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1. Architecture 
 
The term Computer Architecture was first defined in the paper by Amdahl, Blaauw and 
Brooks of IBM Corporation announcing IBM System/360 computer family on April 7, 
1964 [1]. On that day IBM Corporation introduced, in the words of IBM spokesman, "the 
most important product announcement that this corporation has made in its history". 
 
Computer architecture was defined as the attributes of a computer seen by the machine 
language programmer as described in the Principles of Operation.  IBM referred to the 
Principles of Operation as a definition of the machine which enables machine language 
programmer to write functionally correct, time independent programs that would run 
across a number of implementations of that particular architecture.  
 
The architecture specification covers: all functions of the machine that are observable by 
the program [2]. On the other hand Principles of Operation. are used to define the 
functions that the implementation  should provide. In order to be functionally correct it is 
necessary that the implementation conforms to the Principles of Operation. 
Principles of Operation document defines computer architecture which includes:  
 

• Instruction set 
• Instruction format 
• Operation codes 
• Addressing modes 
• All registers and memory locations that may be directly manipulated 

or tested by a machine language program 
• Formats for data representation 

 
Machine Implementation was defined as the actual system organization and hardware 
structure encompassing the major functional units, data paths, and control. 
 
Machine Realization includes issues such as logic technology, packaging and 
interconnections. 
 
Separation of the machine architecture from implementation enabled several embodiment 
of the same architecture to be built. Operational evidence proved that architecture and 
implementation could be separated and that one need not imply the other. This separation 
made it possible to transfer programs routinely from one model to another and expect 
them to produce the same result which defined the notion of architectural compatibility.   
Implementation of the whole line of computers according to a common architecture 
requires unusual attention to details and some new procedures which are described in the 
Architecture Control Procedure. The design and control of system architecture is an 
ongoing process which objective is to remove ambiguities in the definition of the 
architecture and in some cases, adjust the functions provided [1-3]. 
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1.1. RISC Architecture 
A special place in computer architecture has been given to RISC. RISC architecture has 
been developed as a result of the 801 project which started in 1975 at the IBM 
T.J.Watson Research Center and was completed by the early 1980s [6]. This project was 
not widely known to the world outside of IBM and two other projects with similar 
objectives started in the early 1980s at the University of California Berkeley and Stanford 
University [7,8]. The term RISC (Reduced Instruction Set Architecture), used for the 
Berkeley research project, is the term under which this architecture became widely 
known and recognized today. 
 
Development of RISC architecture started as a rather "fresh look at existing ideas" [9] 
after revealing evidence which surfaced as a result of examination of how the instructions 
are actually used in the real programs. This evidence came from the analysis of the trace 
tapes, a collection of millions of the instructions that were executed in the machine 
running a collection of representative programs. This evidence showed that for 90% of 
the time only about 10 instructions from the instruction repertoire were actually used. 
Then the obvious question was asked: "why not favor implementation of those selected 
instructions so that they execute in a short cycle, and emulate the reset of instructions". 
The following reasoning was used: "If the presence of a more complex set adds just one 
logic level to a 10 level basic machine cycle, the CPU has been slowed down by 10%. 
The frequency and performance improvement of the complex functions must first 
overcome this 10% degradation, and then justify the additional cost" [6]. Therefore 
RISC architecture starts with a small set of most frequently used instructions which 
determine the pipeline structure of the machine enabling fast execution of those 
instructions in one cycle. If addition of a new complex instruction increases the “critical 
path” (typically 12-18 gate levels) for one gate level, than the new instruction should 
contribute at least 6-8%  to the overall performance of the machine. 
One cycle per instruction is achieved by exploitation of parallelism through the use of 
pipelining. It turns out that parallelism through pipelining is the single most important 
characteristic of RISC architecture from which all the rest of the RISC features could be 
derived. Basically we can characterize RISC as a performance oriented architecture 
based on exploitation of parallelism through pipelining.  
 
