William Stallings
Computer Organization
and Architecture
$6^{\text {th }}$ Edition

Chapter 2
Computer Evolution and
Performance

ENIAC - background

- Electronic Numerical Integrator And Computer
- Eckert and Mauchly
- University of Pennsylvania
- Trajectory tables for weapons
- Started 1943
- Finished 1946
-Too late for war effort
- Used until 1955

ENIAC - details

- Decimal (not binary)
- 20 accumulators of 10 digits
- Programmed manually by switches
- 18,000 vacuum tubes
- 30 tons
- 15,000 square feet
- 140 kW power consumption
- 5,000 additions per second

von Neumann/Turing

- Stored Program concept
- Main memory storing programs and data
- ALU operating on binary data
- Control unit interpreting instructions from memory and executing
- Input and output equipment operated by control unit
- Princeton Institute for Advanced Studies
-IAS
- Completed 1952

Structure of von Neumann machine

Central Processing Unit (CPU)

IAS - details

- 1000×40 bit words
-Binary number
-2×20 bit instructions
- Set of registers (storage in CPU)
-Memory Buffer Register
-Memory Address Register
-Instruction Register
-Instruction Buffer Register
-Program Counter
-Accumulator
-Multiplier Quotient

Structure of IAS detail

Commercial Computers

- 1947 - Eckert-Mauchly Computer Corporation
- UNIVAC I (Universal Automatic Computer)
- US Bureau of Census 1950 calculations
- Became part of Sperry-Rand Corporation
- Late 1950s - UNIVAC II
-Faster
-More memory

IBM

- Punched-card processing equipment
- 1953 - the 701
-IBM's first stored program computer
-Scientific calculations
- 1955 - the 702
-Business applications
- Lead to 700/7000 series

Transistors

- Replaced vacuum tubes
- Smaller
- Cheaper
- Less heat dissipation
- Solid State device
- Made from Silicon (Sand)
- Invented 1947 at Bell Labs
- William Shockley et al.

Transistor Based Computers

- Second generation machines
- NCR \& RCA produced small transistor machines
- IBM 7000
- DEC - 1957
-Produced PDP-1

Microelectronics

- Literally - "small electronics"
- A computer is made up of gates, memory cells and interconnections
- These can be manufactured on a semiconductor
- e.g. silicon wafer

Generations of Computer

- Vacuum tube - 1946-1957
- Transistor - 1958-1964
- Small scale integration - 1965 on
-Up to 100 devices on a chip
- Medium scale integration - to 1971
-100-3,000 devices on a chip
- Large scale integration - 1971-1977
-3,000-100,000 devices on a chip
- Very large scale integration - 1978 to date
-100,000-100,000,000 devices on a chip
- Ultra large scale integration
-Over 100,000,000 devices on a chip

Moore's Law

- Increased density of components on chip
- Gordon Moore - cofounder of Intel
- Number of transistors on a chip will double every year
- Since 1970's development has slowed a little
- Number of transistors doubles every 18 months
- Cost of a chip has remained almost unchanged
- Higher packing density means shorter electrical paths, giving higher performance
- Smaller size gives increased flexibility
- Reduced power and cooling requirements
- Fewer interconnections increases reliability

Growth in CPU Transistor Count

IBM 360 series

- 1964
- Replaced (\& not compatible with) 7000 series
- First planned "family" of computers
-Similar or identical instruction sets
-Similar or identical O/S
-Increasing speed
-Increasing number of I/O ports (i.e. more terminals)
-Increased memory size
—Increased cost
- Multiplexed switch structure

DEC PDP-8

- 1964
- First minicomputer (after miniskirt!)
- Did not need air conditioned room
- Small enough to sit on a lab bench
- \$16,000
-\$100k+ for IBM 360
- Embedded applications \& OEM
- BUS STRUCTURE

DEC - PDP-8 Bus Structure

Semiconductor Memory

- 1970
- Fairchild
- Size of a single core
-i.e. 1 bit of magnetic core storage
- Holds 256 bits
- Non-destructive read
- Much faster than core
- Capacity approximately doubles each year

Intel

- 1971-4004
-First microprocessor
-All CPU components on a single chip
-4 bit
- Followed in 1972 by 8008
-8 bit
-Both designed for specific applications
- 1974-8080
-Intel's first general purpose microprocessor

Speeding it up

- Pipelining
- On board cache
- On board L1 \& L2 cache
- Branch prediction
- Data flow analysis
- Speculative execution

Performance Mismatch

- Processor speed increased
- Memory capacity increased
- Memory speed lags behind processor speed

DRAM and Processor Characteristics

Trends in DRAM use

Solutions

- Increase number of bits retrieved at one time
-Make DRAM "wider" rather than "deeper"
- Change DRAM interface
-Cache
- Reduce frequency of memory access
-More complex cache and cache on chip
- Increase interconnection bandwidth
—High speed buses
-Hierarchy of buses

Pentium Evolution (1)

- 8080
- first general purpose microprocessor
- 8 bit data path
- Used in first personal computer - Altair
- 8086
- much more powerful
- 16 bit
- instruction cache, prefetch few instructions
- 8088 (8 bit external bus) used in first IBM PC
- 80286
- 16 Mbyte memory addressable
- up from 1 Mb
- 80386
- 32 bit
- Support for multitasking

Pentium Evolution (2)

- 80486
-sophisticated powerful cache and instruction pipelining
—built in maths co-processor
- Pentium
-Superscalar
-Multiple instructions executed in parallel
- Pentium Pro
-Increased superscalar organization
-Aggressive register renaming
-branch prediction
-data flow analysis
-speculative execution

Pentium Evolution (3)

- Pentium II
—MMX technology
-graphics, video \& audio processing
- Pentium III
—Additional floating point instructions for 3D graphics
- Pentium 4
-Note Arabic rather than Roman numerals
-Further floating point and multimedia enhancements
- Itanium
-64 bit
-see chapter 15
- See Intel web pages for detailed information on processors

Internet Resources

- http://www.intel.com/
-Search for the Intel Museum
- http://www.ibm.com
- http://www.dec.com
- Charles Babbage Institute
- PowerPC
- I ntel Developer Home

