

Reduced Instruction Set Computers

Prof. Vojin G. Oklobdzija

University of California

Keywords: IBM 801; RISC; computer architecture; Load/Store architecture; instruction
sets; pipelining; super-scalar machines; super-pipeline machines; optimizing compiler;
Branch and Execute; Delayed Branch;

Definitions
Main features of RISC architecture
Analysis of RISC and what makes RISC
What brings performance to RISC
Going beyond one instruction per cycle
Issues in super-scalar machines

1. Architecture

The term Computer Architecture was first defined in the paper by Amdahl, Blaauw and
Brooks of IBM Corporation announcing IBM System/360 computer family on April 7,
1964 [1]. On that day IBM Corporation introduced, in the words of IBM spokesman, "the
most important product announcement that this corporation has made in its history".

Computer architecture was defined as the attributes of a computer seen by the machine
language programmer as described in the Principles of Operation. IBM referred to the
Principles of Operation as a definition of the machine which enables machine language
programmer to write functionally correct, time independent programs that would run
across a number of implementations of that particular architecture.

The architecture specification covers: all functions of the machine that are observable by
the program [2]. On the other hand Principles of Operation. are used to define the
functions that the implementation should provide. In order to be functionally correct it is
necessary that the implementation conforms to the Principles of Operation.
Principles of Operation document defines computer architecture which includes:

• Instruction set
• Instruction format
• Operation codes
• Addressing modes
• All registers and memory locations that may be directly manipulated

or tested by a machine language program
• Formats for data representation

Machine Implementation was defined as the actual system organization and hardware
structure encompassing the major functional units, data paths, and control.

Machine Realization includes issues such as logic technology, packaging and
interconnections.

Separation of the machine architecture from implementation enabled several embodiment
of the same architecture to be built. Operational evidence proved that architecture and
implementation could be separated and that one need not imply the other. This separation
made it possible to transfer programs routinely from one model to another and expect
them to produce the same result which defined the notion of architectural compatibility.
Implementation of the whole line of computers according to a common architecture
requires unusual attention to details and some new procedures which are described in the
Architecture Control Procedure. The design and control of system architecture is an
ongoing process which objective is to remove ambiguities in the definition of the
architecture and in some cases, adjust the functions provided [1-3].

V.G. Oklobdzija Reduced Instruction Set Computing 2

1.1. RISC Architecture
A special place in computer architecture has been given to RISC. RISC architecture has
been developed as a result of the 801 project which started in 1975 at the IBM
T.J.Watson Research Center and was completed by the early 1980s [6]. This project was
not widely known to the world outside of IBM and two other projects with similar
objectives started in the early 1980s at the University of California Berkeley and Stanford
University [7,8]. The term RISC (Reduced Instruction Set Architecture), used for the
Berkeley research project, is the term under which this architecture became widely
known and recognized today.

Development of RISC architecture started as a rather "fresh look at existing ideas" [9]
after revealing evidence which surfaced as a result of examination of how the instructions
are actually used in the real programs. This evidence came from the analysis of the trace
tapes, a collection of millions of the instructions that were executed in the machine
running a collection of representative programs. This evidence showed that for 90% of
the time only about 10 instructions from the instruction repertoire were actually used.
Then the obvious question was asked: "why not favor implementation of those selected
instructions so that they execute in a short cycle, and emulate the reset of instructions".
The following reasoning was used: "If the presence of a more complex set adds just one
logic level to a 10 level basic machine cycle, the CPU has been slowed down by 10%.
The frequency and performance improvement of the complex functions must first
overcome this 10% degradation, and then justify the additional cost" [6]. Therefore
RISC architecture starts with a small set of most frequently used instructions which
determine the pipeline structure of the machine enabling fast execution of those
instructions in one cycle. If addition of a new complex instruction increases the “critical
path” (typically 12-18 gate levels) for one gate level, than the new instruction should
contribute at least 6-8% to the overall performance of the machine.
One cycle per instruction is achieved by exploitation of parallelism through the use of
pipelining. It turns out that parallelism through pipelining is the single most important
characteristic of RISC architecture from which all the rest of the RISC features could be
derived. Basically we can characterize RISC as a performance oriented architecture
based on exploitation of parallelism through pipelining.

