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Realities

N

@ Power has emerged as the #1 limiter of
design performance beyond the 65nm
generation.

#® Dynamic and static power dissipation limit
achievable performance due to fixed caps on
chip or system cooling capacity.

@® Power related signal integrity issues (IR drop,
L di/dt noise) have become major sources of
design re-spins.
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Leakage Current “Predictions”
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Grove calls leakage chip designers' top problem

By Ron Wilson and David Lammers

EE Times
December 13, 2002 (4:20 p.m. EST) P | S

SAN FRANCISCO — Power consumption, particularly off-state
current leakage, is the major technical problem facing the
semiconductor industry, said Andrew Grove, chairman of the
board at Intel Corp.

In a luncheon address at the International Electron Devices
Meeting (IEDM) here, Grove said that as chip densities increase
to a billion transistors or more, power is "becoming a limiter of
integration.”



Trends and Needs

N

# Technology trends:
= Power and Frequency are increasing.
B VDD 1S decreasing (V4 slower to manage leakage).
] IDD increasing (reliability/electromigration!).

@ Impact of these trends:
= IR and L di/dt have more impact on noise.
= V5 variation has more impact on delay.

@ Critical need:

= Understand supply induced noise variability
and its future trends.
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Variability Sources

N

Physical
# Changes in characteristics of devices and wires.

@ Caused by IC manufacturing process & wear-out
(electro-migration).

# Time scale: 10%sec (years).

Environmental

@ Changes in V5, Temperature, local coupling.
# Caused by the specifics of the design implementation.
@ Time scale: 10°to 10-°sec (clock tick).




Variability Time Scales

N

Signal Coupling SOl History Temperature Process Line
IR drop Vp/Package Noise Electro-Migration
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Variability Distribution

N

Physical
# Die to die variation
m /mposed upon design (constant regardless of design).
m \Well modeled via worst-case files.
# \Within-die variation
m Co-generated between design & process (depend
on details of the design).
m Example: Via resistance variation vs. via density.

Environmental
@ Only makes sense within-die.
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Variability vs. Uncertainty
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@ Variability: known quantitative relationship to a source
(readily modeled and simulated).

m Designer has option to nu// out impact.
m Example: power grid noise.

# Uncertainty: sources unknown, or model too
difficult/costly to generate or simulate.

m Usually treated by some type of worst-case analysis.
m Example: AT, within die variation.

# Lack of modeling resources often transforms variability
to uncertainty.

m Example: switching probability assessment.

12



S o nassit ISR
Uncertainty in Design-Process

N

®
= Portions not yet defined.
= Changes in specification.
# Modeling uncertainty:
= Lack of detail in models.
= Pessimism/conservatism.
# Processing uncertainty:
= Manufacturing noise (AL, complete
Vo).
= Changes as technology
matures.

= Accuracy needed
relatively late in the Time
design cycle.

Uncertainty

Accurate process
noise needed

J Design

Model

Process

13



Variability & Uncertainty

N

# In the power delivery area, large amounts of
uncertainty exist (more than for timing...).

@ Circuit activity Is seldom known well enough
to allow accurate prediction.

= Relatively well known fact.

# Little is known on the dependence of the
various components of power on technology
and its variability (hence this tutorial).

14



N

Outline

@ Introduction
# Variability & Uncertainty
@ Power Delivery Components

m Circuits (power dissipation)
= Decoupling Capacitance
= On-Chip Power Grid
» Package
@® Tool Requirements
@ Conclusions

15



Power Delivery Components
4

N
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Power Delivery Components
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Power Variability Components

# Board level, not addressed in this work.

#® Package level.

= Variability in package parasitics (R & L).
@ On-Chip Power Grid level.

= Variability in grid parasitics (R).
@ Circuit level.

= Variability in static and dynamic power
consumed.

= Variability in decoupling capacitance.

