOTIENT / ROOT PREDICTION PLA

The P-D plot in figure 1 shows on the X-axis that the
divisor/root is in the range of +1 to +2. This is indeed
dictated by the IEEE standards : the hidden bit is to the
left of the binary point, and the mantissa is represented
as a positive magnitude. Let us examine the uncertainty
range on the X-axis for each divide and square-root.



For division, the divisor is already known to its full
precision, its position on the X-axis is fixed. Through
trial and error on the uncertainty region, only 4 MSB of
the divisor (excluding the hidden bit) are chosen to be
examined. This truncated divisor-bits has an uncertainty
range of the size at most +1 Unit of the Least significant
Place (ULP). In this case, the uncertainty range for the
divisor is 1/16, which satisfies the divisor interval
requirement. In the case for square-root, initially, only
the radicand is known; and the root position in the range
of +1 to +2 is not yet known. Using several upper bits of
the radicand, it is possible to obtain the upper S root bits
(including the hidden bit). A look-up PLA
implementation is quite practical, since the size is not too
large (28 terms). Since subsequent root digits to be
produced are still redundant, this truncated root-bits has
an uncertainty range extending to not only +1 ULP
(+1/16) but also -1 ULP (~1/16). The uncertainty range
for the root is twice the divisor, therefore the final size of
the uncertainty range on the X-axis for the shared
prediction PLA is 1/8; even though, the stepping size on
the X-axis is still 1/16 (4 MSB examined).

The Y-axis of the P-D plot from figure 1 represents the
partial remainder/radicand (PR). The plot only shows the
positive half of the Y-axis. The negative half is
symmetrical to the positive half around zero. Although at
the start, the dividend/radicand is positive, subsequent
non-restoring subtractions may produce negative PRs.
Unfortunately, the two’s complement representation for
the PR is asymmetrical around zero. On the other hand,
the overlapped region in figure 1 allows the comparison
constant to be truncated to 8 MSB of the PR. The
truncated PR, while represented in two’s complement, will
have +2 ULP uncertainty range, because the PR is
truncated from its original sum and carry representation.
The uncertainty range of the magnitude representation of
the PR thus extends to +2 and -2 ULP. When the
selection of the next quotient/root digit is done from two’s
cemplement PR, the result is an asymmetrical PLA [4].
The size of this asymmetrical PLA is quite large, because
not only the PLA has to cover the positive and negative
regions of figure 1, but also the negative half does not
map nicely into the positive half. Therefore, if the
negative two’s complement truncated PR is first mapped
into a sign magnitude representation, a smaller size
symmetrical PLA can be utilized. The logic for this
conversion is shown in figure 4. This conversion
technique not only maps the negative half of the PR into
its symmetrical counterpart, but also causes the
uncertainty range on the magnitude of the PR to reduce to
+1.25 ULP and -0.25 ULP.

To a certain extend, if the size on the X-axis of the
uncertainty region is increased, the size on the Y-axis
may be reduced [2]. The truncated divisor/root bits that
go to the PLA does not change on every iteration, but the
truncated PR is always changing. Since the formation of
the truncated PR involves a CLA delay (this delay
depends on the width of the truncated PR), it is desirable
to examine fewer number of PR bits, even at the expense
of examining more divisor/root bits. The size chosen for
the uncertainty region in this paper is indeed an optimal
one.
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ROUNDING

In order to comply with IEEE specified rounding, both
divide and square-root iterations must be continued until
the quotient bits at Guard and Round positions are
produced. The un-rounded quotient bits must be selected
from Q or Q-1 registers. The selection is determined by
the sign of the last PR, thus a full mantissa width CLA
must be performed on the last PR to compute its sign.

The sticky bit is zero if and only if the final partial
remainder/radicand is exactly zero; thus a big OR gate
following the CLLA can be used to perform a zero detect
logic. A one bit normalization on the mantissa may be
needed for divide operation if the bit value at the hidden
bit position of the quotient is zero. Square-root operation
never needs normalization.

Finally, depending on the rounding mode, the LSB, the
Round bit and the Sticky bit, the quotient/root may need
to be incremented at the LSB position. If so, again,
performing a full mantissa width CLA will add one on the
least significant bit position of the mantissa. Increment
the exponent if the mantissa overflows due to rounding.

RADIX 8 OR HIGHER
SHARED DIVISION AND SQUARE-ROOT

Staging several hardware with each performing radix 4
division/square-root in parallel can achieve a higher radix
implementation. Radix 16 SRT division with stages has
been reported by Taylor [7]. The discussion here pursues
implementations of higher radix not by means of staging,
rather by means of one stage hardware.