RISC architecture has proven itself and several mainstream architectures today are of the
RISC type. Those include SPARC (used by Sun Microsystems workstations, an outgrow
of Berkeley RISC), MIPS (an outgrow of Stanford MIPS project, used by Silicon
Graphics), and a super-scalar implementation of RISC architecture, IBM RS/6000 (also
known as PowerPC architecture).

1.2. RISC Performance
Since the early beginning, the quest for higher performance has been present in every
new computer model and architecture. This has been the driving force behind every new
architecture or system organization. There are several ways to achieve performance:
technology advances, better machine organization, better architecture, and also the
optimization and improvements in compiler technology. By technology, machine

V.G. Oklobdzija Reduced Instruction Set Computing 3

performance can be enhanced only in proportion to the amount of technology
improvements and this is, more or less, available to everyone. It is in the machine
organization and the machine architecture where the skills and experience of computer
design take effect. RISC deals with these two levels - more precisely their interaction and
trade-offs.

The work that each instruction of the RISC machine performs is simple and straight
forward. Thus, the time required to execute each instruction can be shortened and the
number of cycles reduced. Typically the instruction execution time is divided in five
stages, machine cycles, and as soon as processing of one stage is finished, the machine
proceeds with executing the second stage. However, when the stage becomes free it is
used to execute the same operation that belongs to the next instruction. The operation of
the instructions is performed in a pipeline fashion, similar to the assembly line in the
factory process. Typically those five pipeline stages are:

IF – Instruction Fetch

ID – Instruction Decode

EX – Execute

MA – Memory Access

WB – Write Back

By overlapping the execution of several instructions in a pipeline fashion (as shown in
Fig. 1. .), RISC achieves its inherent execution parallelism which is responsible for the
performance advantage over the Complex Instruction Set Architectures (CISC).

At any given time there are
5 instructions in different stages of
execution

I1 IF D EX MA WB

I2 MA

I3 EX

I4 D

I5 IF

Fig. 1. Typical five stage RISC pipeline

V.G. Oklobdzija Reduced Instruction Set Computing 4

The goal of RISC is to achieve execution rate of one Cycle Per Instruction (CPI=1.0)
which would be the case when no interruptions in the pipeline occurs. However, as we
will see later, this is not the case.

Thus the instructions and the addressing modes in RISC architecture are carefully
selected and tailored upon the most frequently used ones, but in a way that will satisfy the
most efficient execution of the RISC pipeline.

The simplicity of the RISC instruction set is traded for more parallelism in execution. On
average a code written for RISC will consist of more instructions than the one written for
CISC. The typical trade-off that exists between RISC and CISC can be expressed in the
total time required to execute a certain task:

 Time (task) = I x C x P x T0

I = no. of instructions / task
C = no. of cycles / instruction
P = no. of clock periods / cycle (usually P=1)
T0 = clock period (nS)

While CISC instruction will typically have fewer instructions for the same task, the
execution of its complex operations will require more cycles and more clock ticks within
the cycle as compared to RISC. On the other hand RISC will require more instructions
for the same task, however, it executes its instructions at the rate of one per cycle and its
machine cycle requires only one clock tick (typically). In addition, given the simplicity of
the instruction set, as reflected in simpler machine implementation, the clock period T0 in
RISC can be shorter allowing RISC machine to run at the higher speed as compared to
CISC. Typically as of today RISC machines have been running at the rate in excess of
667 MHz reaching 1 GHz, while CISC is hardly at 500MHz clock rate.

The trade-off between RISC and CISC can be summarized as follows:

a. CISC achieves its performance advantage by denser program consisting of a fewer

number of powerful instructions.
b. RISC achieves its performance advantage by having simpler instructions resulting in

simpler and therefore faster implementation allowing more parallelism and running at
higher speed.

