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SUMMARY

This paper describes a single unified algorithm for the
calculation of elementary functions including multipli-
cation, division, sin, cos, tan, arctan, sinh, cosh, tanh,
arctanh, In, exp and square-root. The basis for the
algorithm is coordinate rotation in a linear, circular, or
hyperbolic coordinate system depending on which
function is to be calculated. The only operations re-
quired are shifting, adding, subtracting and the recall
of prestored constants. The limited domain of con-
vergence of the algorithm is calculated, leading to a
discussion of the modifications required to extend the
domain for floating point calculations.

-A hardware floating point processor using the algo-
rithm was built at Hewlett-Packard Laboratories. The
block diagram of the processor, the microprogram
control used for the algorithm, and measures of actual
performance are shown.

INTRODUCTION

The use of coordinate rotation to calculate elementary
functions is not new. In 1956 Volder developed a class
of algorithms for the calculation of trigonometric and
hyperbolic functions, including exponential and loga-
rithm. In 1959 he described a COordinate Rotation
DIgital Computer (CORDIC) for the calculation of
trigonometric functions, multiplication, division, and
conversion between binary and mixed radix number
systems. Daggett in 1959 discussed the use of the
CORDIC for decimal-binary conversions. In 1968
Liceardo did a master’s thesis on the class of CORDIC
algorithms.

It is not generally realized that many of thege algo-
rithms can be merged into one unified algorithm.

COORDINATE SYSTEMS

Let us consider coordinate systems parameterized by
m in which the radius R and angle A of the vector
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P=(z, y) shown in Figure 1 are defined as
R=[z*+my?]"
A=m"? tan"[m'*y/x]

It can be shown that R is the distance from the origin
to the intersection of the curve of constant radius with
the z axis, while A is twice the area enclosed by the
vector, the z axis, and the curve of constant radius,
divided by the radius squared. The curves of constant
radius for the circular (m=1), linear (m=0), and
hyperbolic (m=—1) coordinate systems are shown in
Figure 1.

ITERATION EQUATIONS

Let a new vector Piy1=(Zi41, ¥is1) be obtained from
P;:=(z:, y:) according to
3
4)

where m is the parameter for the coordinate system,
and & is an arbitrary value. The angle and radius of
the new vector in terms of the old are given by

Zinn=Zi+myd;

Yin=yi—Zb;

A “+1= A i—ag (5)
Riqn=R3K; (6)

where
ai=m~11 tan—1[mi3,] (7
Ki=[14+msz2]* (8)

The angle and radius are modified by quantities which
are independent of the coordinate values. Table I gives
the equations for a; and K after applyingidentities A2

and A5 from the appendix.
For n iterations we find
A a= A. —a (9)
Ru = IBO‘K (10)
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A

Figure 1—Angle A and Radius R of the vector P=(z, y)

where
ass de.’ (11)
K‘ﬁK-‘ (12)

e

The total change in angle is just the sum of the incre-
mental changes while the total change in radius is the
product of the incremental changes.

If a third variable z is provided for-the accumulation
of the angle variations

2.}132."'-&.' (13)

and the set of difference equations (3), (4), and (13)
is solved for n iterations, we find,

- Za= K {20 cos (am/?) + yym!'? gin (am'?) } (14)
Yn =K {10 cos(am!/?) — zgm~11 gin (am'?) } (15)
Zy=2-}x ' (16)

where a and K are as in equations (11) and (12).

TABLE I—Angles and Radius Factors

Coordinate Radius
System m Angle a; ‘Factor K,
1 tan-13; (1431
0 8 1
-1 tanh-15; (1-83)n

These relations are summarized in Figure 2 for m=1,
m=0and m=—1 for the following special cases.

1. A is forced to zero: Yan=0.
2. zis forced to zero: z,=0.

The initial values z,, Yo, 2 are shown on the left of each
block in the figure while the final values z., y,, 2z, are
shown on the right. The identitics given in the appendix
were used to simplify these results. By the proper choice
of the initial values the functions z 2,y/z, sin z, cos z,
tan™! y, sinh 2, cosh z, and tanh—! y may be obtained. In
addition the following functions may be generated.

tan z=sin z/cos 2z (17)
tanh z=sinh z/cosh 2 (18)
€xp z=ginh z+cosh z (19)

In w=2 tanh-'[y/z] where z=w+1 and y=w-—1 (20)
()2 = (22—y?) V2 where r=w+l andy=w—-Y (21)

CONVERGENCE SCHEME
The angle 4 of the .vector P may be forced to zero

by a converging sequence of rotations «; which at each,
step brings the vector closer to the positive z axis.