The algorithm explained in this paper can be extended to
radix 8 or higher. SRT division algorithm can be applied
to any radix (2°n); and the recursive relationship for
square-root (4) can still map into the SRT recursion. The
major obstacles to higher radix than radix four division
and square-root are the non-trivial generation of
divisor/root multiples (e.g. 3d, 5d, 7d, etc) and the
complexity of the next quotient/root prediction PLA. All
these requirements translate directly to more hardware.

For division, the divisor multiples generation may be
formed at the beginning of the divide iterations - a one
time delay. But for square-root, the non trivial
generation of the root multiples must be formed on the
fly on every iteration. Ultilizing the properties of signed
digit representation {8][9] on the quotient/root, and using
modified carry save adders, it is possible to generate the
root multiples on the fly. And naturally, divisor multiples
can also be formed using the same hardware.

Complex prediction PLA can be simplified by
transforming the divisor into a suitable range [10].
Transforming the divisor into a different range does not
pose much side effect on the quotient, given that the
dividend is also transformed by the same factor. In a
shared division/square-root method, the root must also be
modified through the same transformation scheme as the
divisor. This requires the final result for the root to be
modified back by the inverse factor.
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CONCLUSION

In this paper, a unique algorithm to share a radix four
division and a radix four square-root has been
demonstrated. In addition to the obvious performance
advantage with higher radix, the hardware solution for
this algorithm is relatively simple. Figure 2 shows the
block diagram of shared division and square-root
hardware. Extending this shared division and square-root
algorithm to higher radix than radix four is possible with
more complex hardware requirements.
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APPENDIX

ODD EXPONENT
What is the radicand (two 32bit integers) ?7
40023456 789abcde

predicted root bits :0110000

sel2:1 sell=0 negate=0

sum :00100100011010001010110011110001001101010111106011011110000
cry :00000000000000000000000000000000000600000000000006000000000
root:10111111111111113131221211323231131311211332121132112111111111111
sel2=1 sell=0 negate=l

sum :01101110010111€10100110000111061100101010000110010000111100
¢ry :0010001101000101011001111000100110101011110011011110000100
root :011100000¢ 1] }0000C 00000000000000000
s612=0 sell=0 negate=0

sum :1111010001100000101011101100101000000111010100111011100000
c¢ry :0001001000101010001000000100100101010000010010000000100000
root:1111111113131111211121313111212221211312321212211121131131111
s612=0 sell=1 negate=0

sum :0110011011010101110001011111001010100011100100010011111100
¢ry :1011001101010101011101100101101010111010110111011100000100
root:11001111101111131211311211213213121211221211111121111211133111
sel2=1 sell=0 negate=l

sum :0110100011111101001100010101111110011010110011000000011100
¢ry :00111110101011111011111113101010111011110111011111111100100
root : 011000001100000000Q000000000000000000000000000000000000000
sel2=0 sell=1 negate=0

sum :1101101001001010001110100010100100010000100011111111100000
¢ry :01000111011010011000101010101100110101100110000060:000100000
root:110011111011101111111111111111121112121111111311311112112111
s612=0 sell=1 negate=1

sum :0100101001100001001111011110100011100100010000000011111100
¢ry :011110110101110111010101011011101011011210111111111060000100
root:00110000010001110000000000000000000C000000000000C000000000
sel2=0 sell=1 negate=1

sum :0000010111101111101000100001100101001100113111111111100000
€ry :1101001000101000101010110100010100100010000000000000100000
root:0011000001000101110060000000000000000000000000000000000000
sel2=0 sell=1 negate=0

sum :1001111000001611001001010111000110111011111111111100000000
cry :1000001101101101000100000000100000000000000000000100000000
root:1100111110111010011011111213111131121111121211113111111131
sel2=0 sell=1 negate=1

sum :0100101101110001011020100001100100010000000000011111111100
cry :01111001010110010010101111001101110111111112111100000000100
root:0011000001000101100111000000000000000000000000000000000000
sel2=0 sell=1 negate=l

sum :0000100110110111011101110101001100111111111111112111100000
¢ry :1100101010001001010100000100100010000000000000000000100000
100t :0011009001000101100101110000000000000000000000000000000000
sel2=0 sell=0 negate=0

sum :1100110111101110110000000110111011111111111111111100000000
cry :0100010000101010101110100000000000000000060000000100000000
root:11111113113113133111113112231121211312133122121121213131111231111
sel2=0 sell=1 negate=0

sum :1101100011101110000101100100010000000000000000011111111100
¢ry :0110111101110111110100110111011111111111111111100000000100
root:11001111101110100110100113310121121121121111211311113211111131
s6l2=1 sel1=0 negate=0