V.G. Oklobdzija Reduced Instruction Set Computing 5

2. RISC

Another distinguished feature of RISC is exploitation of locality ...Given that the main
feature of RISC is the architectural support for the exploitation of parallelism on the
instruction level, we should revisit all the eight remaining features in light of their flow
through the RISC pipeline.

2.1. Load / Store Architecture

Often RISC is referred to as Load/Store architecture or the operations in its instruction set
are defined as Regster-to-Register operations. This is because all the operations
performed by RISC are between the operands that reside in the General Purpose Register
File (GPR) where the result of the operation is written back to. Limiting the locations of
the operands to the GPR allows for determinism in the RISC operation. In the other
words, a potentially multi-cycle and unpredictable access to memory has been de-coupled
from the operation. Once the operands are available in the GPR the operation can
proceed. It is almost certain that once commenced the operation will be completed and
the result being written into the GPR. Of course, there are possible conflicts for the
operands which can, never the less, be easily handled in hardware. The execution flow in
the pipeline for a register-to-register operation is shown in Fig. 1.

Operation Source Source Destn.

AL
IIA RegisterRegister

File File
Instr. WA
Cache Data

CacheDecode

DecodeInstruction Fetch Execute Cache Access Write Back

φ0 φ0 φ0 φ0 φ0 φ1 φ1 φ1 φ1 φ1

Fig. 1. Pipeline Flow of a Register-to-Register operation

On the other hand Memory Access is achieved only through Load and Store instructions
(thus the term Load/Store Architecture often is used to refer to RISC). The pipeline is

V.G. Oklobdzija Reduced Instruction Set Computing 6

tailored in a way in which it accommodates both: operation and memory access with equl
efficiency.

E-Address = B+Displacement Displacement
Data from

ALUBas
IR IAR Register Register

File File

D- WCache
Instr.

Data
Cache

Decode

E-Address
DEC IF WB Calculation Cache

W R

Fig. 2. Load/Store Pipeline

2.2. Carefully Selected Set of Instructions

The principle of locality is applied throughout RISC. The fact that only a small set of
instructions is used most frequently is used to determine the most efficient pipeline
organization that would exploit instruction level parallelism of those instructions in the
most efficient way. The pipeline is “tailored” for that group of instructions. Such derived
pipeline must serve efficiently the three main classes of instructions:

• Access to Cache (Load/Store)
• Operation: Arithmetic/Logical
• Branch

Given the simplicity of the pipeline the control part of RISC is implemented in hardware.
However, this is the most misunderstood part of RISC architecture which has even given
it the inappropriate name. RISC as it stands out: Reduced Instruction Set Computer, does
not necessarily imply that the number of instructions in RISC has to be small. The
number of instructions in the instruction set of RISC can grow until the complexity of the
control starts to impose an increase in the clock period. In practice this point is further
beyond the number of instructions commonly used and we have witnessed a paradox that
several of today’s RISC machines have an instruction set larger than that of CISC.
For example: IBM PC-RT Instruction architecture contains 118 instructions, while IBM
RS/6000 (PowerPC) contains 184 instructions. This should be contrasted to the IBM

V.G. Oklobdzija Reduced Instruction Set Computing 7

System/360 containing 143 instructions and IBM System/370 containing 208. The first
two are representatives of RISC architecture while the later two are not.

2.3. Fixed format instructions

What really matters in RISC is that the instructions have fixed and predetermined format
which facilitates decoding in one cycle and simplifies the control hardware. Usually the
size of RISC instructions is also fixed to the size of the word (32-bits), however, there are
cases where RISC can contain two sizes of instructions (32-bits and 16-bits). The fixed
format feature is very important if it is required from RISC to decode its instruction in
one cycle. This feature is very valuable for super-scalar implementations. Fixed size
instruction allow Instruction Fetch to be pipelined (know next address without decoding
the current one). This guarantees only single I-TLB access per instruction.
Specifically, this is especially important if we want to determine the outcome of the
Branch instruction and clock the new instruction target address in only one cycle. The
operation associated with determining a Branch instruction during the Decode cycle is
illustrated in Fig. 3. In order to minimize the number of lost cycles, Branch has to be
resolved during Decode stage. This requires a separate address adder as well as
comparator which are used during Decode stage. In the best case one cycle will be lost
when Branch instruction is encountered. (this instruction slot is used for an independent
instruction which is scheduled in this slot – as we will see later in “branch and execute”)

Fig. 3. Branch Instruction

Instruction Address
Register:

Condition is satisfied ?

