William Stallings Computer Organization and Architecture 6th Edition

Chapter 11 Instruction Sets: Addressing Modes and Formats

Addressing Modes

- Immediate
- Direct
- Indirect
- Register
- Register Indirect
- Displacement (Indexed)
- Stack

Immediate Addressing

- Operand is part of instruction
- Operand = address field
- e.g. ADD 5

-Add 5 to contents of accumulator

-5 is operand

- No memory reference to fetch data
- Fast
- Limited range

Immediate Addressing Diagram

Direct Addressing

- Address field contains address of operand
- Effective address (EA) = address field (A)
- e.g. ADD A
 - -Add contents of cell A to accumulator
 - -Look in memory at address A for operand
- Single memory reference to access data
- No additional calculations to work out effective address
- Limited address space

Direct Addressing Diagram

Indirect Addressing (1)

- Memory cell pointed to by address field contains the address of (pointer to) the operand
- EA = (A)
 - —Look in A, find address (A) and look there for operand
- e.g. ADD (A)
 - —Add contents of cell pointed to by contents of A to accumulator

Indirect Addressing (2)

- Large address space
- 2^n where n = word length
- May be nested, multilevel, cascaded
 - -e.g. EA = (((A)))
 - Draw the diagram yourself
- Multiple memory accesses to find operand
- Hence slower

Indirect Addressing Diagram

Register Addressing (1)

- Operand is held in register named in address filed
- EA = R
- Limited number of registers
- Very small address field needed
 - —Shorter instructions
 - —Faster instruction fetch

Register Addressing (2)

- No memory access
- Very fast execution
- Very limited address space
- Multiple registers helps performance
 - Requires good assembly programming or compiler writing
 - -N.B. C programming
 - register int a;
- c.f. Direct addressing

Register Addressing Diagram

Register Indirect Addressing

- C.f. indirect addressing
- EA = (R)
- Operand is in memory cell pointed to by contents of register R
- Large address space (2ⁿ)
- One fewer memory access than indirect addressing

Displacement Addressing

- EA = A + (R)
- Address field hold two values
 - -A = base value
 - —R = register that holds displacement
 - -or vice versa

Relative Addressing

- A version of displacement addressing
- R = Program counter, PC
- EA = A + (PC)
- i.e. get operand from A cells from current location pointed to by PC
- c.f locality of reference & cache usage

Base-Register Addressing

- A holds displacement
- R holds pointer to base address
- R may be explicit or implicit
- e.g. segment registers in 80x86

Indexed Addressing

- A = base
- R = displacement
- EA = A + R
- Good for accessing arrays

$$--EA = A + R$$

—R++

Combinations

- Postindex
- EA = (A) + (R)
- Preindex
- EA = (A+(R))
- (Draw the diagrams)

Stack Addressing

- Operand is (implicitly) on top of stack
- e.g.

—ADD Pop top two items from stack and add

Pentium Addressing Modes

- Virtual or effective address is offset into segment
 - Starting address plus offset gives linear address
 - This goes through page translation if paging enabled
- 12 addressing modes available
 - Immediate
 - Register operand
 - Displacement
 - Base
 - Base with displacement
 - Scaled index with displacement
 - Base with index and displacement
 - Base scaled index with displacement
 - Relative

Pentium Addressing Mode Calculation

PowerPC Addressing Modes

- Load/store architecture
 - Indirect
 - Instruction includes 16 bit displacement to be added to base register (may be GP register)
 - Can replace base register content with new address
 - Indirect indexed
 - Instruction references base register and index register (both may be GP)
 - EA is sum of contents
- Branch address
 - Absolute
 - Relative
 - Indirect
- Arithmetic
 - Operands in registers or part of instruction
 - Floating point is register only

PowerPC Memory Operand Addressing Modes

Instruction Formats

- Layout of bits in an instruction
- Includes opcode
- Includes (implicit or explicit) operand(s)
- Usually more than one instruction format in an instruction set

Instruction Length

- Affected by and affects:
 - -Memory size
 - —Memory organization
 - -Bus structure
 - -CPU complexity
 - -CPU speed
- Trade off between powerful instruction repertoire and saving space

Allocation of Bits

- Number of addressing modes
- Number of operands
- Register versus memory
- Number of register sets
- Address range
- Address granularity