Sum :1110000010001110101100110111000000000000000000000000011100
¢ry :01111111111100101001101100111111311311111111111111111100100

r00t:10011111011101001101001110102111112121122111131111311111111
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8612=0 2el1=0 negate=l

sum :0000000000100011111011111 11100
cry :ll11111110]101001001100111111!1111111111111111111111100100
root: DOOC

$012=0 sell=0 negates=1

sum :111111100101110111011001111\11l111111111111111!11111100000
cry :00000001000001060100110C 100000
root: )

8612=0 sell=0 negate=l

um :1111110101lOOllOOlOlOlll11lllll11111111111111l111100000000
cry 10001001000000

Toot:0(

8el12=0 sel1=0 negate=l

sum :1111010100010000010111111111111111111111111111100000000000
ery : 10001001

root:
801220 s0ll=1 negate=1

sum :11010000000010010111111111!1!11111111111111100000000000000
¢ry :0000100010 1 0
root:0011000001000101100101100010111111111111000000000000000000
3012=0 sell=l negate=0

sum :101000110011001110100111010000 0111

ery I100000000000100010110001011111111l111000100000000000000000
root:1100111110111010011010011101000000000001101113111111111111
8e12=0 sell=nl negate=1

sum :1011001000000101111111211011!111111010101111]1111111111100
¢ry :00011001110101010000101010 110000¢ 200100
root:0011000001000101100101100010111111111110011100000000000000
5612=0 sel1=0 negate=1

sum :0110!11001010101100011000100000001100010001111111111100000
ery Z1000001000101100111101010111111101110011100000000000100000
root. : 00 ) 2000000
sel2=0 seli=1 negate=1

sum :1011000111100101111001001111110001000110111111111100000000
cry 10001000000100100001000100000001100010000000000000100000000
root:0011000001000101100101100010111111111110010111110000000000
5612=0 sell=1 negate=1

sum :01000110000100010100001l0100001010100010100000100000000000
cry :1000001100101101001100010111101010110010111110]00000000000
root:0011000001000101100101100010111111111110010111011100000000
8e12=0 sell=1 negate=1

sus :110101011110011110010000010111l110111000100101110000000000
cry :0001000000101000100110110101010110010110110100000000000000
root:0011000001000101100101100010111111111110010111010111000000
sal2=1 sell=0 negate=o

sum :1101011000101010011101001001011l01000000011010011100000000
cry :100000110010l100100100101ll1110111110110101010000000000000
root:10011l110111010011010011101000000000001101000)0100101lllll
sal2=0 sell=l negate=1l

Sud :0010100111001000110101110010101011010110000100111011111100
cry :1011100101100110100101011010101000010011010010000000000100
root:00110000010001011001011000101111111111100101“010!1011!100
sel2=1 seli=0 negate=0

sum :1000001110101111010100101011110011101!00000110110100010000
cry :l1001010001001001011100101010110!0110010110010010111100000
root:1001111101110100110100111010000000000011010001010010001011

ro0t:0011000001000101100101100010111111111110010111010110111011
Radicand = 40023456 789abcde
Final root = 3ff822cb 17ff2eb7

EVEN EXPONENT
what is the radicand (two 32bit integers) ?
3ffabcde 98765431

predicted root bits :0101010

£8612=0 selil=1 negate=0

sum :00011010101l1100110111101001100001110110010101000011000100
ery :00000000¢ 000¢ 00( 000000000000000
root:1110111111111111111111111111111111111111111111111111111111
sel2=0 sell=1 negate=0

sum :l10101010000110010000101100111100010011010!01111001!101100
cry :0101010111100110111101001100001110110010101000011000100100
root:1101101111111111111111111111111111111111111111111111111111
sel2=0 seli=1 negate=0
110110001010110001110101000100110101111110001010011011100
010111101110111101011101111110110110101011111011101100100
101011011111111111111111111111111111111111111111111111111
sell=1 negate=1

sum :0101011101111001101011100010111110010101000111000100011100
cry Z0111001110111101111101111110110111111111111011111111100100
o0t :00101001110000060000 200¢
sel2=0 sell=1 negate=1

sum :0011010000010001011001110000100110101011110011101111100000
cry :100111111100110100110001011011001010!000011000100000100000
root: 0010100101 110000000000000000000000000000000000000000000000
s612=0 sell=0 negate=3

sum :0000101010110001010110011001010000001110101100111100000000
cry :1110101010001001000010000100010101000010000100000100000000
root: 00000000OO000000000000000000000000000000000000000000000000
5012=0 selil=1 negates1

sum :1000000011100001010001110100010100110010100011100000000000
cry :0101010000001000010000000010000000010000100000100000000000
T00t:001010010101111100000 )000000! 00 2000000
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sel2=0 sel1=0 negate=1