Register Ra=Rb
File

IR
+4 MUX

Instr.
Cache

Decode+
IAR+

Offse It is

Yes

Instruction Fetch Decode

φ φ0 φ1 φ φ1 0 1

V.G. Oklobdzija Reduced Instruction Set Computing 8

2.4. Simple Addressing Modes

Simple Addressing Modes are the requirements of the pipeline. Namely, in order to be
able to perform the address calculation in the pre-determined number of pipeline cycles
and in the pre-determined pipeline, the address computation need to conform to the other
modes of computation. It is a fortunate fact that in the real programs the requirements for
the address computations favors three main addressing modes:

(a.) Immediate
(b.) Base + Displacement
(c.) Base + Index

Those three addressing modes take approximately over 80% of all the addressing modes:

(a.) 30-40% (b.) 40-50% (c.) 10-20% according to [11]. The process of calculating the

operand address associated with Load and Store instructions is shown in
Fig. 2.

2.5. Separate Instruction and Data Caches

One of the often overlooked but essential characteristics of RISC machines is existence
of Cash memory. The second most important characteristic of RISC (after pipelining) is
exploitation of the locality principle. The locality principle is established in the
observation that on the average the program spends 90% of the time in the 10% of the
code. The instruction selection criteria in RISC is also based on that very same
observation that the 10% of the instructions are responsible for 90% of the code. Often
the principle of the locality is referred too as a 90-10 rule [11].
In case of the cache this locality can be spatial and temporal. Spatial locality means that
the most likely location in the memory to be referenced next will be the location in the
neighborhood of the location that was just referenced previously. On the other hand, the
temporal locality means that the most likely location to be referenced next will be from
the set of memory locations that were referenced just recently. The cache operates on this
principle.

The RISC machines are based on the exploitation of that principle. The first level in the
memory hierarchy is the general-purpose register file GPR, where we expect to find the
operands most of the time. Otherwise the Register-to-Register operation feature would
not be effective. However, if the operands are not to be found in the GPR, the time to
fetch the operands should not be excessive. This requires the existence of a fast memory
next to the CPU – the Cache. The cache access should also be fast so that the time
allocated for Memory Access in the pipeline is not exceeded. One-cycle cache is a
requirement for RISC machine and the performance is seriously degraded if the cache
access requires two or more CPU cycles. In order to maintain the required one-cycle
cache bandwidth the data and instruction access should not collide. It is from there that

V.G. Oklobdzija Reduced Instruction Set Computing 9

the separation of instruction and data caches, the so called Harvard Architecture, is a
must feature for RISC.

2.6. Branch and Execute Instruction

Branch and Execute or Delayed Branch instruction is a new instruction architecture
feature introduced and fully exploited in RISC. When a Branch instruction is encountered
in the pipeline, one cycle will be inevitably lost. This is illustrated in
Fig. 4.

breq: IF D EX MA WB

inst+1: IF

the earliest available target instruction address

target: IF D EX MA WB

Fig. 4. Branch Instruction Pipeline Flow

RISC architecture solves this problem by introducing Branch and Execute instruction
(also known as Delayed Branch Instruction), which consists of a pair: branch and the
branch subject instruction which is always executed. It is the task of the compiler to find
an instruction which can be placed in that, otherwise wasted, pipeline cycle.
The subject instruction can come from the instruction stream preceding the branch
instruction, from the target instruction stream or from the fall-through instruction stream.
It is the task of the compiler to find such an instruction and to fill-in this execution cycle.
Given the frequency of the branch instructions which varies from one out of five to one
out of fifteen (depending on the nature of the code) the number of those otherwise lost
cycles can be substantial. Fortunately a good compiler can fill-in 70% of those cycles
which amounts to an up to 15% performance improvement. This is the single most
performance contributing instruction from the RISC instruction architecture.
However, in the later generations of super-scalar RISC machines (that execute more than
one instruction in the pipeline cycle) Branch and Execute instruction has been abandoned
in favor of Brand Prediction.

