COMPUTER ORGANIZATION:
Architecture

Vojin G. Oklobdzija
Advanced Computer System Engineering Laboratory
Electrical and Computer Engineering Department
University of California
Davis, CA 95616

1. Architecture

The term Computer Architecturewas first defined in the paper by Amdahl, Blaauw and
Brooks of IBM Corporation announcing IBM System/360 computer family on April 7,
1964. On that day IBM Corporation introduced, in the words of IBM spokesman, "the
most important product announcement that this corporation has made in its history".
There were six models introduced originally, ranging in performance from 25 to 1. Six
years later this performance range was increased to about 200 to 1. This was the key
feature which prompted IBM's effort to design an architecture for a new line of computers
that are to be code compatible with each other. The recognition that architecture and
implementation could be separated and that one need not imply the other led to
establishment of a common System/360 machine architecture implemented in the range
of models.

In their milestone paper Amdahl, Blaauw and Brooks[1] identified three interfaces:

e architecture
e implementation
e redization

They defined computer architecture as the attributes of a computer seen by the machine
language programmer as described in the Principles of Operation. 1BM referred to the
Principles of Operation as a definition of the machine which eanbles machine language
programer to write functionally correct, time independent programs that would run across
anumber of implementations of that particular architecture. Therefore, the architecture
specification covers: all functions of the machine that are observable by the program[2].
On the other hand Principles of Operation. are used to define the functions that the
implementation should provide. In order to be functionally correct it is necessary that the
implementation conform to the Principles of Operation. In thisway, for the first timein
the history of computer development, IBM has separated machine definition from machine
implementation thus enabling them to bring several machine implementationsin awide
price and peformance range that has reached 2000 to 1 22 years later after the introduction
of System/360.

Principles of Operation definescomputer architecture which includes:

instruction set

instruction format

operation codes

addressing modes

all registers and memor locations that may be directly manipulated
or tested by a machine language program

» formatsfor data representation

Machine Implementation was defined as the actual system organization and hardware
structure encmopasing the major functional units, data paths, and control.

COMPUTER ORGANIZATION: Architecture

Machine Realization includes issues such as:

interconnections.

V. G. Oklobdzija

logic technology, packaging and

An example of asimple architecture of an 8-bit processor which uses 2's complement
representation to represent integers, and contains 11 instructions is shown in Fig. 1. The
figure contains all of the necessary information for the architecture to be defined.

I nstructions

ADD RARB RB- RA+RB
LOAD RARB RB- M[RA]

STORE RA,RB M[RA] - RB

CLEAR RB RB- RO (=0)
JAL RB PC- RB

RB- PC
JUMP RB PC - RB
JUMPN RB If NthenPC- RB
COM RB RB- ~(RB)
BEQ RB If ZthenPC- RB
INCR RB RB- RB+1
LDl RBdata RB- M[PC+ 1]

Data Formats

2's complement, integers,
represenatble range: -128 to +127

0 7

S

General Purpose Registers

Bit: 7MSB 0
LSB
RO = 0 (hardwired zero)
R1
R2
R3
R4
R5
R6
R7
Status Register
Z N
Z - result = zero N- result
negative
Addressing Modes: Register
Indirect
[[ra | |
GPR
— Address
Memory
Operand <+

Fig. 1. Example of a Minimal Architecture: PRISC

COMPUTER ORGANIZATION: Architecture V. G. Oklobdzja

Separation of the machine architecture from implementation enabled several embodiment
of the same architecture to be built. Operational evidence proved that architecture and
implementation could be separated and that one need not imply the other. This separation
made it possible to transfer programs routinely from one model to another and expect
them to produce the same result which defined the notion of architectural compatibility.
Implementation of the whole line of computers according to a common architecture
reguires unusual attention to details and some new procedures which are described in the
Architecture Control Proceedure. The design and control of system architecture is an
ongoing process which objective is to remove ambiguities in the definition of the
architecture and in some cases, adjust the functions provided.

However, definiton of an architecture facilitated future development and introduction of
not only new models but new upwardly compatible architectures The architecture is
upwardly compatible if the user's programs written for the old architecture run efficiently
on the new models without modifications to the program. The limitations to upward
compatibility are that the new systems have the same or equivalent facilities and that the
programs have no time dependence and use only model-independent functions defined in
the Principles of Operation, and not use unassigned formats and operation codes [3]. An
exapmple of upward compatibility is IBM System/370 introduced in June, 1970.

