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Arlthmetlc Mlcrosystems for the Synthesis
- of Functlon Generators

ALGIRDAS AVIZIENIS, MEMBER, IEEE

' Abst.ract—’l‘he continuing' reduction of the size and. cost of integrated

cirenit. logic elements encowrages the utilization of more complex logic nets
in digital computers. In arithmetic processors, the application of integrated
circuifs will permit the replacement of sequential logic nets by their combins-
tioia! equivalents, and the replacement of programmed subroutines by arith-
metic function generators. At the present time, such function geperators are
-umed in the Variable Structure Computer at the Universlty of California, Los
Angeles. The potentially low cost of logic elements can be realized if lrge
sumbers of elements are contained in one package with a limited nomber of
connections to the oatside, and if very few types of packages are wsed in large
quantities. Present-day arithinetic processors cannot be readily subdivided
iato uniform packages because of irregularities in thelr internal structure.
The paper describes the advantages gained by the application of signed-digit
number sysiems in the design of such packages, called arithmetic microsys-
tems. Three types of comblastional microsystems are described and their
Internal design is illustrated by examples Jor a radix 16 systesm. The micro-
systems can accept conventional blnary or signed-digit operands. Combina-
tional reconversion of results to the binary system is also discussed. The
application of microsystems Is flilustrated by radix 16 ennblnaﬁnnl arrays
for the operations of multiplication and division.

-1. THE APPLICATION OF ARITHMETIC
FUNCTION GENERATORS

HE CLASSIC MODEL of a digital computer con-

II tains an arithmetic processor which is organized
_around a two-operand adder. Recent large-scale com-
puting systems contain much more elaborate arithmetic
clements; in some cases, several different one-algorithm
processors are contained in a single computing system. The
rapid development of integrated circuit technology promises
continued reductions in the cost, size, and operation time of
logic circuits; it is to be expected that it will soon become
econqniical to replace sequential ‘nets in the arithmetic
pro&ssor by their combinational equivalents, as well as to
! programmed arithmetic subroutines by arithmetic
fumhon generators. An existing system which utilizes such
function generators is the Variable Structure Computer at
the University of California, Los Angeles {1 1. Other applica-
tion areas for fast function generators are in very large
high-speed systems and in special-purpose computers which

require various arithmetic functions to be geneiated at high

speed.

One significant obstacle exists in the application of batch-
fabricated integrated circuits to the construction of arith-
metic function generators. The potentially low cost of logic
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circuitry can be realized only if one circuit package con-
tains a large number of logic elements with few external
connections and if the circuit packages can be manufac-
tured in large quantities [7]. This in turn implies that the
various function generators should be assembled from one-
package microsystems of very few types; in the ideal case,
they would be of one type only. Today’s high-speed pro-
cessors cannot be readily subdivided into identical blocks of
many logic elements. The conventional building blocks of -
an arithmetic processor are ﬂtp—ﬂops, one-bit balf-adders or ¢
full-adders, and combinational gates. Being relatwely small
with respect to the entire array, they do not impose a re-
quirement for array standardization at a microsystem level.
Currently existing arithmetic processors reveal a great
variety of designs and algorithms. In particular, many
methods for acceleratmg carry-propagation are found in
parallel adders. The fast paraliel adder is the heart of every
high-speed arithmetlc processor. The processor is.a com-:

plex logic atray consisting of the adder and associated

circuitry for shifting, complementing, multiple generation, :
and sequencing. The main reasons for the great variety of
parallel adders are 1) the differing preferences for carry-
propagation methods, 2) the existence of two basic subtrac-
tion methods (“‘one’s” and “two’s” complements), and 3)
the wide variation of word length for single precision
operands. Irregularity in the structure of the processors is
also caused by muitiple-precision operations and by diverse
sequential algorithms for fast multiplication and division.

The factors mentioned above preclude a direct subdivi-
sion of existing processor designs into arrays of microsys-
tems of only one or of very few types. The need for applica-
bility in processors of diverse capablhtles establishes the
following properties as desirable in the mtegrated circuit
arithmetic microsystems:

1) They are suitable for the construction of fast adders/
subtractors for operands of any length.

2) They can be arranged into large arrays which perform
multiplication, division, and other arithmetical algo-
rithms (square root, trigonometric functions, loga-
rithms, matrix arithmetic, etc.). :

3) The execution times of algorithms can be decreased to
the limit of a combinational logic net by the use of

- more identical microsystems in the array.

4) The number of data input and output lines and control
signals into the microsystem package is low.