The Load instruction is also exhibiting this lost pipeline cycle as shown in Fig. 5.

V.G. Oklobdzija Reduced Instruction Set Computing 10

ld r5, r3, d

dependenc

add r7, r5,
data written to

Ld:

Fig. 5. Lost cycle during the execution of the Load Instruction

The same principle that was applied for alleviating branch problem can be applied to
Load instruction. This is also known as Delayed Load.
An example of what the compiler can do to schedule instructions and utilize those
otherwise lost cycles is shown in Fig. 6.

I D Addr C-Acc writ
data available from

data available from the register

Add: I E M WD

data needed

Program to calculate:
 a = b + 1
 if (c=0) d = 0

Sub-optimal: Optimal

ld r2, b # r2=b
add r2, 1 # r2=b+1
st r2, a # a=b+1

ld r3, c # r3=c
bne r3,0, tg1 #
skip
st 0, d # d=0

1

ld r2, b # r2=b load
ld r3, c # r3=c
add r2, 1 # r2=b+1

 bne r3,0, tg1 #
skip load
st r2, a # a=b+1
st 0, d # d=0

lost

Total = 9 cycles Total = 6 cycles

V.G. Oklobdzija Reduced Instruction Set Computing 11

Fig. 6. An Example of Instruction Scheduling by Compiler

2.7. Optimizing Compiler

A close coupling of the compiler and the architecture is one of the key and essential
features in RISC that was used in order to maximally exploit the parallelism introduced
by pipelining. The RISC architecture is originally intended to create a machine that is
only “visible through the compiler” [5,7]. All the programming is to be done in High-
Level Language and only a minimal portion in assembler. The notion of the “optimizing
compiler” was introduced in RISC [5,7,8]. This compiler was capable of producing a
code that was as good as the code written in assembler (the hand-code). Though there
was a strict attention given to the architecture principle [1,2] as far as absence of the
implementation details from the principle of the operation, this is perhaps the only place
where this principle was close to being violated. Namely, the optimizing compiler needs
to “know” the details of the implementation, the pipeline in particular, in order to be able
to efficiently schedule the instructions. The work of the optimizing compiler is illustrated
in Fig. 6.

2.8. One Instruction per Cycle

The objective of one instruction per cycle: CPI = 1 execution is the ultimate goal of RISC
machines. This goal assumes infinite caches and no pipeline conflicts thus, it is not
attainable. Given the frequent branches in the program and their interruption to the
pipeline, loads and stores that can not be scheduled and finally the effect of finite size
caches, the number of “lost” cycles accumulates bringing the CPI further away from 1. In
the real implementations the CPI varies and a CPI = 1.3 is considered quite good while
CPI between 1.4 to 1.5 is more common in single-instruction issue implementations of
the RISC architecture.

However, once the CPI was brought close to one, the next goal in implementing RISC
machines was to bring CPI bellow one. This goal requires an implementation that can
execute more than one instruction in the pipeline cycle a so called Super-Scalar
implementation. A substantial effort has been done on the part of the leading RISC
machine implementers to build such machines. However, machines that execute up to
four instructions in one cycle are quite common today and a machine that executes up to
six instructions in one cycle has been introduced last year.

2.9. Pipelining

Finally, the single most important feature of RISC is pipelining. Degree of parallelism in
the RISC machine is determined by the depth of the pipeline. It could be stated that all
the features of RISC that were listed here, can be derived from pipelining. The sole
purpose of many of those features is to support an efficient execution of RISC pipeline. It

V.G. Oklobdzija Reduced Instruction Set Computing 12

is clear that without pipelining the goal of CPI = 1 is not possible. An example of the
instruction execution in the absence of pipelining is shown in Fig. 7.

