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Program Concept

e Hardwired systems are inflexible

e General purpose hardware can do different
tasks, given correct control signals

e Instead of re-wiring, supply a new set of control
signals



What Is a program?

e A seqguence of steps

e For each step, an arithmetic or logical operation
IS done

e For each operation, a different set of control
signals is needed



Function of Control Unit

e For each operation a unique code Is provided
—e.g. ADD, MOVE

e A hardware segment accepts the code and
Issues the control signals

 We have a computer!



Components

e The Control Unit and the Arithmetic and Logic
Unit constitute the Central Processing Unit

e Data and instructions need to get into the
system and results out
—Input/output

 Temporary storage of code and results is
needed
—Main memory



Computer Components:
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Instruction Cycle

e Two steps:
—Fetch
—EXxecute

Fetch Cycle Execute Cycle
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Fetch Cycle

Program Counter (PC) holds address of next
Instruction to fetch

Processor fetches instruction from memory
location pointed to by PC

Increment PC
—Unless told otherwise

Instruction loaded into Instruction Register (IR)

Processor interprets instruction and performs
required actions



Execute Cycle

e Processor-memory
—data transfer between CPU and main memory

e Processor I/0
—Data transfer between CPU and 1/0 module

e Data processing
—Some arithmetic or logical operation on data

e Control
—Alteration of sequence of operations
—e.g. jJump

e Combination of above



Example of Program Execution
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Instruction Cycle -
State Diagram
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Interrupts

e Mechanism by which other modules (e.g. 1/0) may
Interrupt normal sequence of processing

 Program
— e.g. overflow, division by zero
e Timer
— Generated by internal processor timer
— Used In pre-emptive multi-tasking
 |/O

— from 1/0O controller

e Hardware failure
— e.g. memory parity error



Program Flow Control
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Interrupt Cycle

e Added to instruction cycle

e Processor checks for interrupt
— Indicated by an interrupt signal

e If no interrupt, fetch next instruction
e |If interrupt pending:
— Suspend execution of current program

— Save context

— Set PC to start address of interrupt handler routine
— Process interrupt

— Restore context and continue interrupted program



Transfer of Control via Interrupts
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Instruction Cycle with Interrupts
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Instruction Cycle (with Interrupts) -
State Diagram
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Multiple Interrupts

e Disable interrupts

—Processor will ignore further interrupts whilst
processing one interrupt

— Interrupts remain pending and are checked after first
Interrupt has been processed

—Interrupts handled in sequence as they occur
e Define priorities
—Low priority interrupts can be interrupted by higher
priority interrupts
—When higher priority interrupt has been processed,
processor returns to previous interrupt



Multiple Interrupts - Sequential

User Program

|
I
I
I
I
I
I
|_..F

.

I"-|.

I

I

I

I

I

I

I

I

I

I

I

I
w

—ar, 4

-1

Interrupt
Handler X

Interrupt
Handler Y

T

'y

!
I
f

i)

b

’




User Program

!

— ——————— — —

h

4+

Multiple Interrupts - Nested

Interrupt
Handler X

]

!
I

h
L

K

ri- ‘II
-
&~ Ill'lll
i

-

-1

e — — — —— — — —

Interrupt

~-_ Handler Y

n_

1
I
I
I
I
I
I
I
I
I




Time Sequence of Multiple Interrupts

User Program Printer ISR Communication ISR

Disk ISR




Connecting

e All the units must be connected

e Different type of connection for different type of
unit
—Memory
—Input/Output
—CPU



Computer Modules
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Memory Connection

e Recelves and sends data
e Recelves addresses (of locations)

e Recelves control signals
—Read
—Write
—Timing




Input/Output Connection(1)

e Similar to memory from computer’s viewpoint

e Output
—Receive data from computer
—Send data to peripheral

* Input
—Recelve data from peripheral
—Send data to computer



Input/Output Connection(2)

e Recelve control signals from computer

e Send control signals to peripherals
—e.d. spin disk

e Recelve addresses from computer
—e.g. port number to identify peripheral

e Send interrupt signals (control)



CPU Connection

e Reads instruction and data

e Writes out data (after processing)
e Sends control signals to other units
e Receives (& acts on) interrupts