RISC architecture has proven itself and several mainstream architectures today are of the 
RISC type. Those include SPARC (used by Sun Microsystems workstations, an outgrow 
of Berkeley RISC), MIPS (an outgrow of Stanford MIPS project, used by Silicon 
Graphics), and  a super-scalar implementation of RISC architecture, IBM RS/6000 (also 
known as PowerPC architecture). 
 

1.2. RISC Performance 
Since the early beginning, the quest for higher performance has been present in every 
new computer model and architecture.  This has been the driving force behind every new 
architecture or system organization.  There are several ways to achieve performance: 
technology advances, better machine organization, better architecture, and also the 
optimization and improvements in compiler technology.  By technology, machine 
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performance can be enhanced only in proportion to the amount of technology 
improvements and this is, more or less, available to everyone. It is in the machine 
organization and the machine architecture where the skills and experience of computer 
design take effect. RISC deals with these two levels - more precisely their interaction and 
trade-offs. 
 
The work that each instruction of the RISC machine performs is simple and straight 
forward. Thus, the time required to execute each instruction can be shortened and the 
number of cycles reduced. Typically the instruction execution time is divided in five 
stages, machine cycles, and as soon as processing of one stage is finished, the machine 
proceeds with executing the second stage. However, when the stage becomes free it is 
used to execute the same operation that belongs to the next instruction. The operation of 
the instructions is performed in a pipeline fashion, similar to the assembly line in the 
factory process. Typically those five pipeline stages are: 
 

IF – Instruction Fetch 

ID – Instruction Decode 

EX – Execute 

MA – Memory Access 

WB – Write Back 
 

By overlapping the execution of several instructions in a pipeline fashion (as shown in  
Fig. 1. .), RISC achieves its inherent execution parallelism which is responsible for the 
performance advantage over the Complex Instruction Set Architectures (CISC). 
 

At any given time there are 
5 instructions in different stages of
execution 

I1 IF D EX MA WB

I2 MA

I3 EX

I4 D

I5 IF
 

 

Fig. 1. Typical five stage RISC pipeline 
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The goal of RISC is to achieve execution rate of one Cycle Per Instruction (CPI=1.0) 
which would be the case when no interruptions in the pipeline occurs. However, as we 
will see later, this is not the case. 
 
Thus the instructions and the addressing modes in RISC architecture are carefully 
selected and tailored upon the most frequently used ones, but in a way that will satisfy the 
most efficient execution of the RISC pipeline. 
 
The simplicity of the RISC instruction set is traded for more parallelism in execution. On 
average a code written for RISC will consist of more instructions than the one written for 
CISC.  The typical trade-off that exists between RISC and CISC can be expressed in the 
total time required to execute a certain task: 
 
     Time (task) = I x C x P x T0 
 

I = no. of instructions / task 
C = no. of cycles / instruction 
P = no. of clock periods / cycle (usually P=1) 
T0 = clock period (nS) 

 
While CISC instruction will typically have fewer instructions for the same task, the 
execution of its complex operations will require more cycles and more clock ticks within 
the cycle as compared to RISC. On the other hand RISC will require more instructions 
for the same task, however, it executes its instructions at the rate of one per cycle and its 
machine cycle requires only one clock tick (typically). In addition, given the simplicity of 
the instruction set, as reflected in simpler machine implementation, the clock period T0 in 
RISC can be shorter allowing RISC machine to run at the higher speed as compared to 
CISC. Typically as of today RISC machines have been running at the rate in excess of 
667 MHz reaching 1 GHz, while CISC is hardly at 500MHz clock rate.  
 
The trade-off between RISC and CISC can be summarized as follows: 
 
a. CISC achieves its performance advantage by denser program consisting of a fewer 

number of powerful instructions. 
b. RISC achieves its performance advantage by having simpler instructions resulting in 

simpler and therefore faster implementation allowing more parallelism and running at 
higher speed. 
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2. RISC  
 
Another distinguished feature of RISC is exploitation of locality ...Given that the main 
feature of RISC is the architectural support for the exploitation of parallelism on the 
instruction level, we should revisit all the eight remaining features in light of their flow 
through the RISC pipeline.  
 