IF D EX MA WB IF D EX MA WB

I1 I2
Total of 10 cycles for two instructions

Fig. 7. Instruction execution without pipelining

We may think that by increasing the number of pipeline stages (the pipeline depth) we
may increase the RISC machine performance further by introducing more parallelism.
However, this is not so simple and straight forward. The increase in the number of
pipeline stages brings with it an overhead not only in hardware needed to implement the
additional pipeline registers, but also the overhead in time due to the delay of the latches
used to implement the pipeline stage as well as the clock skews and clock jitter. All of
that will soon bring us to the point of diminishing returns where further increase in the
pipeline depth would result in less performance. An additional side effect of deeply
pipelined systems is hardware complexity necessary to resolve all the possible conflicts
that can occur between the increased number of instructions residing in the pipeline at
one time. The number of the pipeline stages is mainly determined by the type of the
instruction core (the most frequent instructions) and the operations required by those
instructions. The pipeline depth also depends on the technology used. If the machine is
implemented in a very high speed technology characterized by the very small number of
gate levels (such as GaAs or ECL) it makes sense to pipeline the machine deeper. The
RISC machines that achieve performance through the use of many pipeline stages are
known as super-pipelined machines.

Today the most common number of the pipeline stages encountered is five (as in the
examples given in this text). However, twelve or more pipeline stages are encountered in
some machine implementations.

The features of RISC architecture that support pipelining are listed in Table 1.

V.G. Oklobdzija Reduced Instruction Set Computing 13

Table 1. Features of RISC Architecture

 Feature

 Characteristic

Load / Store Architecture All of the operations are Register to
Register. In this way Operation is
decoupled from the access to memory

Carefully selected sub-set of
instructions

Control is implemented in hardware.
There is no microcoding in RISC. Also
this set of instructions is not necessarily
small*

Simple Addressing Modes Only the most frequently used addressing
modes are used. Also it is important that
they can fit into the existing pipeline.

Fixed size and fixed fields
instructions

This is necessary to be able to decode
instruction and access operands in one
cycle. Though there are architectures
using two sizes for the instruction format
(IBM PC-RT)

Delayed Branch Instruction
(known also as Branch and
Execute)

The most important performance
improvement through instruction
architecture. (no longer true in new
designs)

One Instruction Per Cycle
execution rate, CPI = 1.0

Possible only through the use of pipelining

Optimizing Compiler Close coupling between the architecture
and the compiler. Compiler "knows" about
the pipeline.

Harvard Architecture Separation of Instruction and Data Cache
resulting in increased memory bandwidth.

* IBM PC-RT Instruction architecture contains 118 instructions, while IBM RS/6000
(PowerPC) contains 184 instructions. This should be contrasted to the IBM System/360
containing 143 instructions and IBM System/370 containing 208. The first two are
representatives of RISC architecture while the later two are not.

V.G. Oklobdzija Reduced Instruction Set Computing 14

3. Historical Perspective

The RISC architecture was not a sudden development, but it rather a long and
evolutionary process in which more was learned about computer systems and how to
build them efficiently. From the first definition of the architecture in 1964 [1] we can
distinguish the three main branches of the computer architecture development, as shown
in
Fig. 8.

Historical Machines
IBM Stretch-7030, 7090 etc.

circa 1964

IBM S/360PDP-8 CDC 6600

PDP-11 Cyber IBM 370/XA

Cray -I VAX-11 IBM 370/ESA

RISC
CISC IBM S/3090

Fig. 8. Main Branches in Development of Comuter Architecture

The CISC development can be characterized by the PDP-11 and VAX-11 architecture
and all the architectures derived from that development. The middle branch is the IBM
360/370 line of computers which is characterized with a balance of CISC and RISC
features. The RISC line really evolved from the line characterized by CDC 6600, Cyber
and ultimately CRAY super-computer. All of the computers in this branch were
originally designated as super-computers at the time of their introduction. The ultimate
quest for performance and excellent engineering was a characteristic of that branch.
Almost all of the computers in the line preceding RISC carry the signature of one man:
Seymour Cray who is by many credited with RISC ideas.