5) The complexity of the internal logic net can be sys-
tematically increased to accommodate increases in the
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number of logic elements wluch can be placed in a
standard package. :

~ Thelimitations of conventional arithmetic with respect to
these properties warrant the consideration of other number
representations for digital arithmetic.

11 .! SIGNED-DIGIT ARITHMETIC

. Considerable promise for the development of arithmetic
microsystems which meet the preceding specifications is
offered by the application of the class of signed-digit (abbre-

viated s-d) number systems [21-[4]. In signed-digit numbers

- edch digit value carries its own sign, instead of the one sign
which applies to an entire conventional number; otherwise
they possess most of the properties of conventional num-

bers with a constant, positive radix. Of practical importance

are signed-digit number forms with a constant radix r>2,

in which the allowed digit values are a sequence of 2a+1

mtegers
{a, M

The overbar (I, a, etc.) will be employed throughout this
paper to designate negative digit values, The number forms
in this class are redundant; that is, one number may be

-,T,O',l‘,r-",a};withr/Z <a<r.

represented by more than one form. An addition/subtrac-.

tion algorithm exists for these forms in which each digit
of the result is the function of only two adjacent digits of
the operands, regardless of their length.

The two-digit addition algorithm -consists of two steps.
In the first step, an interim sum w; and a, transfer digit t;
are computed from the sum of the input digits x, and y,:

Wy =X+ yp— Py

2
where

t‘_1=0 if 'x, + y'l <a
t(_lsl ifx"i"y‘Za
ti—l=I ifx,+y,Sa.

In the second step, the sum d:gzt s; is obtained by the addi-
tion:

k)

Since |w;| <a—1 and |1;| <1 held above, then |s;|<a and the
sum is again a signed-digit number of the same class. It is
noted that the addition time (in terms of logic level delays)
is the same for operands of any length. Subtraction is per-
formed as the change of all individual digit signs of the
subtrahend, followed by an addition. Block diagrams of the
two-digit sum unit (abbreviated SU), which performs the s-d
addition/subtraction algorithm, are shown in Fig. 1. Left-to-
right one-origin indexing of digits (x,, - - -, x,) is employed
in the figures and discussion; the radix point is assumed to
be to'the left of x, unless otherwise specifically noted.

The conversion of a conventional number to the s-d form
can be performed by the standard s-d sum units of Fig. 1.
The incoming conventional digit m; replaces the sum
x;+y, in (2); the digits w, and 1,_., are generated for every
m and then the addition (3) yields the s-d form. An example

CSs=w + 4.

[ f|_|
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(2) 3) -y,
£y —— Y
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Fig. 1. Two-digit sum units (SU)

for the system with radix r=10 and maximal digit value
a=6 (minimally redundant case) is shown below:

positoni 0 1 2 3 4 5
conv. digits m; 026 9 5 17
interim sums w; 24153
transfers ¢, 01101
s-d digitss,  0-3 3 1 6 3.

. For reconversion to conventional decimal form, the s<d
number is considered to be the sum of a positive and a nega-
tive conventional number, and a conventional subtraction
is performed:

0.33163 = 0.30060 + (—0.03103) = 0.26957.

Other possible choices of a for r=10 as defined by (1) are
a=17, 8, 9. In the maximally redundant case a=9, no con-

- version is needed. A fast method of reconversion to con-

ventional forms is discussed in Section VL.

The algebraic value of the s-d number x is given by the
conventional weighted-sum expression; the valye:gero is -
umguelz rggresented by the form with all zero digits. The
sign of x is determined by the sign of the leftmost (most
significant) nonzero digit. The.gdditive inverse —x of x- w :

formed by changing the individual signs:of’all nonpesst
1gits. Significant digit-arithmetic [5] can be conveniently

implemented by the use of a special space-zero digit which

designates nonsignificant positions [3], [6]. Arithmetic con-
trol is partially localized, since the space-zero digit ¢ can be
applied to remove step-counting and the explicit specifica-
tion of operand length from arithmetic control. In multiple-
precision addition and in iterative multiplication and divi-
sion, the most significant digits of the results are always
generated - first; consequently, interconnected arrays of
arithmetic processors can operate. without temporary

. storage. Implementation of floating-point arithmetic has

been studied [3], [4]. No difficulties were discovered which
would be due to the use of s-d forms in floating-point algo-
rithms.

The following sections describe several signed-digit .
arithmetic microsystems, to be called units, which have been
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dﬁeloped for application in the UCLA Variable Structure .

