
William Stallings
Computer Organization
and Architecture
6th Edition

Chapter 10
Instruction Sets:
Characteristics
and Functions

What is an instruction set?
• The complete collection of instructions that are

understood by a CPU
• Machine Code
• Binary
• Usually represented by assembly codes

Elements of an Instruction
• Operation code (Op code)

—Do this

• Source Operand reference
—To this

• Result Operand reference
—Put the answer here

• Next Instruction Reference
—When you have done that, do this...

Where have all the Operands gone?
• Long time passing….
• (If you don’t understand, you’re too young!)
• Main memory (or virtual memory or cache)
• CPU register
• I/O device

Instruction Cycle State Diagram

Instruction Representation
• In machine code each instruction has a unique

bit pattern
• For human consumption (well, programmers

anyway) a symbolic representation is used
—e.g. ADD, SUB, LOAD

• Operands can also be represented in this way
—ADD A,B

Simple Instruction Format

Instruction Types
• Data processing
• Data storage (main memory)
• Data movement (I/O)
• Program flow control

Number of Addresses (a)
• 3 addresses

—Operand 1, Operand 2, Result
—a = b + c;
—May be a forth - next instruction (usually implicit)
—Not common
—Needs very long words to hold everything

Number of Addresses (b)
• 2 addresses

—One address doubles as operand and result
—a = a + b
—Reduces length of instruction
—Requires some extra work

– Temporary storage to hold some results

Number of Addresses (c)
• 1 address

—Implicit second address
—Usually a register (accumulator)
—Common on early machines

Number of Addresses (d)
• 0 (zero) addresses

—All addresses implicit
—Uses a stack
—e.g. push a
— push b
— add
— pop c

—c = a + b

How Many Addresses
• More addresses

—More complex (powerful?) instructions
—More registers

– Inter-register operations are quicker

—Fewer instructions per program

• Fewer addresses
—Less complex (powerful?) instructions
—More instructions per program
—Faster fetch/execution of instructions

Design Decisions (1)
• Operation repertoire

—How many ops?
—What can they do?
—How complex are they?

• Data types
• Instruction formats

—Length of op code field
—Number of addresses

Design Decisions (2)
• Registers

—Number of CPU registers available
—Which operations can be performed on which

registers?

• Addressing modes (later…)

• RISC v CISC

Types of Operand
• Addresses
• Numbers

—Integer/floating point

• Characters
—ASCII etc.

• Logical Data
—Bits or flags

• (Aside: Is there any difference between numbers and characters?
Ask a C programmer!)

Specific Data Types
• General - arbitrary binary contents
• Integer - single binary value
• Ordinal - unsigned integer
• Unpacked BCD - One digit per byte
• Packed BCD - 2 BCD digits per byte
• Near Pointer - 32 bit offset within segment
• Bit field
• Byte String
• Floating Point

Types of Operation
• Data Transfer
• Arithmetic
• Logical
• Conversion
• I/O
• System Control
• Transfer of Control

Data Transfer
• Specify

—Source
—Destination
—Amount of data

• May be different instructions for different
movements
—e.g. IBM 370

• Or one instruction and different addresses
—e.g. VAX

Arithmetic
• Add, Subtract, Multiply, Divide
• Signed Integer
• Floating point ?
• May include

—Increment (a++)
—Decrement (a--)
—Negate (-a)

Shift and Rotate Operations

Logical
• Bitwise operations
• AND, OR, NOT

Conversion
• E.g. Binary to Decimal

Input/Output
• May be specific instructions
• May be done using data movement instructions

(memory mapped)
• May be done by a separate controller (DMA)

Systems Control
• Privileged instructions
• CPU needs to be in specific state

—Ring 0 on 80386+
—Kernel mode

• For operating systems use

Transfer of Control
• Branch

—e.g. branch to x if result is zero

• Skip
—e.g. increment and skip if zero
—ISZ Register1
—Branch xxxx
—ADD A

• Subroutine call
—c.f. interrupt call

Branch Instruction

Nested Procedure Calls