V.G. Oklobdzija Reduced Instruction Set Computing 15

3.1. History of RISC

The RISC project started in 1975 at the IBM T.J.Watson Research Center under the name
of the 801. The original intent of the 801 project was to develop an emulator for
System/360 code. It was built in ECL technology and was completed by the early 1980s
[6]. This project was not known to the world outside of IBM until early 1980s and the
result of that work are mainly unpublished. The idea of simpler computer especially the
one that can be implemented on the single chip in the university environment was
appealing and two other projects with similar objectives started in the early 1980s at the
University of California Berkeley and Stanford University [7,8]. The two academic
projects had much more influence on the industry than the IBM 801 project. Sun
Microsystems developed its own architecture currently known as SPARC as a result of
the University of California Berkeley work. Similarly, the Stanford University work was
directly transferred to MIPS.
The chronology illustrating RISC development is illustrated in Fig. 9.

CDC 6600: 1963

Fig. 9. History of RISC development

The features of some contemporary RISC processors are shown in Table 2.

Cyber

Cray -I: 1976

HP-PA: 1986

IBM ASC: 1970

IBM 801: 1975

RISC-1
MIPS Berkeley 1981

Stanford 1982

IBM PC/RT: 1986 MIPS-1: 1986SPARC v.8: 1987

MIPS-2: 1989
IBM RS/6000: 1990

MIPS-3: 1992 DEC - Alpha: 1992

PowerPC: 1993MIPS-4: 1994SPARC v.9: 1994

V.G. Oklobdzija Reduced Instruction Set Computing 16

Table 2: Features of contemporary RISC processors:

Feature Digital
21164

MIPS
10000

PowerPC
 620

HP 8000 Sun
UltraSpar

c
Frequency 500 MHz 200 MHz 200 MHz 180 MHz 250 MHz

Pipeline Stages 7 5-7 5 7-9 6-9

Issue Rate 4 4 4 4 4

Out-of-Order Exec. 6 loads 32 16 56 none

Register Renam.
(int/FP)

none/8 32/32 8/8 56 none

Transistors/
Logic transistors

9.3M/
1.8M

5.9M/
2.3M

6.9M/
2.2M

3.9M*/
3.9M

3.8M/
2.0M

SPEC95
(Intg/FlPt)

12.6/18.3 8.9/17.2 9/9 10.8/18.3 8.5/15

Perform./ Log-trn
(Intg/FP)

7.0/10.2 3.9/7.5 4.1/4.1 2.77*/4.69 4.25/7.5

 * no cache

Conclusion

Difficult competition and complex designs are ahead, yet: “Risks are incurred not only
by undertaking a development, but also by not undertaking a development”

Super-scalar techniques will help performance to grow faster, with less expense as
compared to the use of new circuit technologies and new system approaches such as
multiprocessing.*

Ultimately, super-scalar techniques buy time to determine the next cost-effective
techniques for increasing performance.*

*Mike Johnson (Super-scalar Microprocessor Design, Prentice-Hall 1991)

V.G. Oklobdzija Reduced Instruction Set Computing 17

V.G. Oklobdzija Reduced Instruction Set Computing 18

References
[1] G.M.Amdahl, G.A. Blaauw, F.P. Brooks, "Architecture of the IBM System/360, IBM Journal

of Research and Development, Vol.8, No.2, p.87-101, April 1964.
[2] G.A. Blaauw, F.P. Brooks, "The Structure of System/360", IBM Systems Journal, Vol.3,

No.2, p.119-135, 1964.
[3] R.P.Case, A.Padegs, "Architecture of the IBM System/370", Communications of ACM,

Vol.21, No.1, p. 73-96, January 1978.
[4] D.W.Anderson, F.J.Sparacio, and R.M.Tomasulo, “The IBM 360 Model 91: Machine

philosophy and instruction handling,” IBM Journal of Research and Development, Vol.11,
No.1, January 1967, p.8-24.

