
COMPUTER ORGANIZATION:
Architecture

Vojin G. Oklobdzija
Advanced Computer System Engineering Laboratory

Electrical and Computer Engineering Department
University of California

Davis, CA 95616

1. Architecture

The term Computer Architecture was first defined in the paper by Amdahl, Blaauw and
Brooks of IBM Corporation announcing IBM System/360 computer family on April 7,
1964. On that day IBM Corporation introduced, in the words of IBM spokesman, "the
most important product announcement that this corporation has made in its history".
There were six models introduced originally, ranging in performance from 25 to 1. Six
years later this performance range was increased to about 200 to 1. This was the key
feature which prompted IBM's effort to design an architecture for a new line of computers
that are to be code compatible with each other. The recognition that architecture and
implementation could be separated and that one need not imply the other led to
establishment of a common System/360 machine architecture implemented in the range
of models.

 In their milestone paper Amdahl, Blaauw and Brooks [1] identified three interfaces:

• architecture
• implementation
• realization

They defined computer architecture as the attributes of a computer seen by the machine
language programmer as described in the Principles of Operation. IBM referred to the
Principles of Operation as a definition of the machine which eanbles machine language
programer to write functionally correct, time independent programs that would run across
a number of implementations of that particular architecture. Therefore, the architecture
specification covers: all functions of the machine that are observable by the program [2].
On the other hand Principles of Operation. are used to define the functions that the
implementation should provide. In order to be functionally correct it is necessary that the
implementation conform to the Principles of Operation. In this way, for the first time in
the history of computer development, IBM has separated machine definition from machine
implementation thus enabling them to bring several machine implementations in a wide
price and peformance range that has reached 2000 to 1 22 years later after the introduction
of System/360.

Principles of Operation definescomputer architecture which includes:

• instruction set
• instruction format
• operation codes
• addressing modes
• all registers and memor locations that may be directly manipulated

or tested by a machine language program
• formats for data representation

Machine Implementation was defined as the actual system organization and hardware
structure encmopasing the major functional units, data paths, and control.

COMPUTER ORGANIZATION: Architecture V. G. Oklobdzija

2

Machine Realization includes issues such as: logic technology, packaging and
interconnections.

An example of a simple architecture of an 8-bit processor which uses 2's complement
representation to represent integers, and contains 11 instructions is shown in Fig. 1. The
figure contains all of the necessary information for the architecture to be defined.

Instructions

ADD RA,RB RB ← RA + RB

LOAD RA,RB RB ← M[RA]
STORE RA,RB M[RA] ← RB

CLEAR RB RB ← R0 (=0)

JAL RB PC ← RB
RB ← PC

JUMP RB PC ← RB

JUMPN RB If N then PC ← RB

COM RB RB ← ∼ (RB)

BEQ RB If Z then PC ← RB

INCR RB RB ← RB + 1

LDI RB,data RB ← M[PC + 1]

Data Formats

2’s complement, integers,
represenatble range: -128 to +127

0 7

S

General Purpose Registers

 Bit: 7 MSB 0
LSB

R0 = 0 (hardwired zero)

R1

R2

R3

R4

R5

R6

R7

Status Register

 Z N

Z - result = zero N- result
negative

 Addressing Modes: Register
Indirect

Memory

GPR

RA

Address

Operand

Fig . 1 . Example of a Minimal Architecture: PRISC

COMPUTER ORGANIZATION: Architecture V. G. Oklobdzija

3

Separation of the machine architecture from implementation enabled several embodiment
of the same architecture to be built. Operational evidence proved that architecture and
implementation could be separated and that one need not imply the other. This separation
made it possible to transfer programs routinely from one model to another and expect
them to produce the same result which defined the notion of architectural compatibility.
Implementation of the whole line of computers according to a common architecture
requires unusual attention to details and some new procedures which are described in the
Architecture Control Proceedure. The design and control of system architecture is an
ongoing process which objective is to remove ambiguities in the definition of the
architecture and in some cases, adjust the functions provided.