1.1. Instruction Set

Instruction set defines a basic set of operations as specified by the architecture which a
particular implementation of that architecture is required to perform. An instruction of the
instruction set defines an atomic operation that may alter data, the machine state, or
perform an 1/O operation. In terms of the operation performed we can broadly clasify the
instructions of the instruction set as falling in one of the four general categories:

1. Instructions performing transformation of data
2. Instructions altering the program flow

3. Instruction performing data movement

4. System instructions

Thefirst category includes instructions performing arithmetic and logical operations. The
operations can be arithmetic, string, logical or floating-point. They are performed in the
appropriate functional units of the particular implementation of the architecture.

Instructions affecting the flow of the program and/or machine state are branches, calls and
returns, and loop control instructions.

The third category of instructions performs data movement across different functional
units of the machine. Examples of such instructions are LOAD instruction that loads a
content of amemory location to a particular register in the General Purpose Register file
(GPR), or STORE instruction that does the opposite. MOVE instruction that moves a
block of data from one memory location to another, or the instruction that moves the data
to and from the STACK or GPR.

The System instructions change the system's mode and are not generally visible by the
programer that programsin the problem state Problem state is the domain of the
machine visible to a programer executing general purpose program, as opposed to the
system state which is visible to the operating system.

An example of the instruction set specified in the IBM System/360 architectureis given
inFig.2.

(sanunuo) (‘uorssturrad YIp ‘uone1odIo)) SaUTYDRIN ssauIsng [euoneuIdRu] 4q

$961 WBIAdOD “SET-6TT:(T)€ [1545 WG] "09€/WIsAS JO UMPNNS YT, H961 ' I HOO0Ig pue Y "D ‘Mnee[q :22410) "}3$ UONONISUL 09¢ /WSS NFI TTET 2Mn3g

