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Engr. 225A

Multi-Operand Addition (Radix 2)
Ao &vizienis

The addition of more than two operands is also of interest, especially in

implementing the multiplication algorithm., A fast and systematic msthod

of adding several radix 2 operands is the "ecarry-save'' method of cascading

arfays of binary full adders.
A binary full adder (FA) is shown below:

=

Sir) - TA e C

Thc arithmetic transfer function of the FA  is:

x, +y, +¢ 2ci+1 + S

i

hii

i

with | si<L-2|(xi + ¥y +.ci)

ci+1<~(xi oyt ci) >‘1

The internal logic net of the TA depends on the nature of the logic -

elements being used; the FA is,aVailablé as a single integrated circuit

B

package fron most manufacturers.

- h\‘_‘______‘m e
For the purpose of multi-operand sumnration, we consider the TFA to




: . g receive all three inputs from n-bit binary numbers x|

'

Sina

—
i 5

FA

X 0¥ 3

¥, = as follows:

The same description as before applies, with ~zi‘ replacing the input <4

" An array of n such FA's can be employed to accept the binary

operands X, ¥, z as inputs and to produce two binary numbers s, ¢ as

results. An example for n = I 1is shown below:

. .
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Both results are n bits long:

L = (En’sn-l’ RS ___,1)

s = (5,975, s 5)

The vector ¢ 1is digplaced one position to the left;

Sy and has c, as the left-most component, The rel

values of the veetors is:

‘I' ' X+ y+zsc+ s

that is, it lacks

ationchip of natural -




that is, the vectors ¢ and

s~ represént the same ng

~vectors x, y, and z together, Discarding c, from

we have:

: 2n|(x +y+2z)gc +s

and if we furthermore let ¢, « cC and then discard

-0 -n

we have

=g 1re8y);

17"

(an-l)l(x +y+2)zc +8

tural value as the

c to get c' = (En—l"'°’£1)’

c to t
S, to ge

that is, ¢' and s represent the modulo 2" residue of the sum x + y + 2,

cﬂ

while and s represent the modulo 2"-1 residue
X+ y+ 2z
n FA's

The array .of shown in the preceding fig

save adder"' (CSA). The CSA can be shown in a convenie

form as follows:;

el Tﬂ
csa #1
T —
X R Z

The treatmeént of n and the specification of the valu

to be stated explicitly for this diagram.

1¢ of

of ‘the same sunm

ure is called a "carry-

nt block diagram

c remains

2o

It is evident that to get a single-veclor represcntation of the radix 2

sum of vectors X, y, and z, the two result vegtors

added in a conventional adder with complete carry prop

¢

end s have to be

rgation,

In gencral, any nuaber of binary operands can be rcduced to a pair of

results by the use of carry-save adders. The following

figures. show the
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ély, to get the two-

vector representation of the natural value of the sum;
B il

arrays for summing 4 and 6 n-bit operands, respectiv
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(b) 8ix vector CSA summation cascade {(three levels)
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- |

the case in which all CSA's are cascaded in a series %rrangement. The

minimum depth is attained when the largest possible n;mber of CSA's is used
in parallel at each level. The maximum number of operands which can be
\ .

J levels in depth is denot#d by Max (Jj) and is
. "‘.‘——_———“

added using a cascade of

given by the expression:

. Max(3) = {] %* Max (3-1) J* °}+{2|;4ax‘ (3-1}
| for J.= 2,3,;  .
Max (1) = 3 ‘ %
Some of the values of this function are: é
o .
ntax(j)=!3 ‘ 4 619&13‘19]28 { h2l|63\tl 9l ‘lml 211

The depth (in levels) of a CSA cascade determines the ﬁongest path (in FA delay

units) for a signal between the input and cutput ‘of th CSA cascade.

e ()= 13l = e o L {2 wqu)}

»m(“ Ve {3 L5 Rae (-} ¥

W owmoyy Y rYy
it Ly \
L 1* Maw (1) §
I Ee e
=% 1 L‘ )




-6

Recoding of the Multiplier ‘
A, Avizienis ‘

1. Canonical Recoding

A fundamental approach to accelerating the multiplication algorithm
has beeﬁ the recoding of the multipiier into a-signe ;digit.form.
In the casc of radix 2, the recoded form has the set of allowed digits
$ = {1,0,T} , where 1 is used to represent‘thevdigi value "minus one.”
\

This form of radix 2 numbers is redundant, that is, s?me natural values have

' more than one representation. For example, consider khe'radix 2 vectors:
- |

!x'

= (011111)2‘ \

<

= (10000T),

The natural values of both are given by the expressions:

xret cowadt a2l Pyt # 2 =3

[
m

1%
v
o~ w

|
T
|
x

yi*21=25+0+_0+0+0-20\_—.