However, definiton of an architecture facilitated future development and introduction of
not only new models but new upwardly compatible architectures. The architecture is
upwardly compatible if the user's programs written for the old architecture run efficiently
on the new models without modifications to the program. The limitations to upward
compatibility are that the new systems have the same or equivalent facilities and that the
programs have no time dependence and use only model-independent functions defined in
the Principles of Operation, and not use unassigned formats and operation codes [3]. An
exapmple of upward compatibility is IBM System/370 introduced in June, 1970.

1.1. Instruction Set

Instruction set defines a basic set of operations as specified by the architecture which a
particular implementation of that architecture is required to perform. An instruction of the
instruction set defines an atomic operation that may alter data, the machine state, or
perform an I/O operation. In terms of the operation performed we can broadly clasify the
instructions of the instruction set as falling in one of the four general categories:

1. Instructions performing transformation of data
2. Instructions altering the program flow
3. Instruction performing data movement
4. System instructions

The first category includes instructions performing arithmetic and logical operations. The
operations can be arithmetic, string, logical or floating-point. They are performed in the
appropriate functional units of the particular implementation of the architecture.

Instructions affecting the flow of the program and/or machine state are branches, calls and
returns, and loop control instructions.

The third category of instructions performs data movement across different functional
units of the machine. Examples of such instructions are LOAD instruction that loads a
content of a memory location to a particular register in the General Purpose Register file
(GPR), or STORE instruction that does the opposite. MOVE instruction that moves a
block of data from one memory location to another, or the instruction that moves the data
to and from the STACK or GPR.

The System instructions change the system's mode and are not generally visible by the
programer that programs in the problem state. Problem state is the domain of the
machine visible to a programer executing general purpose program, as opposed to the
system state which is visible to the operating system.

An example of the instruction set specified in the IBM System/360 architecture is given
in Fig.2.

COMPUTER ORGANIZATION: Architecture V. G. Oklobdzija

5

We can further classify instructions in terms of the number of explicit operands, operand
locations and type and size of the operands.

Instruction architecture that specifies no explicit operands is better known as Stack
Architecture. In the Stack Architecture all operations are performed on the data that is on
the top of the stack. Examples of Stack Architecture are HP 3000/70 made by Hewllet-
Packard and B5500 by Burroughs. In the accumulator architecture all of the operations are
performed between the operand specified in the instruction and the Accumulator, which is
a special register. An example of Accumulator Architecture is PRISC processor shown in
Fig.1. One of the well known accumulator based architecture is PDP-8 by Digital
Equipment Corporation. Almost all of the modern machines have a repertoir of available
General Purpose Registers (GPR) which numbers range from 16 to 32 and in some cases
even more than 32 (SPARC)[4]. The number of operands explicitly specified in the
instructions of a modern architecture today can be 2 or 3. In case of 3 operands an
instruction explicitly specifies the location of both operands and the location where the
result is to be stored. In some architectures (IBM System/360) only 2 operands are
explicitly specified in order to save the bits in the instruction. As a consequence one of
the operands is always replaced by the result and its content is destroyed. This type of
instructions are sometimes referred to as diadic instructions.

In terms of the operand locations instructions can be clasified as:

(a) Register to Register (or R-R) instructions
(b) Memory to Register (R-M) instructions
(c) Memory to Memory (M - M) instructions

The addresses of the operands are specified within the instruction. From the information
contained in the particular operand field of the instruction, the address of the particular
operand can be formed in many different ways. They are described in the section that
follows.

1.1.1. Addressing Modes

The way in which the address of the operand is formed depends on the location of the
operand as well as choices given in the instruction architecture. It is obvious that in the
case of stack, or accumulator architecture, the address of the operand is implied and there
is no need to specifiy the address of the operand. If the operand is in one of the general
purpose registers (GPR) the operand field in the instruction contains the number (address)
of that particular register. This addressing mode is known as register direct addressing and
is one of the simple ways of pointing to the location of the operand. The addressing of an
operand can be even simpler, in the case where the operand is contained within the
instruction. This mode is called immediate addressing mode. The location pointed to by
the address formed from the information contained in the operand field of an instruction
can contain the operand itself or an address of the operand. The later case is referred to as
indirect addressing. An example of several ways of forming an address of the operand is
given in Fig.3.

