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What i1s an instruction set?

 The complete collection of instructions that are
understood by a CPU

 Machine Code
e Binary
e Usually represented by assembly codes



Elements of an Instruction

e Operation code (Op code)
—Do this

e Source Operand reference
—To this

e Result Operand reference
—Put the answer here

e Next Instruction Reference
—When you have done that, do this...



Where have all the Operands gone?

e Long time passing....

e (If you don’t understand, you're too young!)
e Main memory (or virtual memory or cache)
e CPU register

e |/O device
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Instruction Representation

 In machine code each instruction has a unique
bit pattern

e For human consumption (well, programmers
anyway) a symbolic representation is used

—e.g. ADD, SUB, LOAD
e Operands can also be represented in this way
—ADD A,B



Simple Instruction Format

4 bits

6 bits

6 bits

Opcode

Operand Reference

Operand Reference

16 bits

>



Instruction Types

e Data processing

e Data storage (main memory)
e Data movement (1/0)

» Program flow control




Number of Addresses (a)

e 3 addresses
—Operand 1, Operand 2, Result
—a =Db +c;
—May be a forth - next instruction (usually implicit)
—Not common
—Needs very long words to hold everything



Number of Addresses (b)

e 2 addresses
—One address doubles as operand and result
—a=a+b
—Reduces length of instruction

—Requires some extra work
— Temporary storage to hold some results



Number of Addresses (C)

e 1 address
—Implicit second address
—Usually a register (accumulator)
—Common on early machines



Number of Addresses (d)

e O (zero) addresses
—All addresses implicit
—Uses a stack
—e.g. push a
- push b
— add

— popc

—Cc=a+b



How Many Addresses

 More addresses
—More complex (powerful?) instructions

—More registers
— Inter-register operations are quicker

—Fewer instructions per program
e Fewer addresses
—Less complex (powerful?) instructions

—More instructions per program
—Faster fetch/execution of instructions



Design Decisions (1)

e Operation repertoire
—How many ops?
—What can they do?
—How complex are they?

e Data types

e Instruction formats
—Length of op code field
—Number of addresses



Design Decisions (2)

e Registers
—Number of CPU registers available

—Which operations can be performed on which
registers?

e Addressing modes (later...)

 RISC v CISC



Types of Operand

e Addresses

e Numbers
—Integer/floating point

e Characters
—ASCII etc.

e Logical Data

—Bits or flags

» (Aside: Is there any difference between numbers and characters?
Ask a C programmer!)



Specific Data Types

e General - arbitrary binary contents

e Integer - single binary value

e Ordinal - unsigned integer

 Unpacked BCD - One digit per byte

» Packed BCD - 2 BCD digits per byte

e Near Pointer - 32 bit offset within segment
e Bit field

e Byte String

e Floating Point



Types of Operation

e Data Transfer

e Arithmetic

e Logical

e Conversion

 |/0

e System Control

e Transfer of Control



Data Transfer

e Specify
—Source
—Destination

—Amount of data

 May be different instructions for different
movements
—e.g. IBM 370

e Or one Instruction and different addresses
—e.g. VAX



Arithmetic

e Add, Subtract, Multiply, Divide
e Signed Integer
e Floating point ?
e May include
—Increment (a++)

—Decrement (a--)
—Negate (-a)



Shift and Rotate Operations

{a) Logical right shifi
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{b) Logical leftshift

{c} Arithmetic tight shifi
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Logical

e Bitwise operations
e AND, OR, NOT



Conversion

e E.g. Binary to Decimal



Input/Output

e May be specific instructions

 May be done using data movement instructions
(memory mapped)

e May be done by a separate controller (DMA)



Systems Control

e Privileged instructions

e CPU needs to be in specific state
—Ring 0 on 80386+
—Kernel mode

e For operating systems use



Transfer of Control

e Branch
—e.g. branch to x if result is zero
e Skip
—e.g. Increment and skip if zero
—ISZ Registerl
—Branch xxxx
—ADD A

e Subroutine call
—c.f. interrupt call



Branch Instruction

U ncond it ional
Branch

Memory
Address

200
201
—p 202
203

210
211

Instruction

SUB X, Y
BRZ 211

Conditional
Branch

Conditional
Branch




Nested Procedure Calls

Addresses
4000

4100
410

4500

4600
4ni1

4650
4n51

4800

Main Memory

CALL Procl

CALL Proc2

CALL Proc2

RETURN

RETURN

{a) Calls and returns

Main
Program

Procedure
Procl

Procedure
Proc2

W74

(b} Execution sequence




