1110

IEEE TRANSACTIONS ON COMPUTERS, VOL. 37, NO. 9, SEPTEMBER 1988

Correspondence

Variants of an Improved Carry Look-Ahead Adder
R. W. DORAN

Abstract—An improved variation on the carry look-ahead adder has
been proposed by Ling. Ling’s approach is based on the propagation of a
composite term in place of the conventional look-ahead carry. This
approach gives an adder that is faster and less expensive.

In this paper, Ling’s adder is introduced and described in a general
manner in order to expose the essence of his approach. From this
reformulation, it is shown that there are many such variations on the
carry look-ahead adder, a few of which share the desirable properties of
Ling’s adder.

Index Terms—Binary adders, carry look-ahead adder, carry propaga-
tion, high-speed addition.

1. INTRODUCTION

In a recent paper [1], Ling introduced a surprising variation of the
conventional carry look-ahead adder, his adder being significantly
better in cost and performance. Ling’s exposition is based on a
detailed case analysis of the behavior of the adder. In order to explain
the concept behind Ling’s work, we first derive his adder in a more
general manner and discuss its advantages. By generalizing the
approach, we will see that there are many other possible variations on
the adder. We will explore these a little and show that there are other
variations that share the advantages of Ling’s adder.

II. LING’S ADDER

In a conventional adder [2], to add the two numbers

A=ay2" a;2"" ", -+, a,2°

and

B___bozn, blzn—l’ (KRN bn20

we first form the local carry generate and propagate terms’:

gi=aib;
pi=a; & b,'.

Then, with a ripple or tree circuit, we form the global ‘‘carry-out’’
terms resulting from the recurrence relation

Gi=gi+piGisy. 1)

Manuscript received February 13, 1986; revised November 13, 1986. This
work was begun under the sponsorship of Amdahl Corporation and is released
with their approval.

The author is with the Department of Computer Science, University of
Auckland, Auckland, New Zealand.

IEEE Log Number 8716369.

! We will use + for ‘“OR,”” @ for ‘‘Exclusive OR,” and proximity for
‘*AND’’—in order of increasing priority.

Finally, we form the sum § of 4 and B using the local expressions

Si=pi ® Gi,,. (2)
In the conventional adder, the terms G; have, as described, physical
significance; however, an arbitrary function could be propagated, as
long as the sum terms could then be derived. Ling’s approach is to
replace G; with

Hi=Gi+ Gy, 3

i.e., H;is true if “‘something interesting happens at bit /"’ —there is a
carry out or a carry in. Before H; can be propagated, it must first be
expressed as a recurrence relation. Let us approach this by first
deriving the inverse of (3), G; expressed in terms of H;. Consider the
terms that comprise G; in (1)

g & D G; from (1) itself and

G; D H; from (3) so, therefore,

& D H;and so
& = gH,; ©)]
PiGiv1 1= piGis\ +pigi+piGis: (as pigi=0)
= pi(Gi+ 1+ G)
= p:H;. ®)

Substituting (4) and (5) in (1), we get

G;=gH;+p;H,
i.e.,
Gi=tH; ©
where
ti=a;+b,.
Now, as
Hi=G;+Gi;y

=gi+PiGis1+Giyy
=gt Gy,
we have from (6), Ling’s recurrence relation
Hi=gi+t;\Hiyy.

To determine the sum .S, we first propagate H; with circuits similar to

0018-9340/88/0900-1110$01.00 © 1988 IEEE

IEEE TRANSACTIONS ON COMPUTERS, VOL. 37. NO. 9, SEPTEMBER 1988

those used for G,. Now substitute (6) in definition (2):
Si=pi @ Ly Hi
=pitis 1 Hivy +piltic 1 Hisy)
= (gt it Hioy + 68 His)
(as pi=gi+ 1, pi=1ig:)
=0ty Hioy + 1381 Hi) + ity Fiy
=idgtti Hoo) + (g i HiL)
+&ili 1 Hit (as 1,g;=0)
=tH+ GH A gt Hiy

Si=t; ® Hi+giti.1Hj.

which is Ling’s equation for completing the sum, the physical
significance of which is not obvious!
In summary. the conventional adder implements

pi=a; @ by, gi=aib
Gi=gi+pGii
Si=p; ® G
whereas Ling’s adder implements
t=a;+b;, gi=a;b;
Hi=gi+ 11 Hi
Si=t; & Hi+git; .1 Hi.\.

II1. ADVANTAGE OF LING'S ADDER

On the face of it., Ling seems to have derived an adder with a
simple start (@; + b; versus @; @ b;) but a more complex conclusion.
However, the most important difference lies in the recurrence
relation.

Consider the conventional recurrence relation

GI:gl+piGl+ Ie
The term p; is usually more expensive to evaluate than the ¢, term
used by Ling. However, when that is the case, the conventional

relation is modified as follows.