1.1.2. Data Representation Formats

Another important issue in Computer Architecture is determination of data formats. Data
formats, together with instruction formats were of much influence in detrmining the word
size. Today it is commonly assumed that most of the machines are using a 32-bit word
size (which is today gradually shifting toward 64-bits). This was not common in the past
and there was not a common word size used by the majority of the machines. The size of

COMPUTER ORGANIZATION: Architecture V. G. Oklobdzija

6

Instruction
Operand

Instruc tion
A

(a) Immediate (b) Direct

(c) Indirect (d) Register

(e) Register Indirec t (f) Base + Displacement

(g) Stack

Opera nd

Memory

Opera nd

Instruct ion
A

Opera nd

Memory

Instruction

R

Opera nd

Registers

Instruction
R

Registers

Opera nd

Memory

Instruction

Top of Stac k
Re gis ter

Im plicit

Instruction
D

Registers

Operand

Memory
B

Instruction

X

Registers

Operand

Memory
B

(h) Base + Inde x

Fig . 3 . Example of Addresing Modes [5]

36-bit word was quite common (IBM early machines: 701, 704), and word sizes of 12, 18
and 60 bits were represented as well (PDP-8, CDC 6600). In the early days of the
computer development interaction with the operator was done mainly via the teletype
machine (TTY) which used 6-bits to represent a character. Therefore the word sizes of the
machines of that period were determined with objective of being able to pack several
characters in the machine word. The size of the I/O interfaces was common to be 12-bits
(two characters). Anticipation of the new standard for the representation of digits
(USASCII-8) prompted IBM to introduce an 8-bit characther (EBCDIC) in their
introduction of System/360 architecture, which was also the reason for switching from
36-bit to a new 32-bit word size. Until today 32-bit word size and the multiples of the 8-
bit quantity (byte) has been the most common data format among various computer
architectures introduced afterwards. The new standard for representation of digits,
USASCII-8, however, did not materialize. Instead a 7-bit standard for data representation,

COMPUTER ORGANIZATION: Architecture V. G. Oklobdzija

7

ASCII has been commonly used almost everywhere, except IBM which could not diverge
from their 8-bit character representation which was defined in their architecture.

Every architecture must specify its representation of:

(a) characters
(b) integers
(c) floating-point numbers
(d) logical operands

This representation must specify the number of bits used for every particular field, their
ordered in the computer word, meaning of the special bits, interpretation, and the total
length of data. Data types and data formats as defined in Digital Equipment Corporation
VAX 11/780 architecture are shown in Fig. 4.

1.1.2.1. Fixed Point Data Formats

Fixed point data formats are used to represent integers. Usually full-word (32-bit
quantity), half-word (16-bit quantity) or double-word (64-bits) are used for representation
of integers. They can be signed or unsigned positive integers. In case of signed integers,
one bit is used for representation of sign, in order to represent a range of positive and
negative integers. The most common representation of integers is 2's complement format.
Another, not so common representation of integers is Binary Coded Decimal
representation (BCD) used to represent integers as decimal numbers. Each digit position is
represented with 4-bits. The coding is straight forward for the numbers from 0-9 and the
unused bit combinations are used to represent the sign.

For logical operand a word is treated as a collection of individual bits where each bit is
assigned a Boolean value. A variable bit field can also be defined in cases where the field
can be treated as signed or unsigned field of bits.

1.1.2.2. Floating-Point Data Formats

For scientific computation, dynamic range achievable using integers is not sufficient and
Floating Point Data representation is therefore defined. Each number is represented with
the exponent and fraction (or mantissa). For the representation of a single number, one or
more words could be used if required by the desired precission. Floating Point Data
formats specified in IBM System/360 architecture are shown in Fig. 5.a.
Recently a floating-point standard, known as IEEE 754 has been introduced. The standard
specifies the way data is to be represented as well as the way computation should be
performed. The purpose of this standard is to assure that floating-point computation
would always produce exactlly the same results regardless of which machine or machine
architecture is being used. This can be achieved only if the architecture complies to the
IEEE 754 standard for floating-point computation. Data formats prescirbed by IEEE 754
standard are shown in Fig. 5.b.