Computer. The desirable properties listed in the preceding
section have served as guidelines in the choice among many

possible alternatives,

HI. THE AUGMENTED Two-DiGiT SuM UNIT

The standard two-digit sum algorithm in (2) and (3)
accepts two operand digits and produces one sum digit, all

. in the system of the same redundancy, i.e., the same value

of a in (1). It was previously observed that when the maxi-
mally redundant form (a=r—1) is employed, numbers of
the conventional representation can be accepted as the
input operands [4]. Further design studies showed, how-
ever, that maximally redundant s-d systems contain
“pseudonormal” forms, which demand special handling
and increase the complexity of floating-point algerithms
[6]. A further disadvantage of maximally redundant forms
is the wide range (05 [x,|'s 7~ 1) of multiplier digit values,
which- requires-a recoding .of the multiplier for efficient
multiplication.

We observe that minimally redundant forms [am (r/2)+%

for even r; a==(r + 1)/2 fér odd r] can employ a variation of.
the two-digit adder in which one operand digit (x,) is mini-
mally redundant, and the other is allowed to be in the maxi-
mally redundant or Wmmlfmﬁl (—r+lsy,<r—1),
but the sum digit is.again in minimally redundant (abbre-
viated min-~r.).form. The range of the sum in this case is
05 fx +y| 7+ @
The conditions |f,|< I, |wj| /2, needed for min-r. sums, are
satisfied by the range (4). The qugmiented two-digit sum unit
{abbreviated ASU), which accepts two min-r. digits (x;, y,)

4 well-as-a third digit z,, and produces a min-r. sum digit s;,

is shown in Fig. 2. The algorithm is

W= X 4+ v+ -ty
S'Ew"i't‘.

()
(6)

The valﬁe oft;,_, in(5)is the same as defined in {2), with the
value o&gﬂﬁosen for the min-r, system“ The dlglts d 2.

d 1g1t t ¢ magmtude llmts for the mput z, are as follows:

@;_'1‘:_‘(\ Wi Wb red odds
(2+2 =5 0<lzs 5‘— 2; forevenr >4, :",,1_“. (7)
L. £ - ‘
&= 2 Oslz,-|sr—2—— forodd r > 3. %= ¥.2 (g

Z= 2

For example, for zm8, |z/|<2; for r=10, |z, < 3; and for
re 16, |zjf<6. The three-input adder was selected instead

of the simpler two-input configuration because of its com-.

petibility with the-two-digit product unit, which is discussed:
nteren
Thé internal logic design of the ASU and other units will

be illustrated using a radix 16 minimally redundant s-d num-
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Flg 2. Augmcntod two- dlglt sum unit (ASL)),

TABLE 1
DiG1T ENCODINGS FOR RaDIX 16
Digit Binary Digit Binary
Value Encoding Value Encoding
{ . .
0 mo Y "] ipee Ubse
1 1 [ERTE
2 10 yi 11110
3 11 3 11101
4 100 4 11100
5 00101 3 1101t
6 - 0Dl10 o 11010
7 ’ m 7 - 1100t
8 01000 g 11000
9 01001 5 10111

ber system, which is compatible with conventional radix 2
or radix 16 input operands. It is evident that the logic design
will depend on the encoding chosen for individual digit
values. In the following illustrations, the min-r. digiti
x(9 <x,<9) is represented hy five bits (a6, #s, 4. 3 o)
while the min-r. digit , is represerited by (8,6, Bs. fa: B3 B )5
The positive values are encoded as binary integers, and the
negative values are encoded as 32°s complements of the posi-
tive values. The encodings are shown in Table I. The value
¢ is employed to designate nonsignificant (space) zero
values; it is converted to the value zero (00080} before en-
tering the adder. The third digit z,(8 <z, <6) is represented
by four bits (74, 74, 72, 71), and the negative values are 16's
complements. The encodings of z; are obtained from Table |

. by removal of the ]eftmost bit for values 6 to 6 inclusive.

The logic design of various units is entirely combinational.
and will be shown in terms of binary full-adders (denoted as
FA) and half-adders (denoted as HA), as well as by special
blocks of combinational logic. The FA has three inputs
(o, B, v} and produces two outputs: the sum s=a@ Dy,
and the carry e=aff +ay+ fy. (The symbol @ denotes the
EXCLUSIVE-OR operation, -+ denotes or, and adjacency de-
notes AND.) The HA has two inputs («, f) and produces two -
outputs: the sum s=adf, and the carry c=af. The exs=
amples emphasize a clca_r exposition of net structure rathesn
than a minimization of signal delay or cogponent count ofs
the unit. The combinational logic of each unit is intended to
be contained in a single integrated circuit package. In the
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- “L___

T
e

Fig. 3. Organization of the radix 16 ASU.’

final destgn, the signal delay ofa packag: will be mnmmmd
wherever possible by employing more complex logic func- -
tions. (for instance, carry-lookahead rather than  ripple-
mry addition nets). © ...