N 1ovy18Ns ns N 10vy18Ns MS 01907 1IVH18NS s ANVNIS-LY3ANOD 8AD | TII1

n aav ny nagy Mmv V21907 aav v WWIO3Q-1¥IANOD QAD | o1l

301AI0 30 30A0 ad 301AIQ ¢ 1011

AdIDNN 3N AMIDNW W AdLONW W AN HW | 0011

N 10ovHi8ns 3S N LOVH18NS as 10vy18ns S 1vyiens WS | 1101

N aav v N aav av aqv v agv My | 0101

JHVAWOD ER) 3WVdWOD @D JYVdWOD) JYVdWOD HO | 1001

avol N avol a avol 3 avol W1 | ooot

H0 w>_m:._oxu X NOILIONOD/HONVYE 28 | 1110

0 INNOD NO HONvHE 108 | o110

WoI1901 waﬁ_zoo 1 YNIT ONV HONVE8 vE | 1010

ONV N 31N23x3 X3 | 0010

¥31OVHVHO L¥ISNI 31 | 1100

¥310VHVHO 3¥0LS OLS | 0100

$S3¥0Qv_Qvol 1000

woLS S 3WOLS aLs 3401S 18 3¥OLS HIS | 0000

e (10 330110 1010 =x0010 =
soys Buoy jp130] puo Suiyouniq puo

susod-Supooyy susod-Junoopy paompny supod-paxyy puonfipy susod-paxsy

owaog xy

N 1ovy1ens ¥NS N LOVHLIENS ¥MS WOID01 LIVHIEBNS YIS 14491

naav H¥nv naoav amv WIID0T aQY ¥V ortt

301AI0 ¥30 30IAI0 ¥a0 3q1AIQ 30 1011

AdIDNW - 83N AdIINW ¥OW AdILINW N oott

N 10vd18NS ¥3S N LOVH18BNS ¥aS 10v418NS us 101

NOQV ¥V N QQy ¥QV aqy uv 1IvO HOSIAY3JNS oAs | otot

WVINOD 83D 3WVAWOD QD WVANOD MO A3N LYISNI %Si | 1001

avol ¥31 avol a1 avol M A3N 13§ %SS | 0001

¥O 3AISNT0X3 X NOLLIGNOO/HONVHE ¥o8 | 1110

¥0 ¥0 INNOD NO HONVHE ¥108 | 0110

WII901 3UVAWOD ¥1D %NIT ONV HONVHE ¥ve | 1010

AWK H3H IAVH ¥OH aNV §N WSV WVH9O0¥d 135 WdS | 0010

ININIWWOO QvOo1 ¥3D] IN3W31dWOD QVO1 ¥aD1 INIW31dWOD QVOT ¥D1 1100

1S31 ONV QvO1 ¥311 1S31 ONV QvO1 ¥aL1 1S3L OGNV Qv01 a1d 0100

3AILVOIN QY01 §3ND JAILVO3N QVO1 ¥ONT JAILVOIN QYO ¥N) 1000

3JAILISOd QVO1 ¥3d) 3JAILISOd QYO ¥Qd1 3AILISOd QY01 ¥d1 0000

1100 xXx20100 X000 0000 ox
oys Buoy feordop puo Suryonms snyos
susod-Buyvory tusod-Sugooyy piompmy supod-poxyd pup Supyounig

IouMod WY

RS, SI Format

Branching Fixed-point
status switching logical and
and shifting input/output
nxx 1000xxxx 1001 xxxx 1010xxxx 101 1xxxx
0000 | SSM SET SYSTEM MASK ST™ STORE MULTIPLE
0001 ™ TEST UNDER MASK
0010 | LPSW LOAD PSW Mvi MOVE
0011 DIAGNOSE T8 TEST AND SET
0100 | WRD WRITE DIRECT NI AND
0101 | ROD READ DIRECT cu COMPARE LOGICAL
0110 | BXH BRANCH/HIGH ol OR
0111 | BXLE BRANCH/LOW-EQUAL Xt EXCLUSIVE OR
1000 | SRL SHIFT RIGHT SL (€] LOAD MULTIPLE
1001 | SLL SHIFT LEFT SL
1010 | SRA SHIFT RIGHT S
1011 | SLA SHIFT LEFT S
1100 | SRDL SHIFT RIGHT DL SI0 START 1/0
1101 | SLDL SHIFT LEFT DL TIO TEST 1/0
1110 | SRDA SHIFT RIGHT D HIO HALT I/0
1111 | SLDA SHIFT LEFT D TCH TEST CHANNEL
SS Format
Logical Decimal
o 1100xxxx 1101xxxx 1110xxxx 1111xxxx
0000
0001 MVN MOVE NUMERIC MVO MOVE WITH OFFSET
0010 MvC MOVE PACK PACK
0011 MVZ MOVE ZONE UNPK UNPACK
0100 NC AND
0101 CLC COMPARE LOGICAL
0110 oc OR
o111 xC EXCLUSIVE OR
1000 ZAP ZERO AND ADD
1001 cpP COMPARE
1010 AP ADD
loul SP SUBTRACT
1100 TR TRANSLATE MP MULTIPLY
1101 TRT TRANSLATE AND TEST op DIVIDE
1110 £D EDIT
un EDMK EDIT AND MARK
NOTE: N = NORMALIZED DL = DOUBLE LOGICAL S = SINGLE
SL = SINGLE LOGICAL U = UNNORMALIZED D = DOUBLE
Figure 132.2 (continued) 1BM System/360 instruction set.

COMPUTER ORGANIZATION: Architecture V. G. Oklobdzja

We can further classify instructions in terms of the number of explicit operands, operand
locationsand type and size of the operands.

Instruction architecture that specifies no explicit operands is better known as Sack
Architecture. In the Stack Architecture all operations are performed on the data that is on
the top of the stack. Examples of Stack Architecture are HP 3000/70 made by Hewllet-
Packard and B5500 by Burroughs. In the accumulator architecture all of the operations are
performed between the operand specified in the instruction and the Accumulator, which is
aspecial register. An example of Accumulator Architectureis PRISC processor shown in
Fig.1. One of the well known accumulator based architecture is PDP-8 by Digital
Equipment Corporation. Almost al of the modern machines have a repertoir of available
General Purpose Registers (GPR) which numbers range from 16 to 32 and in some cases
even more than 32 (SPARC)[4]. The number of operands explicitly specified in the
instructions of a modern architecture today can be 2 or 3. In case of 3 operands an
instruction explicitly specifies the location of both operands and the location where the
result is to be stored. In some architectures (IBM System/360) only 2 operands are
explicitly specified in order to save the bitsin the instruction. As a consequence one of
the operands is always replaced by the result and its content is destroyed. This type of
instructions are sometimes referred to as diadic instructions.