18
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Example: Power Grid Noise

N

# Grid Is predominantly resistive.

# Package is predominantly inductive.

# Load is modeled as a current.

# Other circuits ~ lossy decoupling capacitance.

volizge
Package Grid I‘i}? ot
"4 Current
/—§ﬁ
Decoupling :: <‘>
Capacitance Load

time
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Noise Model E@
@® Current modeled as: (

=0 t<O

4 Current
| = ut t<t,
| = p(2t-t) b2t
| =0 t>2t1, 1L
@ Ignoring L, maximum noise is:

V

max

u t,R, —uR%,Cy (L — et ;p time

DC Decap
T = (Rg + R,) C,

~pt R,/ (Ry+ Ry)
(for large C,)

Originally presented at SLIP ‘02 20
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Noise Model + L (D R
| el

@® With package, maximum noise becomes:
Vmax ~ U tp Rg + HL — U R2g Cd (1 — e_tph)
DC Pac}age Decap
@ Accurate expression:
Vmax: MtpRg +ul —p Rngd + \ljl * \VZ

e; = exp —(z+B)t,/2C L e, = exp —(t—B)t,/2C L
B = (12— 4LCy)*

Vi=( +e)puL-CyRD /2
WV, =(e,-e,) uCqy (t RZ-L(3R,Ry) / 2B
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Noise Trends 00 R ¢
B
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Package Decap

~Same

Each of these components has a variability/tolerance!
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Some Source of Power Variability
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Decoupling'__|
Capacitance
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Circuit Power Dissipation

@ Circuits dissipate power when performing
function.

N P i 0 § f C V2
s C Is a combination of wire and device

capacitance (different sources of variability!).

= V Is the power supply (more than one may exist on
a chip).

s f IS the frequency of operation.

= The o factor models switching frequency &
second order effects (e.g. short circuit current).

25
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Circuit Power Breakdown
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#® [or a modern digital system, power can be
broken down by major type of component.

1. Clock distribution and latches.
2. Data-Path and custom logic.
3. Arrays and Memories.

4. Random Logic (cell based).

5. Embedded cores (recursive).

#® Each design has a different breakdown, so
generalizations are not very useful.

26
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Component Power Characteristics
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@ Each type of component lends itself to a
specific form of power estimation, and hence
power variability estimation.

@ Example: Clocks.

= Large amount of power (C 7).

= Highest frequency in the chip (f T).
= Highest switching probability (o T).

= Variability from technology, Vyp and from
design specifics (clock gating).

27
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Component Power Variability

# Rough breakdown of sensitivity to variability
by component (mostly based on my opinion).

= Denote highest 2 components... (ymwv).

o C wire | C device V f
Clock X X
Data Path X X
Arrays X X
Fancom | x x

28
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Specifics: Random Logic

N

@ Probably the hardest of the various
components to analyze.

= Inputs usually ill specified, requiring higher
level architectural simulation in order to
properly assess.

@® BUT... usually a modest portion of overall chip
POWEI (for u-Processor like designs).

= Not often worth the effort except for
designs with a large synthesized portion.

29
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= 37 Inputs, 7 output.
m 160 gates, aaws 3aw

40 NOT, 18 XOR 2).

Example: ISCAS C432 Circuit

# Small combinational-only circuit.

9, 64 NAND 2, 1 NAND 3, 14 NAND 4, 19 NOR 2,

@ Strategy: explore process/pattern dependence.

s Could have also looked

@ Pattern: apply 50 ranc
with 20% of the bits c

@ Process: apply 58 unic

at-Vyy-and-T!

om patterns (@1GHz)
nanging each cycle.

ue sets of MOSIS 0.18u

CMOS parameters (represent wafer averages).

30
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Example: 1,5 Waveform
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Example: Detail Waveform

N
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Pattern Influence Metric

#® Compare peaks within each clock cycle.
= Highest vs. lowest peak V clock cycles.

1.0E-02

IDD

0.0E+00 -

-1.0E-02 -

-2.0E-02

-3.0E-02 +

-4.0E-02 -

-5.0E-02 | Tlme‘

1.0E-08 1.1E-08 1.2E-08 1.3E-08 1.4E-08 1.5E-08 1.6E-08 1.7E-08 1.8E-08 1.9E-08 2.0E-08

33



N

|, Peaks Per Clock Cycle

# Maximum absolute value of 1,5 V clock cycle.
# Max/Min range indicates overall influence.

0.05 +
Peak I
. Max
0.04 - o °
.
0.03 - .
.
oo . g ¢
N * L 2 * .’ L 2
0.02 . . 0’ . o« * e
o * o* ¢ °
* ¢ * P 4
. o®
0.01 « . * ]
V. Min
0 T T T T T T T CyCIQ
0 5 10 15 20 25 30 35 40 45 50
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|, Peak Range Analysis

p
@ Compare max-min range vs. process & pattern.
~ Different process settings Same input,
) g different processing
A 1 E: k
)
=
L
g Pattern
% Matrix of Peak I, values > Ranges
9
&)
L . _/
Y Same processing,

Process Ranges different inputs
35
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IDD Range Statistics

35 4

30 Process
Ranges

25

20

15

10

Pattern
Ranges

~ 10x more
Influence
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Conclusion

N

@ For random logic, switching pattern dominates
the variability.