Fagure 3 shows the logic des:sn ofa typncal radix 16 ASU
nmpkmenung the algorithm (§) apd-(6). To subtract the
digits.y, and/or z,, their bits are individually complemented
and the sxgnals Bcpu= 1 and/or y,,, = 1 are applied asinputs.

e mmmda, saay-be-employed together to-onter
im0 <m; <1 5) represented by four
RS {es s 2 w) for addition to a min-r. digit x;, producing
g-minsr. sum digit 5,(0 ¢, 055 04y 03, ;). The bits.of m; are
reassnsned as-bits of y, and.z; as follows;

T Be=te Bi=mi O
Vo= Nar :'}’z“ﬂz, o do
B16=73”B4=ﬁé’? 7y = 0.- an

If the conventional numbgr (my, -+, m,) is negative, both
digits y, and z, are subtracted from x,. The conversion to the
s-d form is perforqu ncurréntly . with an addition;
special conversion algotithms or circuxtry are not needed.

‘The array of eleven FA’s in Fig. 3 forms the sum of three
“binary. numbers which is representqd by six bits (w;,, wtes
Wy, Wy, 03, ,). Negative sums appear as 64's complements.

In the final design’ carry-lookahead will. be employed to

:educe the delay of; addition. The net ““transfer digit logic”
 implements the foilowmg functlons defined by (5):

ti—l = _3,2_ [mm +; ws(mq, + w; + 601)] . (12)

ti_y = w%(@%Ys + D) o (13)
W6 = D3,04(04 + 03 + 01) + 05(DTs + OFwg). (14)

The functions ¢ | and ¢;_, are the outgoing transfer digits,
while w6 incorporates the correction required by a nonzero
transfer digit output. Th¢ ﬁve bits (46, Wa; Wy W2, ©y)
Tepresent the correct mtcmn sum w; of (5). The *add/
subtract one” cnrcuit increments w, by one fot =1, and
_decrements w; by one for ¢ =1, producing the final sum
digit s/(oi¢, g, 04 02, al) encoded according to Table I.

The ASU package of Fig. 3 requires 25 external data con-
nections: 18 inputs and 7 outputs. The package is entirely
combinatioral, and the final design of the logic net will
aim for least signal delay, rather than component count
minimization in the ASU.

In’ view of the decreasmg cost of loglc arrays, two-
operand mult lication using combinational circuits is a
practical objectwe for high-speed computers. Mmmully.
redundant s-d forms are convenient for two-digit;
ety {PLI) because of the relatively limited range of prod-




\\& t!ﬂ't-tjv'( on
[

“the ASU :nput 2 has the range tog

1914

!

(2
z i. #J-
T P.U.
, 1s)
N 3"&

Fig. 4. Two-digit product unit (PU).

ucts. We consider the product unit shown in Fig. 4. The
algorithm is

W U = rzi-; + yt? (15)

For even radices r>2 and minimglly; redundant digits u;
and v,, the greatest product of two digits will be

) 2
I“fvllmnx =(£‘ + l) = r(—g + l) +1
r + 2 r

‘ . i -
Given therequirement that y, should be‘mnmmally redun-

(16)

dant, the maximum values of [z,- | are determined from (16)

above (with k=1,2,--+)to be
KH/KH )
r x ;
lz,_,lsz+ 1, forr=4k; ' " an
r+2
|z,_1|$T, for r = 4k + 2. | (18)
I O“IZ| lé ~2
For odd radices r >3 the same conditions yleld
|z‘_1|s——4———, forr=4k+l; (19)
|,1|s':1,'forr_4k—1 (20)

0¢ R,\L 3 ..m ™Y
The allowed ranges (7) and (8) for the input z, of the ASU

(Fig. 2) are compared with (17)-(20) above. We oﬁ erve thg;
the Z;.. 1 OULPY

;"e orgamzauon of a radnx 16 PU is shown in Fig. 5. The
PU is compatible with the ASU of the preceding section;
the same notation and digit encodings are employed as in
Fig. Jand Table I. The internal logic net is entirely combina- -
tional. There are 19 cxternal data connections: 10 mputs
and 9 outputs