—

y = 31

i

o ~MIwv

m

As a matter of fact, all following 6-digit vectors al%o represent the same

natural valuc 31 in radix 23

. ' (1000?1)2 , ‘(100111)2 ,”(10?111)2 , | and

(11;111)2

{
|
|
w
|
|
|

£ non-zero digits}

A difference among these forms is found in the count o

@hichi#éhéail‘thglmgltiplicity wod The~mu1tiplicity Manges from 2 to 6

in the vectors of the preceding exanple,

|
|
|
|
|




vector x is. givenf

0f special interest in computer arithmetic is thé n-digit form which
has the least nultiplicity among all n-digit foims repreéenting a given
natural value k . Such a form is called the "n-digit minimal form of}

rrnan oo
nmotural value k "L The multiplicity of a minimal form ¢f length i énd

ff;iﬂgglgyulu¢_~k§ is called the'weightland is denoted by gfs,k) ¢« In ~

the preceding example the six digits 1ongminimai form of the natural value
31 is  (100001), and its weight is w(6,31) = 2 .
In some cases therc may be morc than one minimal form for a given

vector length  'n and natural value k , For exauple, given n = 6 and

. k = 3 , there will be %40 minimal Pépms! with the weight o(6,3) =2

that is, with the multiplicity p = 2 :

(00c011), and (00010T) 5

There will also exist n@ﬂeminimglgforms‘for ne=6 aﬁd k= 3 3‘for

example:

(oofioT)2 , (01“11’0':[)2 ,  (111701)

f
£

(ooﬂ':le)‘,2 , (01':[':{31)2 , (1‘1‘1351):

N

A detailed study of the existence and generation of minimal forms has

peen performed by G. W. Reltwiesner (Reference A5, Section 8). A binary

By

n-digit vector %Ej is said ‘to possess the "ungualified property g;? if

and only if

By

Hie1

g1
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. . ‘ . Sgedian
o that is, x does not contain adjacent non-zero digits.
Given the restriction that both leftmost digitsﬁcannot be +1 or

-1 simultaneously, that is:

* Reitwiesner shows:

yeotor length n and natural value k. there exist g

”,¢agiog@%(to be calledﬁegpqnica"
‘groperty M |

T @
‘the canonicad form{ .

- o ' AWM

The restriction gé¢&¢?Was imposed - beczuse of an assumed range
" ——

whiclh possesses’ the unqualified|

othor form of this natural value has a lowex multiplicity thanf

limit for the multipliers, It can always be satisfied by affixing an
. © additional digit X, = O at the left end of the operand which is to be
recoded; that 18, the canonical form is obtained for |the nt+l  digit
=n-1 ~n-2

form when x and x are both. +1  or -1,

The canonical recoding algorithm gives the rules foi converting a

conventional binary digit vector X = (fn’in-l"""zb) with x =0

and X = O or 1 for O <41 < n-1 to a signed-digit vector y = (Xn"'

1 ¥0)

(zi = O,l,T) which;is the canonical form for the natural value represented

by X .

—

The serial recoding beginning at the low end of| x requires the

—

inspection of digits X and Xy and a "carry" digit <4 to generatc
the digit Ys of the canonical form and the "éarry" digit L which

is to be used in the next step.  The algorithm. is stated as

for Q@N$ﬂi <




Y’st' A +G 20

, 0€IEN
' . with:
The following table describes details of the algorithm:
Inputs OQutputs
/ Ziv1 X S Ly Si
: 0 0 0 { 0 0 ~
1 0 o] 0 0 ' X does not
0 1 1 0 1 > matter for these
, {:~ cases
1 1 1 0 1 /
0 0 1 { 1 0 S
0 1 o 1 0 :
. > ;:hoosc Ei-kl
1 0 1 { 1 1 such that
1 1 0 Y ] J Y1 = 0 will
o result

The lower four entries require a non-zero value of Y ' therefore S
. X -1 band® S

is chosen to guarantee that the next digit to the left in the recoded form

(yi+1) will be a zero and # 1 will be satisfied,

*v
Zi1 Y

It is cvident that the table may be expanded to generate more than one

£t 3 . For inst .
digit of the canonical form at once, For instance, Y0¥ and 31+2
can be generated as functions of CX X g ~and x40  this is¢

fpnical form, then both and y, -‘eannot be ones. The possibley

RLEsY

combinations are; 00, 01, OI, 10, and 10. We may consider these two digits




£ # - 1’ ' " ~10-

‘ T '<-}-.i+1’-“-'i} to represent a radix 4 digit g‘j with the allowed values
{‘. 1, 1 ,-2}.
Two digits of the nultipller will be used up at once in a binary