Gi=gi+ &G 1 +piGiv

=g+ (g&+p)Gi

61:g1+1101»1~
Ling’s relation has the form
I_L':gl'+,l’+lHl+1

the sole difference thus being the index of 7.
To see the significance of this difference, consider the expansions
to four levels

Go=go+ 1081+l &2+ hhl1 083

1111

whereas
Hy=go+hgi+thnhg+hhhg

=go+githgthhg (asg D L)

The expansion of Ling’s recurrence is considerably cheaper than the
conventional: Gy has ten inputs to four gates, the widest having four
inputs, whereas Hy has seven inputs to three gates, the widest having
three inputs.

By considering similar cases, we can see that Ling’s method is
generally superior. Although the generation of the sum is more
complex, this seems to be more than offset by the savings in carry
propagation.

However, whether or not the designer can capitalize on the
advantages depends on how well the method fits in with the available
circuit elements. There may well be advantages in alternative
formulations that more closely match the hardware. One is led to
question whether there are other adders like Ling’s that we can
choose from.

IV. 32 ADDERS

There clearly are recurrence relations other than G; and H;, for
example, G; and H;. To find all recurrence relations that may be
used, replace G; with an arbitrary logical function of a;, b;, and G; . ;.
Write this in a normalized form:

Xi=y(a;, b)Gi+d(a;, b)Giyy.
X; must be symmetric in @ and b;, so Y and ¢ must also be

symmetric. But there are only eight symmetric functions in «; and b;.
viz.,

0 pi=ab+ab;
f;=d;b; &=pi+i
gi=a;b; Li=pit8&
pi=a;bj+a;b; 1=p;+p;.

Thus, we can have at most 64 distinct functions X;, but not all of
these contain sufficient information to derive the sum locally (X; = 0
is a striking example).

If we can derive the sum locally from X;, then we can certainly
derive G, and if we can derive G; from X; locally, we can
immediately derive the sum. Thus, finding the sum locally from X is
equivalent to deriving G; from X; locally.

Consider the functions X; = (p; + x)G.1 + (pi + ¥)Gioy
where x, y € {0, 1;, g, pi}, i.e., Cp;.

If p; = O then G; = g; (from G, = g; + p;G;;) and is derived
locally, but if p; = 1thenx = Oand y = 0so

Xi=Gi1+Gi =1
and
Gi=gi+piGi 1=Gin

i.e., X;is of no aid in determining G; locally, so X; does not form an
adder. Similarly, X; = xG;. | + yG;. is of no use to us. That leaves
us with

X:=(P1+X)Gx+1+yG_r+1
and

Xi=xGi 1+ (pi+»)Gi

which, as we shall see can all form adders.

1112

Consider the first case:
Xi=(pi+x)Giy1+yGis
as before, if p; = O then G; = g; but if p; = 1 then
Xi=Giy
and
Gi=Gin1=X;.

Thus, G; is determined from X;, so X; forms an adder.
Summarizing the above reasoning,

Gi=pigi+piXi=gi+piX;

which may be expressed equivalently as

Gi=gi+t;X; or Gi=t,X;+gX;.

We can treat the second case similarly. Because there are four distinct
values of x and y, we find that there are 32 adders in all, split into two
classes. In summary,

Xi=(pi+x)Gi1+yGiyy

Xi=(pi+x)Gis1 +7Gisy

Xi=xGis 1+ (Pi+9)Ginr

Xi=%Gi1+(0i+)Giyy

Gi=gi+piXi Gi=gi+pX;
=g+ 1X; =g+ X
=4;X;+8X; =g Xi+:X,

Gi=t;+pi X, Gi=t;+pX;
=li+&X, =6+ X,
=LXi+8X; =X+ 1:.Xi

There is not much to be said about these adders in general. Most are
uninteresting, €.g.,

x=p;, y=0in X;=(pi+x)Gi1+yGi.,

gives
Xi=Gir
and
X=8i, Y=g
gives
Xi=1,Gis1+&Gisy,
ie.,

Xi=gi+1;G;11=G;.
However, some do have interesting equations, for example,
x=pi, y=0in X;=xG; 1 +(pi+¥) G,y

Xi=DiGiy1+piGiv1=p; ® Giy1. 1)
Substituting for G,,, and G;, |,

Xi=pigin1 Xis1 + i1 Xis 1)+ Di(Gi 1 Xio 1 +E1 Xivr)

IEEE TRANSACTIONS ON COMPUTERS, VOL. 37, NO. 9, SEPTEMBER 1988

ie.,
)]

As S; = p; ® G;,, we can see that the recurrence relation (2)
generates the sum directly. This example is certainly simple in
concept but it does not appear to have much value when examined in
detail. What we need to select are the adders with similar properties
to Ling’s adder.

Xi=(pi ® gi) Xic1+(pi ® iy) Xivr.

V. FOUR ADDERS OF LING’S TYPE
Ling’s adder had two desirable properties in its recurrence relation
Hi=gi+1t;, 1 H,,
e only H,,, occurs, not H;,
* the coefficient of H;,, involves i + 1th terms only.