In terms of the operand locations instructions can be clasified as:

(a) Register to Register (or R-R) instructions
(b) Memory to Register (R-M) instructions
(c) Memory to Memory (M - M) instructions

The addresses of the operands are specified within the instruction. From the information
contained in the particular operand field of the instruction, the address of the particular
operand can be formed in many different ways. They are described in the section that
follows.

1.1.1. Addressing Modes

The way in which the address of the operand is formed depends on the location of the
operand as well as choices given in the instruction architecture. It is obvious that in the
case of stack, or accumulator architecture, the address of the operand is implied and there
is no need to specifiy the address of the operand. If the operand isin one of the general
purpose registers (GPR) the operand field in the instruction contains the number (address)
of that particular register. This addressing mode is known as register direct addressing and
is one of the simple ways of pointing to the location of the operand. The addressing of an
operand can be even simpler, in the case where the operand is contained within the
instruction. This mode is called immediate addressing mode. The location pointed to by
the address formed from the information contained in the operand field of an instruction
can contain the operand itself or an address of the operand. The later case isreferred to as
indirect addressing. An example of several ways of forming an address of the operand is
givenin Fig.3.

1.1.2. Data Representation Formats

Another important issue in Computer Architecture is determination of data formats. Data
formats, together with instruction formats were of much influence in detrmining the word
size. Today it is commonly assumed that most of the machines are using a 32-bit word
size (which is today gradually shifting toward 64-bits). Thiswas not common in the past
and there was not a common word size used by the majority of the machines. The size of

COMPUTER ORGANIZATION: Architecture V. G. Oklobdzija

Ingruction Instructon
[| Operand A
Memory
Operand
(a) Immedi ae (b) Direct
Ingruction Instructon
LT A 1]
Memory
:| > Operand
Operand
Reagisters
(©) Indired (d) Register
Instructi on Instructi on
L TR] [1BTD]
Memory Memory
—|—> Operand Operand
Registers Registers
(e) Raegister Indirect (f) Base + Displacement
Instructi on Instructi on
Menory
Im pli cit
Top of Stack Operand
Register _
Registers
(g) Stack (h) Base + Index

Fig. 3. Example of Addresing Modes[5]

36-bit word was quite common (IBM early machines. 701, 704), and word sizes of 12, 18
and 60 bits were represented as well (PDP-8, CDC 6600). In the early days of the
computer development interaction with the operator was done mainly via the teletype
machine (TTY) which used 6-bits to represent a character. Therefore the word sizes of the
machines of that period were determined with objective of being able to pack several
charactersin the machine word. The size of the 1/0 interfaces was common to be 12-bits
(two characters). Anticipation of the new dandard for the representation of digits
(USASCII-8) prompted IBM to introduce an 8-bit characther (EBCDIC) in their
introduction of System/360 architecture, which was also the reason for switching from
36-bit to a new 32-bit word size. Until today 32-bit word size and the multiples of the 8-
bit quantity (byte) has been the most common data format among various computer
architectures introduced afterwards. The new gtandard for representation of digits,
USASCII-8, however, did not materialize. Instead a 7-bit standard for data representation,

COMPUTER ORGANIZATION: Architecture V. G. Oklobdzja

ASCII has been commonly used almost everywhere, except IBM which could not diverge
from their 8-bit character representation which was defined in their architecture.

Every architecture must specify its representation of:

(a) characters

(b) integers

(c) floating-point numbers
(d) logica operands

This representation must specify the number of bits used for every particular field, their
ordered in the computer word, meaning of the special bits, interpretation, and the total
length of data. Data types and data formats as defined in Digital Equipment Corporation
VAX 11/780 architecture are shown in Fig. 4.