2.1. Load / Store Architecture 
 
Often RISC is referred to as Load/Store architecture or the operations in its instruction set 
are defined as Regster-to-Register operations. This is because all the operations 
performed by RISC are between the operands that reside in the General Purpose Register 
File (GPR) where the result of the operation is written back to. Limiting the locations of 
the operands to the GPR allows for determinism in the RISC operation. In the other 
words, a potentially multi-cycle and unpredictable access to memory has been de-coupled 
from the operation. Once the operands are available in the GPR the operation can 
proceed. It is almost certain that once commenced the operation will be completed and 
the result being written into the GPR. Of course, there are possible conflicts for the 
operands which can, never the less, be easily handled in hardware. The execution flow in 
the pipeline for a register-to-register operation is shown in Fig. 1. 
 
 

 

Operation Source Source Destn. 

AL
IIA RegisterRegister 

File File 
Instr. WA 
Cache Data 

CacheDecode

DecodeInstruction Fetch Execute Cache Access Write Back

φ0 φ0 φ0 φ0 φ0 φ1 φ1 φ1 φ1 φ1 

 

Fig. 1.  Pipeline Flow of a Register-to-Register operation 

 
On the other hand Memory Access is achieved only through Load and Store instructions 
(thus the term Load/Store Architecture often is used to refer to RISC). The pipeline is 
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tailored in a way in which it accommodates both: operation and memory access with equl 
efficiency. 

 

E-Address = B+Displacement Displacement 
Data from 

ALUBas
IR IAR Register Register 

File File 

D- WCache 
Instr. 

Data 
Cache

Decode 

E-Address 
DEC IF WB Calculation Cache 

W R

 

Fig. 2. Load/Store Pipeline 

 

2.2. Carefully Selected Set of Instructions 
 
The principle of locality is applied throughout RISC. The fact that only a small set of 
instructions is used most frequently is used to determine the most efficient pipeline 
organization that would exploit instruction level parallelism of those instructions in the 
most efficient way. The pipeline is “tailored” for that group of instructions. Such derived 
pipeline must serve efficiently the three main classes of instructions: 

• Access to Cache (Load/Store) 
• Operation: Arithmetic/Logical  
• Branch 

Given the simplicity of the pipeline the control part of RISC is implemented in hardware.  
However, this is the most misunderstood part of RISC architecture which has even given 
it the inappropriate name. RISC as it stands out: Reduced Instruction Set Computer, does 
not necessarily imply that the number of instructions in RISC has to be small. The 
number of instructions in the instruction set of RISC can grow until the complexity of the 
control starts to impose an increase in the clock period. In practice this point is further 
beyond the number of instructions commonly used and we have witnessed a paradox that 
several of today’s RISC machines have an instruction set larger than that of CISC.  
For example: IBM PC-RT Instruction architecture contains 118 instructions, while IBM 
RS/6000 (PowerPC) contains 184 instructions. This should be contrasted to the IBM 
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System/360 containing 143 instructions and IBM System/370 containing 208. The first 
two are representatives of RISC architecture while the later two are not. 
 

2.3. Fixed format instructions 
 
What really matters in RISC is that the instructions have fixed and predetermined format 
which facilitates decoding in one cycle and simplifies the control hardware. Usually the 
size of RISC instructions is also fixed to the size of the word (32-bits), however, there are 
cases where RISC can contain two sizes of instructions (32-bits and 16-bits). The fixed 
format feature is very important if it is required from RISC to decode its instruction in 
one cycle. This feature is very valuable for super-scalar implementations. Fixed size 
instruction allow Instruction Fetch to be pipelined (know next address without decoding 
the current one). This guarantees only single I-TLB access per instruction. 
Specifically, this is especially important if we want to determine the outcome of the 
Branch instruction and clock the new instruction target address in only one cycle. The 
operation associated with determining a Branch instruction during the Decode cycle is 
illustrated in  Fig. 3. In order to minimize the number of lost cycles, Branch has to be 
resolved during Decode stage. This requires a separate address adder as well as 
comparator which are used during Decode stage. In the best case one cycle will be lost 
when Branch instruction is encountered. (this instruction slot is used for an independent 
instruction which is scheduled in this slot – as we will see later in “branch and execute”) 
 

 

Fig. 3. Branch Instruction 

Instruction Address 
Register: 

Condition is satisfied ?