e perform ”hwh#mnet
nct mmm-bn rep-

" ment form) mmmm i whioh bit

PROCEEDINGS OF THE. 1EEE

. DECEMBER
\ PRODUCT DIGIT
§S y;js9
S
) DIGIT | SEPARATION
'3 ) LOGIC
582,85 ! - .
vo _ TEERIRRE = erovucr
x4 . e'Suﬂ‘V;SB'
RECODING TR SUMMATION :
LOGIC + e - LOGIC
BIRE. TTF T3
BBy By B2 B Q16 28 34 G2 @)
MULTIPLIER DIGIT . MULTIPLICAND DIGIT
9gu;s9 Isv;is9
Fig. 5. Organization of the radix 16 PU,
TABLE 11
MuLtipLIER DIGIT RECODING
Digit : Digit .
Value «, Rxo@ing Value u, R°°°d'9§~
0 040 ? 0+0
1 0+1 0+1T1
2 0+2 2 0+2
3 441 3 3+
4 440 4 4+0
5 441 3 347
6 842 é §+2
7 84T 7 §+1
8 8+40 § B+0
9 8+1 5 B+1
Gt T3h o (77 :

).

‘values 0, I, and‘~ 1 are permitted {8]. The minimal form has

no adjacent nonzero bits; therefore, at most, two nonzero
bits can occur and a two-operand adder is sufficient in the

“‘summation logic" net. Thelogic equations for recoding are

implicitly given by the recocﬁng rules of Table I1.

The details of the summntxen logic net are- presented
stputs of the recoding logidnet -

separately in Fig. 6. The o
select the inputs to the array of full-adders and half-udders
from the five bits of the: mulw&tcand digit v{%,¢, os, a4,

d oy ap). If a negative multtple —k is requxwd then the'
 multiple k of the 32's compiement of v, is entered into the -

J

summation logic.: The 32’ complement is shifted left for - |

the multiples 2, 4, and 8; the bits of the specified multiple

are individually complemented and a unit input.is applied -

on the apprapriate line ;
the multiple —2, two unit inputs-in the rightmost position

are applied, simplifying the design. The multiple pairs-

(+1, ;t2) as well as (+£4, £8) can share the same input

marked with the subscript (cplt). For

lines, since men’lbei's of these pairs - cannot be required ‘

simultancously. The product up, is represerited by eight
bits (0, ,4 to o'y 101 Flg 6); rtezative p(oducts appedr as 256’
complements. 2]

The remainitg’ Surnet of the PU separates the product
uvinto digits y, and z, _; abcording to (15). This function is
performed by the “ptoduct Separation logic” net of Fig. 5.
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Tize Te¢q 932 e oy o, o, o,
T T t
] $ l S $ $ 5
FA |@&—{ FA t@— FA |le— Fa le—C% Fa 4 Ha 2 Ha
3 C 3 [ 3 (4 L] [ S ¢ -] \ [ $ ‘
HA: HA HA HA FA FA - HA
t 'aIB t lag £ la,g t |a|. ~"BQ('°’“) ‘“( tia 'lﬂt
opit) 2 tepin)
t2a t2ay¢ t2a; 12a, t2aq -Za(::m
tiag tla,
iZaq tzﬂz
- t4ag 44, t4a, tdq, taa, tdq, tig,
‘ tBa.. +8a, 38a, 184a, x8a, =2Qp1)
Fig. 6. Summation logic of the radix 16 PU.
] ‘ ’ b,
A tentative separation assigns thre four leftmost bits of uw, =
to z;_,, and the remaining four bits to y,. However, y, must b
be in the range 9<y,<9; if the value represented by the X ——
ibits (a,, 04, 03, 0) €xceeds 9, a correction is required which H
adds ~16 to y, and adds | to the four-bit number (o4, m NS i o
T64: 033, G16) to give the correct z,.. . The need for correc- e _ Y
mon is determined by the sign bit of y;, computed as * * ™

@n

The. dml yis represented by the five bits (15, 05, 04, 05, 0,).
The entire product separation net consists of the function
KZI)nnd a four-bit “‘add ome” circuit which generates z,_,
by adding a unit to the tentative:z,, = when ofs=1.

" The internal complexity of the:PUis relatively low; carry-
lookahead in the adder: chain of the summation logic box
will be.included in.order to reduce the maximum delay of the
PU. Product units for higher radices r=2* (k>4) are ex-
pected; to fit within a unit pmkage For example, ontya four-
operand summation logic is needed for the radix r=256
when recoding of the multiplier. digit:is used; there are 18
nputs:and 17 outputs. The recoding logic becomes more
iomplex, while the separation logrc remains snmple for
hlgher radxces

ofs =-04(a, + 03).