Byl X —..ll(xm.-yn--)' z—y x _)t.‘m
Y ¥ —O‘l(lml‘lll-t) y—3 v oo
. | i S s 3 pve e ey

CIRCVIAR (w=1), 5 ~ O CIRCULAR (w=1), 4 + ©

=1 1 1n
L Tr Qs 61 ) for = fteratioas
3=0

N I

S~y I 4 \ ;

y—o ¥ foyexs ,—-ol LAY
l—)‘ T =3 ) t—lpl:_r—ynO(yll)
L

LINEAR (n=0), 3+ 0 LIGAR (w=0), &4 + 0

—
2

z—p b 3 -—)l_’(xmlnoynhhl) =3 X l_l x° -y

——

y—3 ¥ ‘“’l-l(’ cosh & + x sinh g) F—3 ¥ 30

—f
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WYPERMOLIC (m @ -1), 5 + 0
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Figure 2—Input-output functions for CORDIC modes
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&
The magnitude of each element of the sequence may be
predetermined, but the direction of rotation inust be
determined at each step such that

[ A |=|] Ai ] —as] (22)

The sum of the remaining rotations must at each
step be sufficient to bring the angle to at least within
a.y of zero, even in the extreme case where A;=0,

: | Aq.; |==a.-. Thus,

n—1

ai— 2. aj<an, (23)

F=i+1

The domain of convergence is limited by the sum of
the rotations.

n—i
| Ao]— 2 aj<ana . (24)
H .
i
max | A, |==a...1+ z a; (25)
7=a

To show that A converges to within a., of zero
within 7 steps we first prove the following theorem.

7" Theorem
a—1
. [Ai|<awa+ D, a; - (26)
holds for 1>0.
Proof

We proceed by induction on 7. The hypothesis (26)
holds for i=0 by (24). We now show that if the hy-
pothesis is true for 7 then it is also true for :4-1. Sub-
tracting a; from (26) and applying (23) at the left
side yields

n—1
-[a._l-l— > a;]< —a;<| Aq|

J=itt

-l
—a.-<[au_1+ )3 a,-] @7)

Feidl
Application of (22) then yields
-1
| dips | <ana+ 2 a; (28)
F=i+1

__ a8 was to be shown. Therefore, by induction, the hy-
/" “pothesis holds for all 1>0.

In particular, the theorem is true for i =7 so that
l A. I<au—l- . (29)

The same scheme may be used to force the angle in

TABLE II-—Shift Sequences for a binary code

coordinate domain of radius
radix  system shift sequence convergence factor
o m Fui; 120 max | A, | K
2 1 0,1,234,5... ~1.74 ~1.65
2 0 1,2,34,5i+l1,... 1.0 1.0
2 -1 1,2,3,44,5,...." ~1.13 ~0.80

* for m = —1 the following integers are repeated:
{4, 13, 40,121, .., k, 3k+1, ...}

z to zero. The proof of convergence proceeds exactly as
before except that A is replaced by z in equations (22)
through (29). By equation (25) z has the same domain
of convergence as A.

max | z, | =max | 4,}. (30)

Note that since K is a function of 3.2, where §;=
m=1* tan[m!%a,], K is independent of the sequence of
signs chosen for the a:. Thus, for a fixed sequence of
a; magnitudes the constant 1/K may be used as an
initial value to counteract the factor K present in the
final values. :

USE OF SHIFTERS

The practical use of the algorithm is based on the
use of shifters to effect the multiplication by s.. If 5 is
the radix of the number system and F; is an array of
integers, where >0, then a multiplication of z by

Si=p ¢ (31)

is simply a shift of z by F; places to the right. The
integers F'; must be chosen such that the angles

T, 7| =m12 tan=! (m!12p77) (32)

satisfy the convergence criterion (23). The domain of
convergence is then given by (25).

Table II shows some F sequences, convergence
domains, and radius factors for a binary code.

The hyperbolic mode (m=—1) is somewhat compli-
cated by the fact that for a;=tanh~!(2~) the con-
vergence criterion (23) is not satisfied. However, it can
be shown that

a1

a—{ X a,') —a3ip) <a-y (33)
F=itl

and that therefore if the integers {4, 13, 40, 121, ..., k,

3k+1, ...} in the F; sequence are repeated then (23)

becomes true.
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TABLE III—Prescaling Identitics