[5] G. Radin, "The 801 Minicomputer", IBM T.J.Watson Research Center, Report RC 9125,
November 11, 1981, also in SIGARCH Computer Architecture News 10, No.2, p.39-47,
March 1982.

[6] John Cocke andViky Markstein, “The Evolution of RISC Technology at IBM,” IBM Journal of
Research and Development, Vol.34, No.1, pp.37, January 1990.

[7] M. E. Hopkins, "A Perspective on the 801 / Reduced Instruction Set Computer", IBM
Systems Journal, Vol. 26, No.1, 1987.

[8] Henry S. Warren, Jr., “Instruction scheduling for the IBM RISC System/6000 processor,” IBM
Journal of Research and Development, Vol.34, No.1, pp.37, January 1990.

[9] D.A. Patterson, C.H.Sequin, "A VLSI RISC", IEEE Computer Magazine, September 1982.
[10] J. L. Hennessy, "VLSI Processor Architecture", IEEE Transactions on Computers, Vol. C-33,

No.12, December 1984.
[11] J. Hennessy and D. Patterson, Computer Architecture: A Quantitative Approach, Morgan &

Kaufman Publishers, San Mateo, California.
[12] L.J.Shustek, “Analysis and Performance of Computer Instruction Sets,” PhD. Thesis,

Stanford University, May 1978.
[13] Gregory F. Grohosky, “Machine Organization of the IBM RISC System/6000 processor,” IBM

Journal of Research and Development, Vol.34, No.1, pp.37, January 1990.
[14] V.G.Oklobdzija, “Issues in CPU-Coprocessor Communication and Synchronization,”

EUROMICRO ’88, Fourteenth Symposium on Microprocessing and Microprogramming, pp.
695., Zurich, Switzerland, August 1988.

[15] R.M.Tomasulo, “An Efficient Algorithm for Exploring Multiple Arithmetic Units,” IBM Journal
of Research and Development, Vol.11. No.1. p.25-33.

[16] John Cocke, Gregory Grohosky, and Vojin Oklobdzija, “Instruction Control Mechanism for a
Computing System with Register Renaming, MAP Table and Queues Indicating Available
Registers,” U.S. Patent No. 4,992,938, February 12, 1991.

[17] D.P. Siewiorek, C.G. Bell, A. Newell, "Computer Structures: Principles and Examples",
McGraw-Hill Advanced Computer Science Series, 1982.

[18] “Digital RISC Architecture Technical Handbook,” Digital Equipment Corporation 1991.
[19] D. Bhandarkar and D.W. Clark, “Performance from Architecture: Comparing a RISC and a

CISC with Similar Hardware Organization,” Proceedings of the 4th Int’l. Conference on
ASPLOS, Santa Clara, California, April 8-11, 1991.

[20] Gery Kane, MIPS RISC Architecture, Prentice-Hall, New Jersey, 1988.
[21] SPARC Architecture definition.
[22] J.K.F.Lee and A.J.Smith, “Branch Prediction Strategies and Branch Target Buffer Design,”

Computer, Vol.17,No.1.,1984, p.6-22.
[23] J.E.Smith, S. Weiss, and N.Y. Pang, “A Simulation Study of Decoupled Architecture

Computers, IEEE Transaction on Computers, Vol C-35, No.8, August 1986, p.692.

	Reduced Instruction Set Computers
	
	Prof. Vojin G. Oklobdzija

	Architecture
	1.1. RISC Architecture
	1.2. RISC Performance
	
	
	
	EX – Execute
	WB – Write Back

	2. RISC
	2.1. Load / Store Architecture
	2.2. Carefully Selected Set of Instructions
	2.3. Fixed format instructions
	2.4. Simple Addressing Modes
	2.5. Separate Instruction and Data Caches
	2.6. Branch and Execute Instruction
	2.7. Optimizing Compiler
	2.8. One Instruction per Cycle
	2.9. Pipelining

	3. Historical Perspective
	3.1. History of RISC

	Conclusion
	References