sum :111101101101100000011101100101001000100000110000000Q0000Q0
cry :0000001001001010000000000000000010000100000108000000000000
root : 0000000000000000000000000000000000000000000003000000000000
sel2=0 sell=1 negate=1

sum :1101001001001000011101100101000000110000100000000000000000
cry :0001001001000000000000000000010000060000100000000000000000
root:001010010101110111110000000000000000000000000000000000:0000
sel2=0 sell=1 negate=0

sum :1010010101010110000110010101000011000000000000000000000000
cry :1001001001000011100000000000000000000100000000000000000000
root:1101011010100010000110111131113111111111111111211111113111111
sel2=0 sell=1 negate=0

sum :1000011011011110000010101011110011101111111111111111111100
cry :1011001000010000110010101000011000100000000000C000000002100
root:1101011010100010000101101111133121331131111312111211111311111311
sel2-0 sell=1 negate=0

sum $1000100110110011010110110001010011000000000000000000011100
cry :1011010010010000G10101011111011101111111111111111111100100
root:11010110101000100001010110111111311311113111131111111111113
sal2=1 sell=0 negate=0

sum :1010111000000100011011010111000100000000000000000000011100
cry :1010010110010010101011011011111131111111111111111111100100
root:10101101010001000010101010111111311111121311113113111111111
sel2-0 sell=0 negate=0

6um :10011011010010111010100111000100000006000000000006000011100
¢ry :0110100000100001011011013111111111111111111111311111100100
root:111112111131311311213131213111112112111223131111311111111111
sel2=0 sell=0 negate=0

sum :0011001001010100111011110001000000000000000000000000011100
c¢ry :1101101101011111011011111111111111111111113111111111100100
root:1131111113181111311211113313131113811111111131111311311131111
s612=0 sell=1 negate=0

sum :01011011110100601111111000100060000000000000000000000011103
cry ©1101101011111211011111121111313111342111111111321111110010C
root:110101101010001000010101060112131101112111311111111111111111
sel2=0 sell=1 negate=0

sum :0101111000110010010110100000000100000000000000000060011100
cry £110101111001201111101011111112011111111111111111111110G100
root:1101011010100010000101010011111101102111112111111111111113
sel2=0 seli=1 negate=0

sum :0111i110000101110100100110000111001000006000000000000011100
cry £1011010110016010110110011110101101131111111311111111100100
root:1101011010100010060101010011111101031011111111111111111111
s8l2-0 sell=1 negate=0

sum :01111100011110010111111101101002110010000000¢00000000011100
cry 11010010100010100100010010111101011011111111111111111100100
root:1101011010100010000101010011111101010110111111111111111111
sel2=0 seli=1 negate=1

sum :0011111100111111100011001011000001100100000606000000011100
cry :1010000110000000111010111101111010110111111111111111100100
root:0010100101011101111010101100000010101001110000000000000000
sel2=0 sell=1 negate=0

sum :11011111100010100011011010111006111101000111111111111100000
cry :01001000111011110101011010000101001011100000000G0000100000
root:1101011010100010000101010011111101016110011011211111311211
sel2=0 seli=0 negate=1

sum :0Q0001110001110111010100000011100100001001600000001111110¢C
cry :11110101010100001011010111101011011100110111111111000001060
root : 0000000000000000000000000000000000000000G00C00000000000000
sel2=0 sell=0 negate=1

sum :1100100100110101100001111001010011000100111111111111100000
cry :0010100010000100101000000101001000010010000060000000100000
root : 060600000000 0000000000600000000000000000000000000000000000
sel2=0 sell=sl negate=1l

sum :1000011011000100106111110001101101011011111111111100000000
cry :01000000001001000000000010¢0000000000000000000000100000000
root:0010100101011101111010161100000010101001100111111100000000
5612-=0 sell=1 negate=1

sum :10111110111210101110101010110111111001001300000010000000000
cry 1 0000001000100100010101000000000001001100111111100000000060
root:0010100101011101111010101100000010101001100111110111000060
sel2=1 sell=0 negate=1

sum :C101011000110001101011101011116010110011100000011109000000
cry 10101001110101116101000100000011001001100111110000000000800
root :0101001010111011110101011000000101010011001111101011000000
sel2=0 sell=0 negate=1

sum :0101110010010011011001001116111010110001000111011100000000
cry ©1001010111011101001101000010091010011101110001000000060000
root : 000000000000600000000000000G000000000000000000000000000000
sel2=0 sell=1 negate=}

sum :0010010100111001010000110011000010110011011001110000000000
cry £1010016010001001001000010001010010001000001000000600000000
root :0010100101031101111010101100000010101001100111110100111111

root :0010100101011101111010101100000010101001100111110100111101
Radicand = 3ffabcde 98765431
Final root = 3ff4aef5 6054cfa8
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