Domasin of
Identity Domain Convergence
sin Dif Q mod 4=0 _ -
R L _| cosDifQmod4=1{ | D|<-=1.57 1.74
sin (Q 2+D) | —sin D if Q mod 4=2 2
{—cos D if Q mod 4 =3}
cos D if Q mod 4 =0 - :
L _|—sin Dif Qmod 4=1{ | DI<—=1.67 1.74
ooo(Q 2+D) —cos D if Q mod 4=2 2
l sin D if Q mod 4=3)
L g . L 3 k 2 T
tan (Q §+D)=sm (Q §+D) /cos (02+D) |D|<2=157 1.74
tan—? 1 -f—tan"(y) lvi<l10 ©
y/ 2
Q
sinh(Q log.2-+D) --25 [cosh D+4-ginh D —2%9(cosh D —sinh D)] | D} <log2=0.69 1.13
Q
cosh(Q log.2+ D) -2? {cosh D+sinh D+229(cosh D—sinh D)} | D|<loge2=0.69 1.13
tanh(Q log.2+ D) =sinh (Q log.2+D)/cosh(Q log.2+D) | D |<log.2=0.69 1.13
tanh~1(1 — 3M2-5) = tanh~(T) + (E/2)log.2 0.17<T <0.75 (—0.81,081)
where 7 =(2—M —M2-%)/(2+M — M2"¥) for 0.5<M<1,E>1
exp(Q log.2+ D) =29(cosh D +sioh D) | D |<log.2=0.69 113
log.(M2¥) =log.M +Elog.2 05<M<1.0 (0.10, 9.58)
280 gqrt(M) if E mod 2=0 0.5<M<1.0
sqri(M28) =4 (0.03, 2.42)
|2+ gqrt(M/2) if E mod 2=1 0.25<M/2<0.5
(M 25)(M 255) = (M M ,)25s+Bs 0.5<| M,|<1.0 (—1.0, 1.0)

(M,2%0)/(M;2%0) = (M, /2M,)25v~ 511

025<| M,/2M, | <1.0 (—1.0, 1.0)

EXTENDING THE DOMAIN

The limited domain imposed by the convergence
criterion (25) may be extended by means of the pre-
scaling identities shown in Table III. For example, to
calculate the sinc of a large argument, we first divide
the argument by r/2 obtaining a quotient Q and a re-

mainder D where | D |<x/2. The table shows that —

only sin D or cos D need be calculated and that »/2 is
within the domain of convergence. Note that the sine
and cosinc can be generated simultaneously by the
CORDIC algorithm and that the answer may then be
chosen as plus or minus one of these according to Q
mod 4. As a second example, to calculate the logarithin

of a large argument we first shift the argument’s binary
point E places until it is just to the left of the most
significant non-zero bit. The fraction M then satisfies
0.5<M <1.0 and as shown in the table therefore falls
within the domain of convergence. The answer is calcu-
lated as log,M + E log,2.

ACCURACY

The accuracy at the nth step is determined in theory
by the size of the last of the converging sequence of
rotations «;, and for large n-is' approximately equal in
digits to Fa_;. The accuracy in digits may conveniently
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be made equal to I, the length of storage used for each
variable, by choosing n such that F,_,=L.

In practice the accuracy is limited by the finite
length of storage. The truncation of input arguments
performed to make them fit within the storage length
gives rise to unavoidable error, the size of which de-
pends on the sensitivity of the calculated function to
small changes in the input argument. In a binary code,
the truncation of intermediate results after each of L
iterations gives rise to a total of at most log.L bits of
error. This latter error can be rendered harmless by using
L+-log:L bits for the storage of intermediate results.

In a normalized floating point number system it is
desirable that all L bits of the result be accurate, inde-
pendent of the absolute size of the argument. To ac-
complish this for very small arguments it is necessary
to keep each storage register in a normalized form; i.e.,
in a form where there are no leading zeros. It is possible
to do this by transforming the iteration equations (3),
(4) (13) to a normalized form according to the follow-
ing substitutions.

2 becomes 2/ (34)
y becomes y’ 25 (35)
z becomes 2’ 2% (36)
. ap becomes ay’ 2-7 37)

where E, a positive integer, is chosen such that the
initial argument, placed into elther the y or z register,
is normalized.

The result of the substitutions is

e my' 2B (38)
y—y —z2-r-B (39)
z'(——z'+a"2—(P—S) (40) .

For simplicity the subscripts ¢ and ¢4+1 have been
dropped. Instead, « has been expressed as a function
of F as in equation (32), and the replacement operator
(<) has been used. i may be initialized to a value such
th&t F.‘ =FE:

tim—{t | Fi=E}, (41)

and n may be chosen such that L significant bits are
obtained:
ne—{n| Fy y—E=L}. (42)

Note that n—1iia=~L and that therefore providing
L+logsL bits for the storage of intermediate results is
still adequate.