= Knowing the activity factor (o) Is crucial.

@ Since the process dependency Is weak, higher
level simulation (i.e. not Spice) can do well.

» Details of process dependence can be
abstracted away without too much loss of
Information.

# \We have not looked at V,, and Temperature!
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More Conclusions

# For other components in the design, special
purpose estimation technigues can be used to
reduce the task to a few representative circuit
simulations.

= Example: cross-sections of a RAM + overall
expected activity factors.

38



N

Outline

@ Introduction
# Variability & Uncertainty
@ Power Delivery Components

m Circuits (power dissipation)
= Decoupling Capacitance
= On-Chip Power Grid
» Package
@® Tool Requirements
@ Conclusions

39




N

o o, ISLRED O N
Decoupling Capacitance

#® MOSFETs have intrinsic and extrinsic linear
and non-linear capacitances.

#® When a circuit is not active, these capacitors
act as a reservoir of charge which can be

supplied to neighboring active circuits.

i

40



Decoupling Example: Inverter

4

o

g |

#® With the input True,
certain capacitors are
discharged, while others
are charged.

#® The charged capacitors
are the ones that can
act as decoupling.

# Total decoupling
capacitance depends on
topology and on the
state of the circuit.

41
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Intentional Decoupling Capacitors

N

@ Designers often add
“Intentional” decoupling
capacitors.

@ A possible design might
use the C;, components.

#® Relatively easy to
characterize, so will not
discuss further in this
work.

42



Decoupling Capacitance Estimation

N

# Heuristic method may rely on total device
area (— total capacitance) and de-rate it by
some factor to account for the fact that
certain components are charged / discharged.

lCd:OLNZAN+OLPZAP

= A represents device area, o Is the de-rating
factor.

s Summations over all devices.

@ A more precise method can rely on simulation.

43
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@ Use AC analysis!

l oo

® o
1 —»

o~ Circuit of
1> Interest

0 —»
VDD @9 0 —»

Inputs set to DC
values!

Simulation-Based Estimation

IDD

Equivalent —
RC circuit

Frequenc§/

O
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Simulation Example

# Same ISCAS C432 combinational circuit example.

1.4E-07

1.3E-07

1.2E-07

1.1E-07

1.0E-07

9.0E-08

8.0E-08

7.0E-08

Mag(lpp)

Input = 101110000000000111110010000001101101
Model:

R = 13.3MQ

C = 16.7fF

AN

o

/\/\/\/\/\/\/\/\/\/\/\/\/\/\/\/\/\/\//\/ 7NN
A\Vavawvavewevevewevewewvewewvewave ve Ve g

Frequency
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Pattern Dependence

# 64 different random input patterns, get R/C for each.

25 4

20 +

15 +

10 +

© © QA QA QA A\ \ @
AT S S S T S
© § N P % S
% . N' N‘ N‘ N' N'

30 4

25 4

20 4

15

10 -
) I
0 T . T T T T T 1

1.62E-11 1.64E-11 1.66E-11 1.68E-11 1.70E-11 1.72E-11 More

R C
min 7.87E+06 1.64E-11 Very little
max 1.49E+07 1.72E-11 pattern
1) 1.10E+07 1.67E-11 dependence!
c 1.87E+06 2.OOE-13—|7
o/ (%) 17.0 1.7]
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Decoupling Capacitance Variability

N

@ Variables of interest:
= Technology
= Circuit State (DC input pattern)

#® Technology modeled via same collection of 58
sets of MOSIS 0.18u parameters representing
lot averages as used before.

# State modeled by a random sample of 64
unigue input vectors.

a7
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N

Capacitance Variability Analysis

# Capacitance is approximately constant with
respect to both process and pattern.

@® Coefficient of variance (o/n) Is less than 2%.

1.85E-11

Capacitance :
1.80E-11 -
1.75E-11 - !