Register Ra=Rb
File 

IR
+4 MUX 

Instr.
Cache

Decode+ 
IAR+

Offse It is 

Yes

Instruction Fetch Decode

φ φ0 φ1 φ φ1 0 1 
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2.4. Simple Addressing Modes 
 
Simple Addressing Modes are the requirements of the pipeline. Namely, in order to be 
able to perform the address calculation in the pre-determined number of pipeline cycles 
and in the pre-determined pipeline, the address computation need to conform to the other 
modes of computation. It is a fortunate fact that in the real programs the requirements for 
the address computations favors three main addressing modes: 
 

(a.) Immediate 
(b.) Base + Displacement 
(c.) Base + Index 
 

Those three addressing modes take approximately over 80% of all the addressing modes:  

(a.) 30-40% (b.) 40-50% (c.) 10-20% according to [11]. The process of calculating the 

operand address associated with Load and Store instructions is shown in  
Fig. 2. 
 

2.5. Separate Instruction and Data Caches 
 
One of the often overlooked but essential characteristics of RISC machines is existence 
of Cash memory. The second most important characteristic of RISC (after pipelining) is 
exploitation of the locality principle. The locality principle is established in the 
observation that on the average the program spends 90% of the time in the 10% of the 
code. The instruction selection criteria in RISC is also based on that very same 
observation that the 10% of the instructions are responsible for 90% of the code. Often 
the principle of the locality is referred too as a 90-10 rule [11].  
In case of the cache this locality can be spatial and temporal. Spatial locality means that 
the most likely location in the memory to be referenced next will be the location in the 
neighborhood of the location that was just referenced previously. On the other hand, the 
temporal locality means that the most likely location to be referenced next will be from 
the set of memory locations that were referenced just recently. The cache operates on this 
principle.  
 
The RISC machines are based on the exploitation of that principle. The first level in the 
memory hierarchy is the general-purpose register file GPR, where we expect to find the 
operands most of the time. Otherwise the Register-to-Register operation feature would 
not be effective. However, if the operands are not to be found in the GPR, the time to 
fetch the operands should not be excessive. This requires the existence of a fast memory 
next to the CPU – the Cache. The cache access should also be fast so that the time 
allocated for Memory Access in the pipeline is not exceeded. One-cycle cache is a 
requirement for RISC machine and the performance is seriously degraded if the cache 
access requires two or more CPU cycles. In order to maintain the required one-cycle 
cache bandwidth the data and instruction access should not collide. It is from there that 
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the separation of instruction and data caches, the so called Harvard Architecture, is a 
must feature for RISC. 

2.6. Branch and Execute Instruction 
 
Branch and Execute or Delayed Branch instruction is a new instruction architecture 
feature introduced and fully exploited in RISC. When a Branch instruction is encountered 
in the pipeline, one cycle will be inevitably lost. This is illustrated in  
Fig. 4. 
 
