William Stallings
Computer Organization
and Architecture

6th Edition

Chapter 3
System Buses

Program Concept

e Hardwired systems are inflexible

e General purpose hardware can do different
tasks, given correct control signals

e Instead of re-wiring, supply a new set of control
signals

What Is a program?

e A seqguence of steps

e For each step, an arithmetic or logical operation
IS done

e For each operation, a different set of control
signals is needed

Function of Control Unit

e For each operation a unique code Is provided
—e.g. ADD, MOVE

e A hardware segment accepts the code and
Issues the control signals

 We have a computer!

Components

e The Control Unit and the Arithmetic and Logic
Unit constitute the Central Processing Unit

e Data and instructions need to get into the
system and results out
—Input/output

 Temporary storage of code and results is
needed
—Main memory

Computer Components:

Top Level View

CPU
PC MAR
IR MBR
I/0 AR
E:uMliﬂn
p_unit I/0 BR
I/O Module
Bui.fers

System
Bus

PC

IR
MAR
MBR
/0 AR
I/0 BR =

Main Memory

. 0
. 1
* 2
= -
Instruction .
Instruction -
Instruction
-
-
-
Data
Data
Data
Data
-
-
. -2
-1

Program counter

Instruction register

Memory address register
Memory buffer register
Input/output address register
Input/output buffer register

Instruction Cycle

e Two steps:
—Fetch
—EXxecute

Fetch Cycle Execute Cycle

Execute
Instruction

Feteh MNext
Instruction

Fetch Cycle

Program Counter (PC) holds address of next
Instruction to fetch

Processor fetches instruction from memory
location pointed to by PC

Increment PC
—Unless told otherwise

Instruction loaded into Instruction Register (IR)

Processor interprets instruction and performs
required actions

Execute Cycle

e Processor-memory
—data transfer between CPU and main memory

e Processor I/0
—Data transfer between CPU and 1/0 module

e Data processing
—Some arithmetic or logical operation on data

e Control
—Alteration of sequence of operations
—e.g. jJump

e Combination of above

Example of Program Execution

Memory CPU Registers Memory CPU Registers
300[1 9 4 0 |30 0|PC 3001 9 40 30 0P
305 9 4] ACT IS 9 4 1 I e
Iz 9 41 1 @ 4 O)IR302(249 41 1 94 0fIR
o 0400 0 0 3
410 00 2 310 0 0 2
step 1 Step 2

Memory CPU Registers Memory
300(1 9 40 30 1|PC | 300[1 v 4
s 9 4 1 000 3|ACLN01S 9 4
2z 9 41 1)]5 G 4 1|IR 3022 9 4
940 () [r-ﬂ 3 G0 0 1:1-[] .

94l o 0 2 YAT(0 0 0
Step 3 Slep 4

Memory CPU Registers Memory CPLU Registers
O[T 9 3 0 30 2|PC | 300[T 9 40 30 2]PC
3005 9 4 | o0 51 ACH3MNS O 4 1 000 5] AC
0229 4 1—m2 04 [[IR]302(249 41 294 1|IR
AH 1) [r-1] 3 L5 T 1:1-[] .

o410 00 2 41 00
Step 5 sSLep 6

Instruction Cycle -
State Diagram

Operand
store

Multiple
operands

Multiple
resulis

Instructio
aperation
decoding

(rperand
address
calculation

Operand
address
calculatio

Data
Operation

calculatio

Ketum for string
Or vector data

[nstruction complete,
fetcth next instruction

Interrupts

e Mechanism by which other modules (e.g. 1/0) may
Interrupt normal sequence of processing

 Program
— e.g. overflow, division by zero
e Timer
— Generated by internal processor timer
— Used In pre-emptive multi-tasking
 |/O

— from 1/0O controller

e Hardware failure
— e.g. memory parity error

Program Flow Control

User
Program

@

WRITLE

WRITE

E b

LA
Program
| A _.a': T
| 1P
i RO ©
| S0 |
| l__.-"" F | 1
([[| L
v P :{'nmmund
o ! |
I~ I |
| | | (5]
| R
| ; F I I
I { / END
| s
| 4 fr'I
!
S
14
|5
{2
s
|
|
|
|
|
|
|
|
|
|

Llser [/0)
Proeram Program
i
| l.r
@ S @
| - i | |
Tl T
- -
—_— -~ = -l-"'r-r:l' . .
WRITE “o = 7 , Command
- oy
| F
| L
@I | fy
| !y
Lo
- HL
I [nterrupt
@' Ly~ ™ .. Handler
I."_.' Hﬁ"\. L] 1 - T
— S
WRITE gl @
— | s R I
A ND
N
lro
:!k: rlr.-"
|
|
@
1w
WRITE