1.1.2.1. Fixed Point Data Formats

Fixed point data formats are used to represent integers. Usually full-word (32-bit
quantity), half-word (16-bit quantity) or double-word (64-bits) are used for representation
of integers. They can be signed or unsigned positive integers. In case of signed integers,
one bit is used for representation of sign, in order to represent a range of positive and
negative integers. The most common representation of integersis 2's complement format.
Another, not so common representation of integers is Binary Coded Decimal
representation (BCD) used to represent integers as decimal numbers. Each digit position is
represented with 4-bits. The coding is straight forward for the numbers from 0-9 and the
unused bit combinations are used to represent the sign.

For logical operand aword is treated as a collection of individual bits where each bit is
assigned a Boolean value. A variable bit field can also be defined in cases where the field
can be treated as signed or unsigned field of bits.

1.1.2.2. Floating-Point Data Formats

For scientific computation, dynamic range achievable using integersis not sufficient and
Floating Point Data representation is therefore defined. Each number is represented with
the exponent and fraction (or mantissa). For the representation of a single number, one or
more words could be used if required by the desired precission. Floating Point Data
formats specified in IBM System/360 architecture are shown in Fig. 5.a.

Recently a floating-point standard, known as | EEE 754 has been introduced. The standard
specifies the way datais to be represented as well as the way computation should be
performed. The purpose of this standard isto assure that floating-point computation
would always produce exactlly the same results regardless of which machine or machine
architecture is being used. This can be achieved only if the architecture complies to the
|EEE 754 standard for floating-point computation. Data formats prescirbed by |EEE 754
standard are shown in Fig. 5.b.

1.2. RISC Architecture

A special placein computer architecture has been given to RISC. RISC architecture has
been developed as aresult of the 801 project which started in 1975 at the IBM T.J.Watson
Research Center and was compl eted by the early 1980s [6]. This project was not widely
known to the world outside of IBM and two other projects with similar objectives started
in the early 1980s at the University of California Berkeley and Stanford University [7,8].
The term RISC (Reduced Instruction Set Architecture), used for the Berkeley research

DATA TYPE | size | RANGE (decimal)
Integer Signed Unsigned
Byte 8 bits —128to + 127 Oto 255
Word 16 bits —32768 to + 32767 0 to 65535
Longword 32 bits —=231to + 231 —1 0 to 232 —1
Quadword 64 bits —253 to + 263 —1 Oto 264 —1
Octaword 128 bits —2127 to + 2127 —1 Oto + 2128 —1
Floating Point
F floating 32 bits approximately seven decimal
digits precision

D floating 64 bits approximately sixteen decimal
digits precision

G floating 64 bits approximately fifteen
decimal digits precision

H floating 128 bits approximately thirty-three
decimal digits precision

Packed Decimal 0 to 16 bytes numeric, two digits per byte
String (31 digits) sign in low half of last byte

Character String 0 to 65535 bytes one character per byte

Variable-length 0 to 32 bits dependent on interpretation
Bit Field

Numeric String 0to 31 bytes (DIGITS) | —103—1 to + 10%'—1

Queue > 2 longwords/queue 0 through 2 billion entries

entry

(@)

Figure132.4 (a)Datatypesand (b) data formatsas defined in Digital Equipment Corporation VAX
11/780 architecture. (Source: Digital Equipment Corporation. 1981. VAX Architecture Handbook.
Digital Equipment Corporation, Maynard, MA. With permission.) (continues)

‘WORD

2

15 5
)] [
LONGWORD
31 0
QUADWORQ
2} 0
63 32
QCTAWORD
k]l 0
L
127 9%
F_ FLOATING D_ FLOATING
1S 7 6 0 15 7 6 [¢]
S I EXPONENT] FRACTION N EXPONENT FRACTION
FRACTION FRACTION
3 16 FRACTION
FRACTION
63 48
G _ FLOATING H_ FLOATING
15 14 4 3 0 15 14 0
S EXPONENT FRACTION |: A S j EXPONENT
FRACTION TA+2 FRACTION
FRACTION ‘A+4 FRACTION
FRACTION IA+6 FRACTION
63 48 FRACTION
FRACTION
FRACTION
FRACTION
127 n3
PACKED DECIMAL STRING (+123) CHARACTER STRING (XYZ)
7 4 3 0 7 0
1 2 A X
3 . A e '
wz
VARIABLE-LENGTH BIT FIELD
P+S P+ S-1 P P-1 OJ
A: ADDRESS s 0