1.70E-11
1.65E-11

1.60E-11 -

1.55E-11
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Resistance Variability Analysis

# Resistance varies substantially with respect to
both process and pattern.

# Note that Resistance = Leakage!

00000000

+07 -

5.00E+07 -

4.00E+07 - I

3.00E+07 - ‘
0E+07 -

00000000

Re3|stance

00000000
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Resistance Variability Analysis

N

#® Compare means vs. process and vs. pattern.
Different process settings

d
<

A O > u\
(p) Hn
- n
) 9l
= L
S
o H > Pattern
= Hn
GC) U Means
et 1]
5
J=
[ 9l
45
\/ =
plplpipipiplp winlplpy
~,

Process Means
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Process vs. Pattern Means

N

L

Pattern

Process
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Conclusions

N

# Decoupling capacitance can be estimated
using a simple AC analysis.

@ The capacitive part of the decoupling
capacitance of a circuit iIs ~ constant.

@ The resistive part of the decoupling
capacitance of a circuit depends strongly on
technology and weakly on circuit state.

m For certain types of analyses, however, the
resistance may not be needed.

m BUT... Resistance variations are useful to
assess leakage variations.
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On-Chip Power Grid

N
\J

Connection to Package

Ll L al

d/yd// -

/7 //

v v v /
[J [J

Connection to Circuits
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On-Chip Power Grid Variability

N

@ Determine contribution to IR drop variability
of various grid system components:

= Grid wires.
m Package resistance.
= Spatial power consumption (design).

Methodology:

@ Perform a Design Experiment, measure total
voltage drop (differential) and create a linear
model with respect to design parameter.

55



Design Experiment

N

# 3 x 3 C4 region.
= —1500 x 1500 p.

# 6 levels of metal

m Two at 1x, two at 2x,
and two at 4x
thickness.

s Both VDD and GND
wires included.

# Nominal drop of 10% of
Vp at the center.

NN

I
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Power Grid Wires

® M1, M2 15% density p=0.08¢/
® M3, M4 20% density p=0.04¢/
® M5, M6 25% density p=0.02¢Y/

@® Used a 10% tolerance In grid resistivity.

= Since the goal is to build a model, exact
values are not important. Relative
Importance of the various effects Is.

@ Package resistance taken as 0.25Q per pin
with a 10% tolerance (remember for later...).
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#® Three variables
In experiment:

1. Loading (DC)
at test point.

2. Loading in local
loading blocks.

3. Loading in
global loading
blocks.

Global
Loading

58



Example Output: Vg Distribution
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Experiment Structure

N

# Used Latin-Hypercube sampling to generate a
sample of 200 uniformly distributed parameter
settings for:

= Metal sheet resistivities.
= Local and Global loading parameters.
= Package per-pin resistance.

# Larger sample sizes produced essentially the
same results!
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Results: Model Fit

33000~ | | | | | | ol
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Results: Model Coefficients

# Variable Coefficient Nominal Normalized
& M1 0.000994 0.08 0.00008
® M2 0.008102 0.08 0.00065
® M3 0.006799 0.04 0.00027
® M4 0.003414 0.04 0.00014
® M5 0.054165 0.02 0.00108
@ M6 0.076293 0.02 0.00153
#® Package 0.323526 0.25(16) 0.00506
#® B-center 0.593441 0.002 0.00119

# B-local 0.504067 0.002(8) 0.00101
# B-global 0.058480 0.002(72) 0.00012
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Relative Impact

B2 M1 M2
9%

2%

BO

10%
M6

13%

Package has
the largest
relative impact
on IR drop!

C4
42%
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Conclusion

N

@ Power grid variability (DC) can be readily
assessed by performing a designed
experiment.

= A similar analysis can be done for AC.

@ Lower levels of metal are less variation
sensitive than higher levels.

@® Package parasitics play an important part in
the overall variability.
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Package Variability

N

@ Packages are composed of wiring planes,
sometimes with embedded discrete
decoupling capacitors.

#® Dimensions are such that R and L are
Important, but C Is not.

@ To first order, manufacturing variability in R Is
~ resistivity. Variablility in L iIs much smaller.