Consider the first property as applied to our first general
recurrence relation

Xi=(pi+X)Gi 1 +yGisy
ie.,
Xi=(Dit XNt Xio1 + 8 Kio 1401 Xi 1 + 801 X1]
=P+ X i 1 + Y1)X A [(Pi+) 8is 1 + Y811 X4
here the term in X, can be absorbed into X; if
[(Pi+X)giv1+Y8iv1] C UDi+X)tis 1+ Y1141]
i.e., if
[(Di+X)gis1 +¥Pic1+Ylie1] C [(Pi+X)gis-
+(p1+x)pi+1+yt—i+l]

(@s iy 1=pi 1+ and tiy 1 =gip1+Div1)

i.e., if
YPiv1 C (Pi+X)pis,
(@s &iv15 Piv1» Ly are disjoint)
ie., if
Yy Cpitx
ie., if

yCx (asy,x C p).
This condition allows the definition of X; to be reduced to
Xi=y+(pi+x)Gi
and the recurrence relation to
Xi=(Pi+X)gi1+ Y+ (Dt X) e 1 + Y1 X040
The second desirable property arises when x = p;, for then
Xi=8iv1+ Y+l 1 +¥) Xiy

=gty +i1 X

In this case,
Xi=y+ GH— I
A third nice property of Ling’s adder is the simple relationship
Gi=14X;

IEEE TRANSACTIONS ON COMPUTERS. VOL. 37, NO. 9, SEPTEMBER 1988

1113

TABLE I
EQUATIONS DEFINING FOUR VARIANTS OF THE CARRY LOOK-AHEAD
ADDER
X Gi,1 * 850in Gie1 * PiSin %1 * Ciay ;G * Cing
xl Cog T Gi*l Pi * Gi*l t Gx+1 Py * G'nl
Gl t'1Xi tlxl gl M Xl gi M X1
63 g o 8;%; 8%
Xpor gt Yt P * ki 8 * 8% Pi * 851X
Xt gt toa¥ig Pitiy ¥ Pi¥iag tigia ¢ tiXia Pi8i.) * PiXin
Sg ot eX t gtk TR STTELI| g @ X5 + tigy X Xi r PigiaXin
i.e., [2] See, for example, N. R. Scott, Computer Number Systems and
Arithmetic. Englewood Cliffs, NJ: Prentice-Hall, 1985.
G,'=yt,-+t,-G,-+1.
This occurs only if
&i=Ji; (as Gi=g1+t16r+l)

ie., if
y=piory=g.
With this additional property,
Xi=y+ti1 X
In summary, X; has all three nice properties of Ling’s adder if x =
piyand if y = p;ory = g;. Ling’s adder_forresponds oy = g.
Consider the other case: x = p;, ¥y = p;
Xi=pi+Gin
G =1:X;
Xi=pi+ 11X,
Si=pi ® Gi
=p;Giy1+DiGisy
=P+ Gio 1+ Piti 1 Xis
=X+ pitia Xip.
For the other set of adders X; = xG,;.| + (p; + ¥)Gi,, we can find
similarly that Ling’s properties are enjoyed when y = p; and x = p;
or ;.

The four adders are as in Table 1. Note that the last two adders find
the inverse of the sum more directly than the sum itself.

ACKNOWLEDGMENT

Thanks are due to colleagues at Amdahl for their comments (in
particular to R. J. Bishop, L. I. Dickman, and Dr. S. Lee) and to Dr.
P. B. Gibbons at Auckland University for a stalwart job of checking.

REFERENCES

[1] H. Ling, ‘‘High speed binary adder,”” IBM J. Res. Develop., vol. 25,
p. 156, May 1981.

Efficient Testing of Optimal Time Adders
BERND BECKER

Abstract—We consider the design of two well-known optimal time
adders: the ““carry look-ahead’’ adder [6] and the ‘‘conditional sum”
adder [13].

It is shown that 6 log,(n) — 4 and 6 log,(n) + 2 test patterns suffice to
completely test the n-bit carry look-ahead adder and the n-bit conditional
sum adder with respect to the single stuck-at fault model (for a given set
of basic cells).

Index Terms—Arithmetic circuits, complete test set, detectable fault,
logical design, regular structure, single stuck-at fault model, test pattern,
testing, VLSI chip.

I. INTRODUCTION

The establishment of the correct behavior of a given VLSI chip is a
problem which gains renewed importance and attention for the
production process by the following fact: with increasing chip
complexity, automatic test pattern generation (based on the D-
algorithm or a *‘related’’ algorithm) is becoming very costly or even
computationally infeasible in the general case. (The computation time
may be exponential in the size of the circuit!) Therefore, it is useful to
develop specific methods for important classes of circuits, e.g.,
circuits with regular structures such as PLA’s, memories, or
arithmetical units.

Work in this direction has been done by several authors (see, e.g.,
[14], [8], [1], [11], [10], [9]). It turns out that in many cases, a

Manuscript received February 25, 1986; revised January 12, 1987. This
work was supported by the DFG (Deutsche Forschungsgemeinschaft), SFB
124, TP BI, “‘VLSI-Entwurfsmethoden und Parallelitat.””

The author is with Angewandte Mathematik und Informatik, Universitit des
Saarlandes, D-6600 Saarbriicken, West Germany.

IEEE Log Number 8716365.

0018-9340/88/0900-1113$01.00 © 1988 IEEE