V. ThE Mummm-r um U

oh adds m digits of s-d -
] is an even more general mrcrosystem The MSU
an perform the functions of the PU, the ASU, and the SU
with relatively small augmentation of its internal logic struc-

turé and with the addition of command input lines identify-

1‘ng the operation to be performed. A general diagram of the

Fig. 7. The multidigit sum unit (MSU),

MSU is shown in Fig. 7. The main practical limitation of
the MSU is the relatively large number of inputs into tbe
package. Overeommg this. constraint will make the aug-
mented MSU a, truly general arithmetic microsystem, re-
placing the more specialized units discussed earlier. ‘
The most g'eneral variant of the MSU accepts m operand
digits x{ (j=1, 2, - -, m) and produces. two output digits -
(¢, by—y) of the same redundancy

Y xf= rb,v_\i + ¢
=t

(22)
Since all digits in (22) have the same range @ to g, as defined
in(1),wehave

by, + E;l <@r+1a (23)

as the magnitude limit for the sum in (22). The number m
of input digits in the MSU is therefore limited to :

m<r+1. (24)
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The all-combinational lggic net of the radix 16 MSU con-
tains a “carry-save” cascade of binary full- and half-adders
for the summation of m put digits or their 32’s comple-
ments. It is a direct expansion ‘'of the three-input arrange-
ment of the ASU shown jn Fig. 3. The separation of the
sum into the digits b,_, and ¢; follows the procedure de-
scribed for the PU in the preceding section. The representa-
tiont of any possible sum of all 17 allowed input digits re-
quires 9 binary digits; négative sums are represented by
512's complement. Otherwise, (21) and its associated condi-
tional correction of +1 to thc five leftmost bits of the sum
apply directly.

It is evident that thoradvx r MSU with provrsron toadd or
subtract at least a [as definéd in (1)] input digits is readily
converted to the product unit for radix r. When the “prod-
uct” command is present; the multiplier digit appearing on
the designated input lines determines the number of inputs
to the summation net which receive the multiplicand digit
or its complement. To perform the functions of the SU
(Fig. I) or the ASU (Fig, 2), the required internal reorgani-
zation is imposed by appropriate control commands, and

certain mputs are des;gnated for . ommnd and transfer
digits.

In the cuse of the mmrmally wdtlndaht radix 16. systcm a
convertible MSU must be ablé to dccept and complement at
least 9 input dlglts, the maximum allowable number of
input digits is 17. A 10-digit MSU has 50 data input lines,
up to-9 control input lines to specify complementation of
individual input digits, and 3 control in
the other functions (ASU, PU, or SU). The output requires
10 lines for two complete digits; only one digit will be
produged when the SU or ASU function is being performed.
About 50 binary full-addm ina ﬁvﬁgvel carry-save cascade
and an eight-bit carry-ptopagauns adder with lookahead
are contained inside, as well as the loglc ‘nets for input
complementatmn, output separanon, and conversion to
other functions. The internal complexity and the count of
mput/output corinections appear to pment a challenge to

" continue the development of mtegrated circuit arrays.

Oﬂier variants of the MSU of Fig. 7 which are of some
mterest thay have the restricted ranges of (7) or (8) for the
output b, . , or therestricted ranges of (17)~(20) for one half
the total number of input digits. The former is intended to
féed an ASU, the latter to receive inputs from several PU’s.
A combination of both may also be of interest. Algorithm

(22) is performed by all of these units, and the allowable

numbser of inputs is established by the method used for (24).

* VL. RECONVERSION TO CONVENTIONAL FORMS

The algorithms for reconversion of s-d numbers to con-
vennbnal forms are strongly aﬂ’ecwd‘_b  the choice of en-
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Fig. 8. One stage-of the binary reconverter.

ventional addition will combine both into one conven-
tional number. ,

A faster method which employs borrow-propagation has
been devrsed for the radix 16 encodings of Table I, The re-
conversion network requires a borrow-propagatnon net-
work and one reconverter stage, shown in Fig. 8, for every
digit of the s-d form. The ith reconverter stage produces the
borrow-propagate output p, which detects a zero dxglt value
Of X

Pt=¢s+a4+a2+al (25’

and the borrow output ;. 'if the. digit i 1s negatwe, ‘but not
the space-zero marker (encoded as 10000):

hi-y = &by (26)
If the digit is the space-xero, a spemal output line ¢, is
energized to identify the radix 16 posmon i as being: non-

szgmﬁcant T

' ¢ = alépj @n

Zerds wﬂl fill the nonsignificant posntnons in the bmary re-
sult of the reconversion algorithmi.