1.2. RISC Architecture

A special place in computer architecture has been given to RISC. RISC architecture has
been developed as a result of the 801 project which started in 1975 at the IBM T.J.Watson
Research Center and was completed by the early 1980s [6]. This project was not widely
known to the world outside of IBM and two other projects with similar objectives started
in the early 1980s at the University of California Berkeley and Stanford University [7,8].
The term RISC (Reduced Instruction Set Architecture), used for the Berkeley research

COMPUTER ORGANIZATION: Architecture V. G. Oklobdzija

9

1 7 24

S Exponent Fraction

1 7 56

S Exponent Fraction

1 7 56

S Exponent Fraction

Unused Fraction

8 56

(a) IBM System/370 Formats

1 8 23

S Exponent Fraction

1 11 52

S Exponent Fraction

(b) IEEE 754 Formats

Fig . 5 . Floating-Point Data Representation Formats

project, is the term under which this architecture became widely known and recognized
today.

Development of RISC architecture started as a rather "fresh look at existing ideas" [9]
after revealing evidence which surfaced as a result of examination of how the instructions
are actually used in the real programs. This evidence came from the analysis of the trace
tapes, a collection of millions of the instructions that were executed in the machine
running a collection of representative programs. This evidence showed that for 90% of the
time only about 10 instructions from the instruction repertoire were actually used. Then
the obvious question was asked: "why not favor implementation of those selected
instructions so that they execute in a short cycle, and emulate the reset of instructions".
The following reasoning was used: "If the presence of a more complex set adds just one
logic level to a 10 level basic machine cycle, the CPU has been slowed down by 10%.
The frequency and performance improvement of the complex functions must first
overcome this 10% degradation , and then justify the additional cost" [6].

Therefore RISC architecture starts with a small set of most frequently used instructions
which determines the pipeline structure of the machine enabling fast execution of those
instructions in one cycle. One cycle per instruction is achieved by exploitation of
parallelism through the use of pipelining. It turns out that parallelism through pipelining
is the single most important characteristic of RISC architecture from which all the rest of
the RISC features could be derived. Basically we can characterize RISC as a performance
oriented architecture based on exploitation of parallelism through pipelining. The list of
remaining features of the RISC architecture are given in Table 1.

COMPUTER ORGANIZATION: Architecture V. G. Oklobdzija

10

Table 1. Features of RISC Architecture

 Feature Characteristic

Load / Store Architecture All of the operations are Register to
Register. In this way Operation is
decoupled from the access to memory

Carefully selected sub-set of
instructions

Control is implemented in hardware. There
is no microcoding in RISC. Also this set
of instructions is not necessarily small*

Simple Addressing Modes Only the most frequently used addressing
modes are used. Also it is important that
they can fit into the existing pipeline.

Fixed size and fixed fields
instructions

This is necessary to be able to decode
instruction and access operands in one
cycle. Though there are architectures using
two sizes for the instruction format (IBM
PC-RT)

Delayed Branch Instruction
(known also as Branch and
Execute)

The most important performance
improvement through instruction
architecture.

One Instruction Per Cycle
execution rate, CPI = 1.0

Possible only through the use of
pipelining

Optimizing Compiler Close coupling between the architecture
and the compiler. Compiler "knows" about
the pipeline.

Harvard Architecture Separation of Instruction and Data Cache
resulting in increased memory bandwidth.

* IBM PC-RT Instruction architecture contains 118 instructions, while IBM
RS/6000 (PowerPC) contains 184 instructions. This should be contrasted to
the IBM System/360 containing 143 instructions and IBM System/370
containing 208. The first two are representatives of RISC architecture while
the later two are not.

RISC architecture has proven itself and several mainstream architectures today are of the
RISC type. Those include SPARC (used by Sun Microsystems workstations, an outgrow
of Berkeley RISC), MIPS (an outgrow of Stanford MIPS project, used by Silicon
Graphics), and a super-scalar implementation of RISC architecture, IBM RS/6000 (also
known as PowerPC architecture).

Glossary
Computer Architecture the attributes of a computer as seen by the machine language
programmer which eanble machine language programer to write functionally correct, time
independent programs.

Computer Organization hardware structure encmopasing the major functional units,
data paths, and control.

Principles of Operation a definition of the machine. Term used for computer
architecture in IBM.

Computer Implementation system organization and hardware structure.