@® BUT... packages are rarely symmetric so the
systematic variability from one pin to the
other becomes dominant!
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Package Variability Estimation

N

# Used an in-house tool to extract equivalent
resistance and inductance for each C4 of a
typical mid-range ASIC package.

@ Tool Is based on detailed layout extraction
and uses an L~! formulation to perform
accurate full-package inductance extraction.

@ Processing time for full package: ~3 hours.
= This Is a very hard problem!
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Example: Package Statistics

@ Package Size --23mm-X-23mm

@ Chip Size : 10mm X 10mm

® Layers 17

@® Top Pins : 129 VDD + 261 GND
@ Bottom Pins . 36 VDD + 80 GND
@® # of shapes . ~ 80,000

@ R extraction time : 0.5 min

#® L extraction time : 156 min
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Systematic Resistance Variations

Statistics (mQ):
® 1=263.4 .
® 6=63.6 (24%) %
® Min=157.5
# Max=519.6 "
@ A 10% tolerance on n

resistivity is insignificant

compared to the 0

systematic variations!

_%25" ™ = e

Remember that we used
0.25 Q +10% in the
Power Grid Experiment!
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Systematic Inductance Variations

N

Statistics (nH):

® u=4.24 ©
® 0=0.57 (13.5%) 0
€ Min=3.11 .

#® Max=6.61

# Inductance has a .
smaller coefficient of 2
variation than o
resistance! I I I

3000 3500 4000 4500 5000 5500 6000 6500 7000 More
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GND Pin Systematics: Resistance

© Nassif, ISLPED 2004

(]
o
. —
e,

|

Gy

&=

e

41
PASamv
e

l—.
0

s

s

g

Ak

%

s

$
o

n
.1..-

anlln

AR =
B
0=

()4

72



GND Pin Systematics: Inductance
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Conclusion

N

@ Package parasitics (for high performance
nackages) have systematic variability that is
arge compared to expected manufacturing
tolerances.

#® Not being able to assess such variability
makes It an uncertainty and may cause
excessive over-design!

@ The lack of automated full-package analysis
tools Is a huge problem in this area.
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Power Grid Design Trends

N

# Increasing number of levels of metal.

= More degrees of freedom for tradeoff between
Interconnect and power.

= More effort in grid design.
# More design restrictions on wires (Cu, CMP).

s Example: maximum width, metal density, oxide
density within metal area, etc...

# Package design choices critical:
= More package power pins (fixed I,,,, per pin).
= Area array (distributed) versus wirebond (edge).
= May need to correct for systematic errors on chip.
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Power Grid Design Issues

#® Power grid design:
= Done before detailed implementation starts.
= Spatial power requirements approximated.
= Impacts implementation of all Physical Design

components.
+ Placement of high-power devices (1/0, clock, arrays).
+ Placement and allocation of decoupling caps.

s “Interface” between power distributions costly.
# Result:

= Rampant over-design.

= 15 to 20% of wiring resources needed.
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IBM Power Grid Planner

N

@ To help explore options early in design cycle.
# Tool needs to be very fast (interactive).

Typical questions:

= Can a grid with X% metal density handle P
watts per square mm?

= How much decoupling cap does an 1/0
huffer need? How close does It need to be?

= How much reduction in L di/dt do | gain by
iIntroducing deliberate skew?
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IBM Power Grid Planner
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IBM Power Grid Planner
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Other Tool Requirements

N

# As mentioned previously, automated full
package analysis is a necessity!

= Current tools require large amounts of
engineering to produce results.

@ Decoupling capacitance modeling is not
recognized as a first-class problem.

= Yet decoupling matters a lot for L di/dt.
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This Talk

N

# Defined variability and uncertainty.

# Delineated components of the power delivery
system.

@ |llustrated several techniques for analysis and
estimation of power delivery component
performance and variabllity.
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Conclusions

N

@ Power grid noise and its variability depends
on both:

= Technology factors.
= Design specifics.
@® Recent design trends result in a need to:

= Perform early power delivery design.
+ Packaging technology and package selection.
+ Density and Distribution of routing resources.
+ Decoupling capacitance allocation.
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Some Open Issues

# Coupling of power and timing analysis.

# Placement (PD), clock design, and power
delivery analysis integration.

@® Chip/package analysis and interaction.
@® Vector-less Chip-level power estimation.

= Design flows need early power analysis and
decoupling estimation steps.

@ Coupling of power and thermal analysis to
Improve reliability estimation.
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