- Awincoming borrow b, into the position i of the n-dtgit
radix 16 number x (x4, %3 "7 x,,)as coniputed as ‘

by = h + hl+1Pt+1 + hl+2p!+lpi+2 + +

+ h,- 1P1+dhl+2 Pu-

The i mcormng borrow by is. subtracted modulo 16 from: the
four right-end bits of x, and four. bmary digits of the (4ir+ 1).
bits long binary number a (ag, a;, * * * , a,,) are generated.
The borrow b, sets the “'sign bit” g, ~

b do=bo (29)

and negatrve binary results are produeed in the “two’s

complement” form with a°== 1. An end-around borrow ar-
rangement :

7l

-1 (28)
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b, = b, (30)

will yield a *‘one’s complement”’ form for negative results.
This form is readily converted by digitwise complementa-
tion to a sign-and-magnitude binary number. Direct appli-
cation of (28) to generate b, requires loglc gates with n—i
inputs. Explicit borrow computation is far less costly than
in binary arithmetic; for example, for a 60-bit binary re-
sult, we have only n=15;.and direct implementation of (28)
is still practical. Evidently, less costly but slower borrow-
lookahead nets may be employed if lower speed of conver-
sion can be accepted. ,

The logic complexity of one reconverter stage is relatively
low, and several stages with their associated borrow nets
would be needed for an integrated circuit reconverter unit
(RU) package A consxderable number of reconversion
points are needed to make the RU desirable as a microsys-
tem; otherwise, assembly from smaller building blocks
would be preferable.

'VII. DESIGN OF FUNCTION GENERATORS

. The m:crosystem units may be used individually in byte-
ot;amzed processors, or they may be'arranged into.arrays
which generate arithmetic functions by means of combina-
tional logic nets. Two examples will iltustrate the applica-
tién of radix 16 umts to combmatlomal gcneratlon of prod-
uéts and quotients,

- MEErE’S-shows the block diagram of a product generator
afessedigit operands. All digit products are generated at
'%once in the n by n array of product units, each generating

two output digits (y;‘and z,_ 1) for & total of 2r digits.

Digits associated with the same position of the product are

symmed in a row of 2n multidigit sum units. The number 2n

here is an approximation ; for higher values of 1, more than
one. MSU may be required for some -center positions,
especially for positions 7 and n+1 ‘which must accept
- 2n~ 1 input digits each and for some neighboring positions.

The number of input dlglts decreases by two per position

toward the ends; only one input (and no, MSU) is required

for the end posmons i=1,2n.The product ins-d form is ob-
tained: by summing the MSU outputs in 2n standard sum
upits. The delay.in the arrgy is the same for.all input signals

and consists of thmdelays in one PU, one MSU, and one

standard SU or ASU. When the input dlglt capacnty of the
MSU’s is exceeded in the case of higher values of n, some
slgnals will need to pasg through one more MSU before
entermg the last row of sum umts
sion ithriv d¢vised By Robertson has been

i ;“ wbdidigit mrithmetic [3]. Figure 10
~illustrates the iterative method of Robertson’s division for
operands in fractional range. TWq" tibht digits'g, are in
hagi<h;-with b r/2 -giving the least possibie
amount of redundancy for the quotient.-As long as the
quotient is in redundant form, the vahues of the quotient

digite ;- ean be decided after an approximate comparison

qQf.the. partial. remainder (or dmﬂend) d and several mutti-
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Fig.9  Combinational multiplication array.

ples of the normalized divisor x: The comparison is per-
formed on k most sngmﬁcapt digits of the operands; a totals
of ltseparate tests is needed to determine g;.
‘In the radix 16 system of Fig.:10, the allowed quotient
digits are 85q,<8 in this case =8 comparisons are
needed. They are:

() +(cx)

Jiﬁ

|M< withe=0,1,2,---,7. (31)

{ test: af(3l)arbnﬁt
With # 8, the requ1red accuracy of comparison is k= 3
digits (posmons i=1, 2, 3), plus the temporary overflow
digit (posmon i=0) of d and of the divisor multiples [2].

The multiple (x/2)’ is obtamed from an array of three
PU’s which generate 8x’; their two sets of output digits
(z;-1 and y,) are shifted one position to the right. Six ar-
rays of four PU's ‘each generate the multiples cx’ for
c=2,3,4,5,6,7; again each multiple is represented by two
sets of dxglts z;_, and y,. The digits y, and z,_, of (x/2) are
added to x’ or to the dlglts ¥, of the multiples cx’'in seven
arrays of three ASU’s each. The seven sets of four output
digits of the ASU’s are added to the digits z;_, of cx’, and
the comparison (31) is performed by adding or subtracting’
the truncated dividend or partial remainder 4’ (d,, d,, d,, d;)
in the comparator, which consists of eight arrays of four
ASU’s each, Note that one array receives (x/2)’ directly and
comparesittod’.

