William Stallings
Computer Organization
and Architecture

6th Edition

Chapter 10
Instruction Sets:
Characteristics
and Functions

What i1s an instruction set?

 The complete collection of instructions that are
understood by a CPU

 Machine Code
e Binary
e Usually represented by assembly codes

Elements of an Instruction

e Operation code (Op code)
—Do this

e Source Operand reference
—To this

e Result Operand reference
—Put the answer here

e Next Instruction Reference
—When you have done that, do this...

Where have all the Operands gone?

e Long time passing....

e (If you don’t understand, you're too young!)
e Main memory (or virtual memory or cache)
e CPU register

e |/O device

Instruction Cycle State Diagram

Instroct Orperand Orpera

Fetch fetch Lok
Multple Multple
opemnds resulls

Operand vt Operand

address Overation address

cal culatio pe calculat
Imstruction complete, Eeturn for siring

fetch next instruction or veotor data

Instruction Representation

 In machine code each instruction has a unique
bit pattern

e For human consumption (well, programmers
anyway) a symbolic representation is used

—e.g. ADD, SUB, LOAD
e Operands can also be represented in this way
—ADD A,B

Simple Instruction Format

4 bits

6 bits

6 bits

Opcode

Operand Reference

Operand Reference

16 bits

>

Instruction Types

e Data processing

e Data storage (main memory)
e Data movement (1/0)

» Program flow control

Number of Addresses (a)

e 3 addresses
—Operand 1, Operand 2, Result
—a =Db +c;
—May be a forth - next instruction (usually implicit)
—Not common
—Needs very long words to hold everything

Number of Addresses (b)

e 2 addresses
—One address doubles as operand and result
—a=a+b
—Reduces length of instruction

—Requires some extra work
— Temporary storage to hold some results

Number of Addresses (C)

e 1 address
—Implicit second address
—Usually a register (accumulator)
—Common on early machines

Number of Addresses (d)

e O (zero) addresses
—All addresses implicit
—Uses a stack
—e.g. push a
- push b
— add

— popc

—Cc=a+b

How Many Addresses

 More addresses
—More complex (powerful?) instructions

—More registers
— Inter-register operations are quicker

—Fewer instructions per program
e Fewer addresses
—Less complex (powerful?) instructions

—More instructions per program
—Faster fetch/execution of instructions

Design Decisions (1)

e Operation repertoire
—How many ops?
—What can they do?
—How complex are they?

e Data types

e Instruction formats
—Length of op code field
—Number of addresses

Design Decisions (2)

e Registers
—Number of CPU registers available

—Which operations can be performed on which
registers?

e Addressing modes (later...)

 RISC v CISC

Types of Operand

e Addresses

e Numbers
—Integer/floating point

e Characters
—ASCII etc.

e Logical Data

—Bits or flags

» (Aside: Is there any difference between numbers and characters?
Ask a C programmer!)

Specific Data Types

e General - arbitrary binary contents

e Integer - single binary value

e Ordinal - unsigned integer

 Unpacked BCD - One digit per byte

» Packed BCD - 2 BCD digits per byte

e Near Pointer - 32 bit offset within segment
e Bit field

e Byte String

e Floating Point

Types of Operation

e Data Transfer

e Arithmetic

e Logical

e Conversion

 |/0

e System Control

e Transfer of Control

Data Transfer

e Specify
—Source
—Destination

—Amount of data

 May be different instructions for different
movements
—e.g. IBM 370

e Or one Instruction and different addresses
—e.g. VAX

Arithmetic

e Add, Subtract, Multiply, Divide
e Signed Integer
e Floating point ?
e May include
—Increment (a++)

—Decrement (a--)
—Negate (-a)

Shift and Rotate Operations

{a) Logical right shifi

BT Y Y T gl‘“

{b) Logical leftshift

{c} Arithmetic tight shifi

5 . " @

R e v T gl‘“

(d}) Arithmetic lefi shift

i i i i - & @&

{=} Kight tolate

BT T T

{01 Lefi totate

Logical

e Bitwise operations
e AND, OR, NOT

Conversion

e E.g. Binary to Decimal

Input/Output

e May be specific instructions

 May be done using data movement instructions
(memory mapped)

e May be done by a separate controller (DMA)

Systems Control

e Privileged instructions

e CPU needs to be in specific state
—Ring 0 on 80386+
—Kernel mode

e For operating systems use

Transfer of Control

e Branch
—e.g. branch to x if result is zero
e Skip
—e.g. Increment and skip if zero
—ISZ Registerl
—Branch xxxx
—ADD A

e Subroutine call
—c.f. interrupt call

Branch Instruction

U ncond it ional
Branch

Memory
Address

200
201
—p 202
203

210
211

Instruction

SUB X, Y
BRZ 211

Conditional
Branch

Conditional
Branch

Nested Procedure Calls

Addresses
4000

4100
410

4500

4600
4ni1

4650
4n51

4800

Main Memory

CALL Procl

CALL Proc2

CALL Proc2

RETURN

RETURN

{a) Calls and returns

Main
Program

Procedure
Procl

Procedure
Proc2

W74

(b} Execution sequence