®)

Figure 132.4 (continued)

D A+4

D A+4

CA+8

DA+2

A+)
CA+4
TA+6
CA+8
CA+10
TA+12

‘A+4

COMPUTER ORGANIZATION: Architecture V. G. Oklobdzja

1 7 24

S | Exponent Fraction

1 7 56

S | Exponent Fraction

1 7 56

S | Exponent Fraction
Unused Fraction

8 56

(a) IBM System/370 Formats

1 8 23

S| Exponent Fraction

1 11 52

S Exponent Fraction

(b) IEEE 754 Formats

Fig. 5. Floating-Point Data Representation Formats

project, isthe term under which this architecture became widely known and recognized
today.

Development of RISC architecture started as arather "fresh look at existing ideas" [9]

after revealing evidence which surfaced as aresult of examination of how the instructions
are actually used in the real programs. This evidence came from the analysis of the trace
tapes, a collection of millions of the instructions that were executed in the machine
running a collection of representative programs. This evidence showed that for 90% of the
time only about 10 instructions from the instruction repertoire were actually used. Then
the obvious question was asked: "why not favor implementation of those sdected
instructions so that they execute in a short cycle, and emulate the reset of instructions'.

The following reasoning was used: "If the presence of a more complex set adds just one
logic level to a 10 level basic machine cycle, the CPU has been slowed down by 10%.
The frequency and performance improvement of the complex functions must first

overcome this 10% degradation, and then justify the additional cost" [6].

Therefore RISC architecture starts with a small set of most frequently used instructions
which determines the pipeline structure of the machine enabling fast execution of those
instructionsin one cycle. One cycle per instruction is achieved by exploitation of
parallelism through the use of pipelining. It turns out that parallelism through pipelining
is the single most important characteristic of RISC architecture from which all the rest of
the RISC features could be derived. Basically we can characterize RISC as a performance
oriented architecture based on exploitation of parallelismthrough pipelining. The list of
remaining features of the RISC architecture are given in Table 1.

COMPUTER ORGANIZATION: Architecture V. G. Oklobdzja

Table 1. Features of RISC Architecture

Feature Characteristic

Load / Store Architecture All of the operations are Register to
Register. In thisway Operationis
decoupled from the access to memory

Carefully selected sub-set of Control isimplemented in hardware. There

instructions isno microcoding in RISC. Also this set
of instructions is not necessarily small*

Simple Addressing Modes Only the most frequently used addressing

modes are used. Also it isimportant that
they can fit into the existing pipeline.

Fixed size and fixed fields Thisis necessary to be able to decode
instructions instruction and access operandsin one
cycle. Though there are architectures using
two sizes for the instruction format (IBM

PC-RT)

Delayed Branch Instruction The most important performance

(known @ so as Branch and improvement through instruction

Execute) architecture.

One Instruction Per Cycle Possible only through the use of

execution rate, CPl = 1.0 pipelining

Optimizing Compiler Close coupling between the architecture
and the compiler. Compiler "knows" about
the pipeline.

Harvard Architecture Separation of Instruction and Data Cache

resulting in increased memory bandwidth.

* |BM PC-RT Instruction architecture contains 118 instructions, while IBM
RS/6000 (PowerPC) contains 184 instructions. This should be contrasted to
the IBM System/360 containing 143 instructions and IBM System/370
containing 208. The first two are representatives of RISC architecture while
the later two are not.

RISC architecture has proven itself and several mainstream architecturestoday are of the
RISC type. Those include SPARC (used by Sun Microsystems workstations, an outgrow
of Berkeley RISC), MIPS (an outgrow of Stanford MIPS project, used by Silicon
Graphics), and a super-scalar implementation of RISC architecture, IBM RS/6000 (also
known as PowerPC architecture).

Glossary

Computer Architectur e the attributes of a computer as seen by the machine language
programmer which eanble machine language programer to write functionally correct, time
independent programs.

Computer Organization hardware structure encmopasing the major functional units,
data paths, and control.

Principles of Operation a definition of the machine. Term used for computer
architecturein IBM.

Computer Implementation system organization and hardware structure.