The “quotlent digit selection” (QDS) loglc net compares
the signs of x"'and d'; if the signs agree, d' is subtracted in .
the comparators and ¢, is positive; otherwise, d' is added
and g; is negative. The QDS net also determines the mag-
nitude of ¢, from the outputs of the eight comparator arrays
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- Fig. 10. - Radix 16. wquentml division array; one dxgxt per step.”

according to the rule given immedmtely following (31). The
“value of ¢, is stored and also sent'to the multiple selector
which determines the multiple of divisor x to be subtracted
from d. The result is shifted one digit left and serves as the
next partial remainder. Division is completed when the re-
quired number of quotient digits has been generated.

A cascade of copies of the array in Fig. 10 can be em-
ployed to generdte the entire’ ‘quotient jand remainder by
comhmatlonal logtc Suchan azray is ah@wn in Fig. 11. The
divisor is initially in. normalized form; a value of gy=8
indicates a possible two-digit overflow of the quotient and
réquim a right shift of the dividend. Alternatively, one

" more digit (¢-,) at the left end of the quotient may' be
generated by adding one miore copy of Fig. 10 below Adder

#0 and entering the, rnght-shlfted dlvgdend (@ x16™ ) intoits
adde !

The preceding examp’tés‘ illustrate the application of arith-
metic microsystems in the generation of arithmetic func-
tions. The number of units used, aithough large, is not un-
reasonable if a unit can be contained within a single inte-
grated circuit package. An estimate of the number of units
needed for the radix 16 artays of Figs. 9, 10, and 11 is given
in Table ITI. -

The length #i of the opcrands is givenin radlx 16 digits; the
equivalent length of binary operands (in b:ts) i also indi-
cated. Two types of MSU dre considered for the multiplica-
tion: type I has m=10 input digits, and type 11 has the
maximutn #= 17 input digits. For all tengths except n=>5,
cascades of two MSU"s are néeded to sum the PU outputs in
central positions’ of the product. The maximum delay in
these cases i¢ four units. Further reduction of the number
of input digits to the MSU will require deeper cascading of




MSU’s in summing the PU outputs The unit count and the
maximum delay both will be mcreand
. Neither division array requires an MSU ‘The QDS nets
are considered to be part of the control logic and are not
mcluded in the unit count, The formation of divisor multi-
plés requires two-unit delays; from then on every quotient
digit requires three-unit delays) plus the delay of a QDS net.
,The cost dnd delay of operand storage elements and ge-
s generation logic are to be added in the unit and delay
coutit for Fig. 10, The, comt
do not réquire intermediate storage or sequencing. The
delay of the division net in Fig, 11 is proportional to the
length of the qnetient plus the initial two-unit delay.

; ina smxfhr manner, either as combinational nets
or as sequenitial nets with associated stomgp and sequence
generating logic. 1t is interesting to note that a combina-
tional reconversion net may e attached at the output of a
function generator. In this case conventional numbers are
acbepted as operhnds and a conventional number is de-

nguonalnctaofﬂg:. 9and 11

Functiml genierators for other arithmetic functions can be
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- TABLE'IH llveted as the result, although sxgned—d1g1t arithmetic is
‘Unir Count For FuNCTION' Gmmm , employed inside the fum;tnon generatot. In comparison
Operand | n=$ n_m& am15 | nm20 |nm2s  With conventional arithmetic, the principal advantages of
Figure Length L ‘ signed-digit arithmetic are the ready separability of the
No. _ 20 | 40 1;0 80 llnPO arithmetic net into microsystems of considerable complexity
. Function . bits | bits | bits | bits | bits . .54 the independence of addition delay from the length of
9 |Multiply I(m=10) | 45 | 160 | 335 | 570 | 865 ‘operands.
9 | Multiply II (m=17) 45 | 140\ 310 | 530 ‘1‘05 - Research is being, contmued on several aspects of arith-
}(l’ gm:: 82?.‘?5'}“32’3@) 2%2 : ;gg - ;;g 1;%3 21;2 . metic mlcrosystems Internal optimization of the units in
: N . ’ ~ order to attain minimum dqlay is being studied, as well as the

‘ feasibxﬁty of speed-independent operation of function gen-

erators. Programmed synthesis of specified function genera-
tors under the constraints of speed (maximum allowable
delay) and cost (count of microsystem units) i isalso bemg in-
vestigated. =
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