The radius factor K is now a function of { =tiaie1a 88
well as m.

n—1

Koi=I1 (14m2-2rsyn (43)
=i

Shifter Adder
Control Control

{r-e}—s] swrren }

y+

X REGISTER
ADDER/ |+mo
SUBTRACTER]=

[FoE}—s] sHiFTER }

| R
y REGISTER
ADDER/ -a
SUBTRACTER
oecision | SN OF Y
SIGNALS SIGN OF
3+
I 3 RecisTER
ADDER/ |0
SUBTRACTER

[r-EH SHIFTER |-
]

CONSTANTS: T, ¢

READ-
ONLY
MEMORY

Figure 3—Hardware block diagram

Fortunately, not all the reciprocal constants 1/K. ;
need to be stored since for large values of ¢

—mEHZE,  (44)

Kn,i

and therefore all the constants having ¢>L/2 are
identical to within L significant bhits. Therefore, only
L/2 constants need to be stored for m=+1 and also
for m=—1. For m=0 no constants need to be stored
since Ko ;=1fort>1.

A similar savings in storage can be made for the
angle constants a.,r since for large values of F

&' p=am p 2" =1—-m(14)27, (45)

and thus, as for the K constants, only L/2 constants
need to be stored for m=-+1 and also for m=—1.
For m =0 no constants need to be stored since a'y,F =1
for F>1.
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Figure 4—Flowchart of the microprogram control

HARDWARE IMPLEMENTATION

A hardware floating point processor based on the
CORDIC algorithm has been built at Hewlett-Packard
Laboratories. Figure 3 shows a block diagram of the
processor which consists of three identical arithmetic
units operated in parallel. Each arithmetic unit con-
tains a 64-bit register, an 8-bit parallel adder/sub-
tracter, and an 8-out-of48 multiplex shifter. The as-
sembly of arithmetic units is controlled by a micro-
program stored in a read-only memory (ROM), which
also contains the angle and radius-correction constants.
The ROM contuins 512 words of 48 bits each and oper-
ates on a cycle time of 200 nanoseconds.

The processor accepts three data types: 48-bit float-
ing point, 32-bit floating point, and 32-bit integer. All
the functions are calculaied to 40 bits of precision
(approximately 12 decimal digits), and the aceuracy
i8 limited only by the truncation of input arguments.

The essential aspects of the microprogram used to
execute the CORDIC algorithm are shown in Figure 4.

-

The initial argument and correction constants are
loaded into the three registers and m is sct to one of the
three values 1, 0, —1. If the initial argument is small,
it is normalized and E is set to minus the binary ex-
ponent of the result, otherwise, E is set to zero. Next,
1 is initialized to a value such that Fmi=E. A loop is
then entered and is repeated until Fpi—E=L. In this
loop the direction of rotation necessary to force either
of the angles A or z to zero is chosen ; the binary vari-
able o, used to control the three adder/subtracters, is
set to either +1 or —1; and the iteration equations are
executed.

Table IV gives a breakdown of the maximum execu-
tion times for the most important functions. The fig-
ures in the column marked “data transfers from com-
puter” are the times for operand and operation code
transfers between the processor and an HP-2116
computer.

The processor retains the result of each executed
function. Thus, add, subtract, multiply and divide re-
quire only one additional operand to be supplied, and
the one operand functions do not require any operand
transfers. The first operand is loaded via the LOAD
instruction, and the final result is retrieved via the
STORE instruction.

TABLE 1V—Maximum Execution Times

_ DATA
CORDIC PRESCALE, TRANSFERS
EXE- NORMAL-  FROM
CUTION IZE, MISC. COMPUTER TOTAL

ROUTINE usec usec psec usec
LOAD 0 5 25 30
STORE 0 0 15 15
ADD 0 15 25 40
SUBTRACT 0 25 25 50
MULTIPLY 60 15 25 100
DIVIDE 60 15 25 100
SIN » 70 85 5 160
COos 70 85 5 160
TAN 130 85 5 220
ATAN 70 15 5 20
SINH 70 55 5 130
COSH 70 55 5 130
TANH 130 55 5 190
ATANH 70 45 5 120
EXPONENTIAL 70 55 3 130
LOGARITHM 70 45 5 120
SQUARE- 70 25 5 100

ROOT




7

Unified Algorithm for Elementary Functions 385

) CONCLUSION DR

‘s

The unified CORDIC algorithm is attractive for the

caleulation of elementary functions lz‘ec:u}se of its
simplicity, its accuracy, and its capability sor high
speed execution via parallel prodessmg Its applications
include desktop calculators, as in the*HP-9100 serigs;
air navigation computers, gs, descrlbed in. Volder’s
original work; and ﬂoatmg poutt. processors, as illus-
trated in this paper.
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APPENDIX

Mathematical identities

Leti=(—1)'2

. z=lim m~?sin (zm"’) (A1)
m-0
z=lim m~"2 tan—*(z2m'7?) ' (A2)
m-d . ] .
sinhe= —i sin (iz)  (A3)
coshzscos(zz) (A4)
tanh-tz= ¢ tan—' (u) (AS)
”~
o
¢
3
g
e
det
¥ ' .
. '.'_
! : .‘ ) >,