 

breq: IF D EX MA WB

inst+1: IF 

the earliest available target instruction address

target: IF D EX MA WB  

Fig. 4. Branch Instruction Pipeline Flow 

 
RISC architecture solves this problem by introducing Branch and Execute instruction 
(also known as Delayed Branch Instruction), which consists of a pair: branch and the 
branch subject instruction which is always executed. It is the task of the compiler to find 
an instruction which can be placed in that, otherwise wasted, pipeline cycle. 
The subject instruction can come from the instruction stream preceding the branch 
instruction, from the target instruction stream or from the fall-through instruction stream. 
It is the task of the compiler to find such an instruction and to fill-in this execution cycle. 
Given the frequency of the branch instructions which varies from one out of five to one 
out of fifteen (depending on the nature of the code) the number of those otherwise lost 
cycles can be substantial. Fortunately a good compiler can fill-in 70% of those cycles 
which amounts to an up to 15% performance improvement. This is the single most 
performance contributing instruction from the RISC instruction architecture. 
However, in the later generations of super-scalar RISC machines (that execute more than 
one instruction in the pipeline cycle) Branch and Execute instruction has been abandoned 
in favor of Brand Prediction. 
 
The Load instruction is also exhibiting this lost pipeline cycle as shown in Fig. 5. 
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ld  r5, r3, d

dependenc

add r7, r5, 
data written to 

Ld: 

 
 

Fig. 5. Lost cycle during the execution of the Load Instruction 

 
The same principle that was applied for alleviating branch problem can be applied to 
Load instruction. This is also known as Delayed Load.  
An example of what the compiler can do to schedule instructions and utilize those 
otherwise lost cycles is shown in Fig. 6. 

 

I D Addr C-Acc writ
data available from 

data available from the register 

Add: I E M WD 

data needed 

Program to calculate: 
        a = b + 1 
        if (c=0) d = 0 

 
Sub-optimal: Optimal

ld r2, b     # r2=b 
add r2, 1  # r2=b+1 
st r2, a     # a=b+1 

ld r3, c    # r3=c 
bne  r3,0, tg1  # 
skip 
st 0, d      # d=0 

1

ld r2, b     # r2=b load 
ld r3, c    # r3=c 
add r2, 1  # r2=b+1 

 bne  r3,0, tg1  # 
skip load 
st r2, a     # a=b+1 
st 0, d      # d=0 

lost 

Total = 9 cycles Total = 6 cycles 
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Fig. 6. An Example of Instruction Scheduling by Compiler 

2.7. Optimizing Compiler 
 
A close coupling of the compiler and the architecture is one of the key and essential 
features in RISC that was used in order to maximally exploit the parallelism introduced 
by pipelining. The RISC architecture is originally intended to create a machine that is 
only “visible through the compiler” [5,7]. All the programming is to be done in High-
Level Language and only a minimal portion in assembler. The notion of the  “optimizing 
compiler” was introduced in RISC [5,7,8]. This compiler was capable of producing a 
code that was as good as the code written in assembler (the hand-code). Though there 
was a strict attention given to the architecture principle [1,2] as far as absence of the 
implementation details from the principle of the operation, this is perhaps the only place 
where this principle was close to being violated. Namely, the optimizing compiler needs 
to “know” the details of the implementation, the pipeline in particular, in order to be able 
to efficiently schedule the instructions. The work of the optimizing compiler is illustrated 
in Fig. 6. 
 

2.8. One Instruction per Cycle 
 
The objective of one instruction per cycle: CPI = 1 execution is the ultimate goal of RISC 
machines. This goal assumes infinite caches and no pipeline conflicts thus, it is not 
attainable. Given the frequent branches in the program and their interruption to the 
pipeline, loads and stores that can not be scheduled and finally the effect of finite size 
caches, the number of “lost” cycles accumulates bringing the CPI further away from 1. In 
the real implementations the CPI varies and a CPI = 1.3 is considered quite good while 
CPI between 1.4 to 1.5 is more common in single-instruction issue implementations of 
the RISC architecture.  
 
However, once the CPI was brought close to one, the next goal in implementing RISC 
machines was to bring CPI bellow one. This goal requires an implementation that can 
execute more than one instruction in the pipeline cycle a so called Super-Scalar 
implementation. A substantial effort has been done on the part of the leading RISC 
machine implementers to build such machines. However, machines that execute up to 
four instructions in one cycle are quite common today and a machine that executes up to 
six instructions in one cycle has been introduced last year. 
 