[1R3 '\U-(
multiplication if the provision Ior adding O + 1 and + 2 times the
—————————— i S - .

multiplicand to the partial -product is -included in th arithmetic processor,

The addition is followed by a two- position shift of the sum,

2. "String" Recoding (EOO'H\S A\So(\"’fvhﬁ !
|

Another method of recoding-is known as "string" +ecoding and employs
|
the observation that the two strings of binary digits|
S B
String A: (_ _oun ), \
String B: (_ _ _ 16001 _ _ ) |
.' represent the same natural value in radix 2. A recojmg will be attained if we

specify the replacement of eaéh string of ones, ‘terminated by a zZero at the -
left end, (such as string A apove), by the sfring B, which contains a 1
instead of the right end digit 1 of string A, zeros\for all other interior
oncs, and a 1 - for the left end digit O of string

An algorithm to recode a conventional binary (ntl)-digit vector x by

this "string" method is given by the table;

Inputs : Output Observation regarding xi
LSRN T O | |
: , , |
o} o) o Xy does not belong to a stiring
0 1 1 X, 1s the left end digit of a string
1l 0 1 ii is the right end digit of a string
l 1 0 x, is an interior digit of a stving

—i

o | |




The reccoding requires the assumption of x = 0. and| the attachment of

X = 0 to a given n-digit vector x

The algorithm above expressés the new digit z, as the function of

b4 and x

X, » only and therefore is suitable for a parallel recoding of

i-1

X 1into 2 . The new signed-digit form 2 ‘, however, is not always the
~same as the canonical form y discussed previously, Eince the "string"
algorithm given above is inadequate to handle the occlurrence of single

zeros and ones. = For example, consider the recodings:

1%

= (011101110)2 x' = ;(01010101)2

In

= (100’1‘100‘1‘0)2 z' = (1I11‘1T1’f)2

Adjacent non-zero digits can exist and the multiplicity of the recoded

 form may even be higher than the multiplicity of the original form. The

algorithm, however, guarantces the condition:

_z_i+le<-zi' # +1 for n-1 £41is<0

that is, there are no-adjacent non-zero digits of the same sign in the
recoded vector z |

Subdividing the vector =z into groups of two digits each, we encounter

the following pairs (z ' which can be interpreted as radix L digit

141°21)

values u, 3

radix 2 (z,.,,2z;) 00, 01, 01, 10, 10, 11, 11

radix lp(uj) o, 1, 1, 2, 2, 11, 1

The values +3 are avoided in the radix § digit vector, and the result of the

parallel "string" recoding can be used in the same manner as the result of

. the canonical recoding,
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The preceding table may be readily extended to #xpress pairs of digits

Z{,10%; 8as a function of Xip10%y o X

condition

% £ : N
31+1 fi 7 21 for each pair, but the next

.
Ziag*Zin F L

Such a recoding has been applied in the multiplicatio

‘may be such that only the condition

System 360/91 arithmetic processor. The recoding ta

and x. . This will guarantee the

palr 2z, 212440
can be guaranteed.
n unit of the IBM

ble is given below:

—i+] —i

=0 Z.==~
| ;1

Zi41

Inputs Outputs
X x. » 2. 2, Observatiqns on X, 1,X;
=i+l 1 =i =i-1 ) =il - as members of a string
] 0 0 0 0] no string-|in evidence
0 0 1 1 X; is the left end
é'/jl T ‘ ~ " *
0 1 0 L0 1 X, is an isolated "1" (short string)
0 1 1 1 0 Xy, is the left end, x interior digit
1 0 0 1 .0 Xy 1S the right end
‘A & *%
1 0] 1 0 1 x, is the left end, Xi41 right end
1 1 0 0 1 x, is the right end, x, . interior digit
1 ! 1 0 ' °‘ | X%, 2T° both interior dig#ts
Remarks:
* _ L . . -
0l = (51+1’§i) is a complete two~digit string; instcad of Ei+l =1, z; =1
we usé the equivalent form Q1.
¥*# - ‘ .
7-a;;ain, instead of =z = 1 2z, = 1 , we use the equivalent combination