User [/}
Program Program
—_ F g =

I .II:‘-F_.-"-PI
@ @

| -

P [
R P /)
WRITE ‘=1 Command
| b

l Fod

I fo

| i

| [

I £
(2 |5

I

: f f [nterrupt

/7 Handler
N N R

B 0o @

WRITE ‘-4 |
— | Iy

| i | -~ 1

| ; ll.."r M

| iy

I i

| ¢y
@

(I

|4

| £2

X

¥

-

WRITE

{a) No intermpts

i) Interrupts; short DO wait

(¢) Interrupts; long 10 wail

Interrupt Cycle

e Added to instruction cycle

e Processor checks for interrupt
— Indicated by an interrupt signal

e If no interrupt, fetch next instruction
e |If interrupt pending:
— Suspend execution of current program

— Save context

— Set PC to start address of interrupt handler routine
— Process interrupt

— Restore context and continue interrupted program

Transfer of Control via Interrupts

User Program Interrupt Handler
I
2
. L]
L L]
L L]
1
Interrupt ——»
occurs here i+ 1 <

Instruction Cycle with Interrupts

Fetch Cycle Execute Cycle Interrupt Cycle
B Interrupts
Disabled
Check for

Program Timing
Short I/O Walit

T'ime

Processor /O /0
wait operation operation

@ °
operation

Processor /O
wait operation

olejelolele|ejolo

(b) With interrupts

(a) Without interrupts

Program Timing
Long I/O Walit

Time @_ —®
HON SO

F 3
Processor I/ 0_ @
T operation e
operation
Processor
@ wait
- k4
@) R
/O
Processor /O operation
wait operation Processor
wait

® =
@ (b) With interrupts

(a) Without interrupts

Instruction Cycle (with Interrupts) -
State Diagram

Operand

store

Multipe Mlultiple
operands results

Instructio Operand Operand
. » Dala _
operation address Overation address
decoding calculation pe calculatin
,)) M
[nstruction complete, Retum for string

: ;) inLerrup
feteth next instruction or vector data

Multiple Interrupts

e Disable interrupts

—Processor will ignore further interrupts whilst
processing one interrupt

— Interrupts remain pending and are checked after first
Interrupt has been processed

—Interrupts handled in sequence as they occur
e Define priorities
—Low priority interrupts can be interrupted by higher
priority interrupts
—When higher priority interrupt has been processed,
processor returns to previous interrupt

Multiple Interrupts - Sequential

User Program

|
I
I
I
I
I
I
|_..F

.

I"-|.

I

I

I

I

I

I

I

I

I

I

I

I
w

—ar, 4

-1

Interrupt
Handler X

Interrupt
Handler Y

T

'y

!
I
f

i)

b

’

User Program

!

— ——————— — —

h

4+

Multiple Interrupts - Nested

Interrupt
Handler X

]

!
I

h
L

K

ri- ‘II
-
&~ Ill'lll
i

-

-1

e — — — —— — — —

Interrupt

~-_ Handler Y

n_

1
I
I
I
I
I
I
I
I
I

Time Sequence of Multiple Interrupts

User Program Printer ISR Communication ISR

Disk ISR

Connecting

e All the units must be connected

e Different type of connection for different type of
unit
—Memory
—Input/Output
—CPU

Computer Modules

Read

|

Write

Address

Data

0l

Memory

N Words
0 111111

N-1 [IT1T111]

Data

J

Read

|

Write

Address

Internal
Data

External

)

Data

1/0 Module

M Ports

Internal
Data

External
Data

Interrupt
Signals

dleld

Instructions

Data

Interrupt
Signals

il

CPU

Address

Control
Signals

il

Data

Memory Connection

e Recelves and sends data
e Recelves addresses (of locations)

e Recelves control signals
—Read
—Write
—Timing

Input/Output Connection(1)

e Similar to memory from computer’s viewpoint

e Output
—Receive data from computer
—Send data to peripheral

* Input
—Recelve data from peripheral
—Send data to computer

Input/Output Connection(2)

e Recelve control signals from computer

e Send control signals to peripherals
—e.d. spin disk

e Recelve addresses from computer
—e.g. port number to identify peripheral

e Send interrupt signals (control)

CPU Connection

e Reads instruction and data

e Writes out data (after processing)
e Sends control signals to other units
e Receives (& acts on) interrupts