2.9. Pipelining 
 
Finally, the single most important feature of RISC is pipelining. Degree of parallelism in 
the RISC machine is determined by the depth of the pipeline. It could be stated that all 
the features of RISC that were listed here, can be derived from pipelining. The sole 
purpose of many of those features is to support an efficient execution of RISC pipeline. It 
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is clear that without pipelining the goal of CPI = 1 is not possible. An example of  the 
instruction execution in the absence of pipelining is shown in Fig. 7. 

IF D EX MA WB IF D EX MA WB

I1 I2
Total of 10 cycles for two instructions 

 
Fig. 7. Instruction execution without pipelining 

 
We may think that by increasing the number of pipeline stages (the pipeline depth) we 
may increase the RISC machine performance further by introducing more parallelism. 
However, this is not so simple and straight forward. The increase in the number of 
pipeline stages brings with it an overhead not only in hardware needed to implement the 
additional pipeline registers, but also the overhead in time due to the delay of the latches 
used to implement the pipeline stage as well as the clock skews and clock jitter. All of 
that will soon bring us to the point of diminishing returns where further increase in the 
pipeline depth would result in less performance. An additional side effect of deeply 
pipelined systems is hardware complexity necessary to resolve all the possible conflicts 
that can occur between the increased number of instructions residing in the pipeline at 
one time. The number of the pipeline stages is mainly determined by the type of the 
instruction core (the most frequent instructions) and the operations required by those 
instructions. The pipeline depth also depends on the technology used. If the machine is 
implemented in a very high speed technology characterized by the very small number of 
gate levels (such as GaAs or ECL) it makes sense to pipeline the machine deeper. The 
RISC machines that achieve performance through the use of many pipeline stages are 
known as super-pipelined machines.  
 
Today the most common number of the pipeline stages encountered is five (as in the 
examples given in this text). However, twelve or more pipeline stages are encountered in 
some machine implementations. 
 
The features of RISC architecture that support pipelining are listed in Table 1. 
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Table 1. Features of RISC Architecture 
 

 
   Feature 
 

 
   Characteristic 

Load / Store Architecture All of the operations are Register to 
Register. In this way Operation is 
decoupled from the access to memory 

Carefully selected sub-set of 
instructions 

Control is implemented in hardware. 
There is no microcoding in RISC. Also 
this set of instructions is not necessarily 
small* 

Simple Addressing Modes Only the most frequently used addressing 
modes are used. Also it is important that 
they can fit into the existing pipeline. 

Fixed size and fixed fields 
instructions 

This is necessary to be able to decode 
instruction and access operands in one 
cycle. Though there are architectures 
using two sizes for the instruction format 
(IBM PC-RT) 

Delayed Branch Instruction 
(known also as Branch and 
Execute) 

The most important performance 
improvement through instruction 
architecture. (no longer true in new 
designs) 

One Instruction Per Cycle 
execution rate, CPI = 1.0 

Possible only through the use of pipelining 

Optimizing Compiler Close coupling between the architecture 
and the compiler. Compiler "knows" about 
the pipeline. 

Harvard Architecture  Separation of Instruction and Data Cache 
resulting in increased memory bandwidth. 

 
* IBM PC-RT Instruction architecture contains 118 instructions, while IBM RS/6000 
(PowerPC) contains 184 instructions. This should be contrasted to the IBM System/360 
containing 143 instructions and IBM System/370 containing 208. The first two are 
representatives of RISC architecture while the later two are not. 
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3. Historical Perspective 
 
The RISC architecture was not a sudden development, but it rather a long and 
evolutionary process in which more was learned about computer systems and how to 
build them efficiently. From the first definition of the architecture in 1964 [1] we can 
distinguish the three main branches of the computer architecture development, as shown 
in  
Fig. 8. 
 