PDP-8 Instruction Format

Memory Reference Instructions										
	Opcode	D/I	Z/C			Di	splacem	ent		
0	2	3	4	5						11
			-							
			Inpu	t/Outpu	t i nstro	ctions				
1	1 0			Der	rice				Opcode	
U	2						8	9		11
			Register	r Refere	nce Inst	ructions				
Group I	l Microinstru	ctions				10000				
1	1 1	0	CLA	CLL	CMA	CML	RAR	RAL	BSW	IAC
0	1 2	3	4	5	6	7	8	9	10	11
Group 2	2 Microinstru	ctions								
1	1 1	1	CLA	SMA	\$ZA	SNL	RSS	OSR	HLT	0
0	1 2	3	4	5	6	7	8	9	10	11
Group	5 Microinstru	ctions		2.400.5		n alersii	-			
	1 1	<u> </u>		MQA	<u> </u>	MQL				
0	1 2		4	2	0	1	ð	9	10	I I
<u>р</u> л –	Direct/Indi	rect addres	e		IAC -	– Íncren	oent AC	en ronal a te	5T	
$-\frac{2\pi}{7/C} =$	= Page 0 or 0	furient nag			SMA – Skin on Minus Accumulator					
CLA =	: Clear Accu	mulator	-		SZA = Skip on Zero Accumulator					
CLL =	CLL = Clear Link					SNL = Skip on Nonzero Link				
CMA =	CMA = CoMplement Accumulator					RSS = Reverse Skip Sense				
CML =	: CoMpleme	art Link			OSR :	= Or wit	h Switel	1 Registe	er	
RAR =	Rotate Acc	umultator I	Right		HLT :	= HaLT				
RAL =	Rotate Acc	umulator L	eft		MQA = Multiplier Quotient into Accumulator				nulator	
BSW = Byte SWap					MQL :	= Multij	plier Que	otient Lo	vad	

PDP-10 Instruction Format

Opcode	Register	ĩ	Index Register	Memory Address	
0 8	9 12		14 17	7 18	35

I = indirect bit

PDP-11 Instruction Format

Numbers below fields indicate bit length

Source and Destination each contain a 3-bit addressing mode field and a 3-bit register number

FP indicates one of four floating-point registers

R indicates one of the general-purpose registers

CC is the condition code field

VAX Instruction Examples

Hexadecimal Format	Explanation	Assembler Notation and Description		
8 bits 0 5	Opcode for RSB	RSB Retum from subroutine		
D 4 5 9	Opcode for CLRL Register R9	CLRL R9 Clear register R9		
B 0 C 4 6 4 0 1 A B 1 9	Opcode for MOVW Word displacement mode, Register R4 356 in hexadecimal Byte displacement mode, Register R11 25 in hexadecimal	MOVW 356(R4), 25(R11) Move a word from address that is 356 plus contents of R4 to address that is 25 plus contents of R11		
C 1 0 5 5 0 4 2 D F	Opcode for ADDL3 Short literal 5 Register mode R0 Index prefix R2 Indirect word relative (displacement from PC) Amount of displacement from	ADDL3 #5, R0, @ A[R2] Add 5 to a 32-bit integer in R0 and store the result in location whose address is sum of A and 4 times the contents of R2		

Pentium Instruction Format

PowerPC Instruction Formats (1)

\leftarrow 6 bits \rightarrow \leftarrow 5 bits \rightarrow \leftarrow 5 bits \rightarrow \leftarrow 16 bits \longrightarrow							
Branch		Long Immediate					
Br Conditional	Options	CR Bit	Branch Displacement	A	L		
Br Conditional	Options	CR Bit	Indirect through Link or Count Regis	ter	L		

(a) Branch instructions

CR	Dest Bit	Source Bit	Source Bit	Add, OR, XOR, etc.	1

(b) Condition register logical instructions

Ld/St Indhect	Dest Register	Base Register	Displacement		
Ld/St Indirect	Dest Register	Base Register	Index Register	Size, Sign, Update	/
Ld/St Indirect	Dest Register	Base Register		Displacement	xo

(c) Load/store instructions

PowerPC Instruction Formats (2)

Ld/St Indirect	Dest Register	Base Register	Displacement			
Ld/St Indirect	Dest Register	Base Register	Index Register	Size, Sign, Update	/	
Ld/St Indirect	Dest Register	Base Register		Displacement	xo	4

(c) Load/store instructions

				-					
A rith metic	Dest Register	Src Register	Src Register	0	Add, S	ub, etc.		R	
Add, Sub, etc.	Dest Register	Src Register	Sign	ed	Immediate	Value			
Logical	Src Register	Dest Register	Src Register	A	DD, OR,	XOR, etc.		R	
AND, OR, etc.	Src Register	Dest Register	Unsig	ne	d Immediat	e Value			
Rotate	Src Register	Dest Register	Shift Amt	М	lask Begin	Mask Eb	d	R	
Rotate or Shift	Src Register	Dest Register	Src Register	1	Shift Type	or Mask		R	
Rotate	Src Register	Dest Register	Shift Amt	Γ	Mask	xo	s	R	×
Rotate	Src Register	Dest Register	Src Register		Mask	xo		R	×
Shift	Src Register	Dest Register	Sh	ift	Type or Ma	sk	s	R	×

(d) Integer arithmetic, logical, and shift/rotate instructions

Flt sgl/dbl Dest Register St	arc Register Src Register	Src Register	Fadd, etc.	R
------------------------------	---------------------------	--------------	------------	---

(e) Floating-point arithmetic instructions

A = Absolute or PC relative	XO = Opcode extension
L = Link or subroutine	S = Part of shift amount field
O = Record overflow in XER	* = 64-bit implementation only
R = Record condition in CR1	

Foreground Reading

- Stallings chapter 11
- Intel and PowerPC Web sites