10

COMPUTER ORGANIZATION: Architecture V. G. Oklobdzja

Architectural Compatibility ability to run programs on different machines and
expect them to produce the same results.

Upwardly Compatible Architectures ability to efficiently run users programs
written for the old architecture on the new models without modifications to the program,
however, not to be able to do the reverse.

Word Size aquantity defined as the number of bits being operated upon as a unit.

Byte an 8-hit quantity being treated as a unit.

Fixed-Point positive or negative integer.

Floating-Point anumber format containing a fraction and an exponent, used for
representation of numbers covering a wide range of values. Used for scientific
computation where the range is important.

Accumulator a specia register aways containing one operand and possibly aso
receiving the result.

RISC Reduced Instruction Set Computer.

Super-Scalar implementation of an architecture capable of executing more than one
instruction in the same cycle.

Pipelining the technique used to initiate one operation in every cycle without waiting
for the final result to be produced, or completion of previously initiated operations.

References

[1] G.M.Amdahl, G.A. Blaauw, F.P. Brooks, "Architecture of the IBM System/360,
IBM Journal of Research and Development, Vol. 8, No. 2, p. 87-101, April 1964.

[2] D.P. Siewiorek, C.G. Bell, A. Newell, Computer Structures. Principles and
Examples, McGraw-Hill Advanced Computer Science Series, 1982.

[3] R.P.Case, A.Padegs, "Architecture of the IBM System/370", Communications of
ACM, Vol.21, No.1, p. 73-96, January 1978.

[4] The SPARC Architecture Manual, Version 9, David L. Weaver, Tom Germond,
Editors, Prentice Hall 1994.

[5] W. Stalings,Computer Organization and Architecture, MacMillan Publishing
Company, 1993.

[6] G.Radin,"The 801 Minicomputer”, IBM T.J.Watson Research Center, Report RC
9125, November 11, 1981, also in SIGARCH Computer Architecture News 10,
No.2, p.39-47, March 1982.

[71 D.A. Patterson, C.H.Sequin, "A VLSl RISC", IEEE Computer Magazine,
September 1982.

[8] J.L.Hennessy, "VLSI Processor Architecture”, 1EEE Transactions on Computers,
Vol. C-33, No.12, December 1984.

[9] M. E. Hopkins, "A Perspective on the 801 / Reduced Instruction Set Computer”,
IBM Systems Journal, Vol. 26, No.1, 1987.

[10] G.A. Blaauw, F.P. Brooks, "The Structure of System/360", 1BM Systems Journal,
Vol.3, No.2, p.119-135, 1964.

11

COMPUTER ORGANIZATION: Architecture V. G. Oklobdzja

For Further Information

A good introductory text for computer architecture is book by William Stalings,
"Computer Organization and Architecture”, MacMillan Publishing Company, 1993.

For advanced reader, more information on computer hardware, design and performance
analysis can be found in book by David A. Patterson and John L. Hennessy," Computer
Organization and Design: The Hardware / Software Interface’, Morgan Kaufmann
Publishers, 1994. For quantitative analysis of instruction usage and various factors
affecting performance, as well as insight into RISC architecture, a book: "Computer
Architecture: A Quantitative Approach”, by the same authors and publisher, is highly
recommended.

An important historical insight in development of computer architecure is an interview
with Richard Case and Andris Padegs, " Case Sudy: IBM's Systermy/360-370 Architecture”,
conducted by editors David Gifford and Alfred Spector in Communications of ACM,
Vol.30, No.4, April 1987 aswell as paper "The Architecture of IBM's Early Computers"
published in the IBM Journal of Research and Developmnet, Vol. 25, No. 5, September
1981. The first chapter of the book by David J. Kuck, "The Structure of Computers and
Computation™, Wiley 1978, contains an excellent overview of the history of computer
development.

Various usefull articles on computer architecture, peformance and coputer systems can be
found in Computer Magazne published by the Computer Society of |EEE.

More advanced articles on the subject of computer architecture, performance and computer
design could be found in the | EEE Transactions on Computers published by |EEE.

For subscription information regarding | EEE publications contact: |EEE Service Center,
445 Hoes Lane, P.O.Box 1331, Piscataway, NJ 08855-1331 or phone (800) 678-1EEE.

12