COMPUTER ORGANIZATION: Architecture V. G. Oklobdzija

11

Architectural Compatibility ability to run programs on different machines and
expect them to produce the same results.

Upwardly Compatible Architectures ability to efficiently run users programs
written for the old architecture on the new models without modifications to the program,
however, not to be able to do the reverse.

Word Size a quantity defined as the number of bits being operated upon as a unit.

Byte an 8-bit quantity being treated as a unit.

Fixed-Point positive or negative integer.

Floating-Point a number format containing a fraction and an exponent, used for
representation of numbers covering a wide range of values. Used for scientific
computation where the range is important.

Accumulator a special register always containing one operand and possibly also
receiving the result.

RISC Reduced Instruction Set Computer.

Super-Scalar implementation of an architecture capable of executing more than one
instruction in the same cycle.

Pipelining the technique used to initiate one operation in every cycle without waiting
for the final result to be produced, or completion of previously initiated operations.

References
[1] G.M.Amdahl, G.A. Blaauw, F.P. Brooks, "Architecture of the IBM System/360,

IBM Journal of Research and Development, Vol. 8, No. 2, p. 87-101, April 1964.
[2] D.P. Siewiorek, C.G. Bell, A. Newell, Computer Structures: Principles and

Examples, McGraw-Hill Advanced Computer Science Series, 1982.
[3] R.P.Case, A.Padegs, "Architecture of the IBM System/370", Communications of

ACM, Vol.21, No.1, p. 73-96, January 1978.
[4] The SPARC Architecture Manual, Version 9, David L. Weaver, Tom Germond,

Editors, Prentice Hall 1994.
[5] W. Stallings,Computer Organization and Architecture, MacMillan Publishing

Company, 1993.
[6] G. Radin, "The 801 Minicomputer", IBM T.J.Watson Research Center, Report RC

9125, November 11, 1981, also in SIGARCH Computer Architecture News 10,
No.2, p.39-47, March 1982.

[7] D.A. Patterson, C.H.Sequin, "A VLSI RISC", IEEE Computer Magazine,
September 1982.

[8] J. L. Hennessy, "VLSI Processor Architecture", IEEE Transactions on Computers,
Vol. C-33, No.12, December 1984.

[9] M. E. Hopkins, "A Perspective on the 801 / Reduced Instruction Set Computer",
IBM Systems Journal, Vol. 26, No.1, 1987.

[10] G.A. Blaauw, F.P. Brooks, "The Structure of System/360", IBM Systems Journal,
Vol.3, No.2, p.119-135, 1964.

COMPUTER ORGANIZATION: Architecture V. G. Oklobdzija

12

For Further Information
A good introductory text for computer architecture is book by William Stalings,
"Computer Organization and Architecture", MacMillan Publishing Company, 1993.

For advanced reader, more information on computer hardware, design and performance
analysis can be found in book by David A. Patterson and John L. Hennessy,"Computer
Organization and Design: The Hardware / Software Interface", Morgan Kaufmann
Publishers, 1994. For quantitative analysis of instruction usage and various factors
affecting performance, as well as insight into RISC architecture, a book: "Computer
Architecture: A Quantitative Approach", by the same authors and publisher, is highly
recommended.

An important historical insight in development of computer architecure is an interview
with Richard Case and Andris Padegs, "Case Study: IBM's System/360-370 Architecture",
conducted by editors David Gifford and Alfred Spector in Communications of ACM,
Vol.30, No.4, April 1987 as well as paper "The Architecture of IBM's Early Computers"
published in the IBM Journal of Research and Developmnet, Vol. 25, No. 5, September
1981. The first chapter of the book by David J. Kuck, "The Structure of Computers and
Computation", Wiley 1978, contains an excellent overview of the history of computer
development.

Various usefull articles on computer architecture, peformance and coputer systems can be
found in Computer Magazine published by the Computer Society of IEEE.

More advanced articles on the subject of computer architecture, performance and computer
design could be found in the IEEE Transactions on Computers published by IEEE.

For subscription information regarding IEEE publications contact: IEEE Service Center,
445 Hoes Lane, P.O.Box 1331, Piscataway, NJ 08855-1331 or phone (800) 678-IEEE.