Historical Machines 
IBM Stretch-7030, 7090 etc.

circa 1964 

IBM S/360PDP-8 CDC 6600 

PDP-11 Cyber IBM 370/XA

Cray -I VAX-11 IBM 370/ESA

RISC
CISC IBM S/3090  

 

Fig. 8. Main Branches in Development of Comuter Architecture 

 
The CISC development can be characterized by the PDP-11 and VAX-11 architecture 
and all the architectures derived from that development. The middle branch is the IBM 
360/370 line of computers which is characterized with a balance of CISC and RISC 
features. The RISC line really evolved from the line characterized by CDC 6600, Cyber 
and ultimately CRAY super-computer. All of the computers in this branch were 
originally designated as super-computers at the time of their introduction. The ultimate 
quest for performance and excellent engineering was a characteristic of that branch. 
Almost all of the computers in the line preceding RISC carry the signature of one man: 
Seymour Cray who is by many credited with RISC ideas. 
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3.1. History of RISC 
 
The RISC project started in 1975 at the IBM T.J.Watson Research Center under the name 
of the 801. The original intent of the 801 project was to develop an emulator for 
System/360 code. It was built in ECL technology and was completed by the early 1980s 
[6]. This project was not known to the world outside of IBM until early 1980s and the 
result of that work are mainly unpublished. The idea of simpler computer especially the 
one that can be implemented on the single chip in the university environment was 
appealing and two other projects with similar objectives started in the early 1980s at the 
University of California Berkeley and Stanford University [7,8]. The two academic 
projects had much more influence on the industry than the IBM 801 project. Sun 
Microsystems developed its own architecture currently known as SPARC as a result of 
the University of California Berkeley work. Similarly, the Stanford University work was 
directly transferred to MIPS. 
The chronology illustrating RISC development is illustrated in Fig. 9. 
 

CDC 6600: 1963

 
 

Fig. 9. History of RISC development 
 
The features of some contemporary RISC processors are shown in Table 2. 
 
 
 
 
 
 

Cyber

Cray -I: 1976

HP-PA: 1986

IBM ASC: 1970 

IBM 801: 1975

RISC-1 
MIPS Berkeley 1981 

Stanford 1982

IBM PC/RT: 1986 MIPS-1: 1986SPARC v.8: 1987 

MIPS-2: 1989
IBM RS/6000: 1990

MIPS-3: 1992 DEC - Alpha: 1992

PowerPC: 1993MIPS-4: 1994SPARC v.9: 1994 
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Table 2: Features of contemporary RISC processors: 
 

Feature Digital  
21164 

MIPS 
10000 

PowerPC 
 620 

HP 8000 Sun  
UltraSpar

c 
Frequency 500 MHz 200 MHz 200 MHz 180 MHz 250 MHz 

Pipeline Stages  7 5-7 5 7-9 6-9 

Issue Rate 4 4 4 4 4 

Out-of-Order Exec. 6 loads 32 16 56 none 

Register Renam. 
(int/FP) 

none/8 32/32 8/8 56 none 

Transistors/ 
Logic transistors 

9.3M/ 
1.8M 

5.9M/ 
2.3M 

6.9M/ 
2.2M 

3.9M*/ 
3.9M 

3.8M/ 
2.0M 

SPEC95 
(Intg/FlPt) 

12.6/18.3 8.9/17.2 9/9 10.8/18.3 8.5/15 

Perform./ Log-trn 
(Intg/FP) 

7.0/10.2 3.9/7.5 4.1/4.1 2.77*/4.69 4.25/7.5 

                                                                                                                                                              * no cache 

 
 
 
Conclusion 
 
Difficult competition and complex designs are ahead, yet:  “Risks are incurred not only 
by undertaking a development, but also by not undertaking a development”   
 
Super-scalar techniques will help performance to grow faster, with less expense as 
compared to the use of new circuit technologies and new system approaches such as 
multiprocessing.* 
 
Ultimately, super-scalar techniques buy time to determine the next cost-effective 
techniques for increasing performance.* 
 
*Mike Johnson (Super-scalar Microprocessor Design, Prentice-Hall 1991) 
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