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Realities
Power has emerged as the #1 limiter of 
design performance beyond the 65nm 
generation.

Dynamic and static power dissipation limit 
achievable performance due to fixed caps on 
chip or system cooling capacity.
Power related signal integrity issues (IR drop, 
L di/dt noise) have become major sources of 
design re-spins.
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ITRS Power Trends
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Leakage Current “Predictions”
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Industry Views (Intel)
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Trends and Needs
Technology trends:

Power and Frequency are increasing.
VDD is decreasing (VTH slower to manage leakage).

IDD increasing (reliability/electromigration!).

Impact of these trends:
IR and L di/dt have more impact on noise.
VDD variation has more impact on delay.

Critical need:
Understand supply induced noise variability 
and its future trends.
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Variability Sources
Physical

Changes in characteristics of devices and wires.
Caused by IC manufacturing process & wear-out 
(electro-migration).
Time scale: 109sec (years).

Environmental
Changes in VDD, Temperature, local coupling.
Caused by the specifics of the design implementation.
Time scale: 10−6 to 10−9sec (clock tick).
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Variability Time Scales
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Variability Distribution
Physical

Die to die variation
Imposed upon design (constant regardless of design).
Well modeled via worst-case files.

Within-die variation
Co-generated between design & process (depend 
on details of the design).
Example: Via resistance variation vs. via density.

Environmental
Only makes sense within-die.
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Variability vs. Uncertainty
Variability: known quantitative relationship to a source 
(readily modeled and simulated).

Designer has option to null out impact.
Example: power grid noise.

Uncertainty: sources unknown, or model too 
difficult/costly to generate or simulate.

Usually treated by some type of worst-case analysis.
Example: ∆TOX within die variation.

Lack of modeling resources often transforms variability Lack of modeling resources often transforms variability 
to uncertainty.to uncertainty.

Example: switching probability assessment.Example: switching probability assessment.



© Nassif, ISLPED 2004

13

Uncertainty in Design-Process
Design uncertainty:Design uncertainty:

Portions not yet defined.
Changes in specification.

Modeling uncertainty:Modeling uncertainty:
Lack of detail in models.
Pessimism/conservatism.

Processing uncertainty:Processing uncertainty:
Manufacturing noise (∆L, 
VT).
Changes as technology 
matures.
Accuracy needed 
relatively late in the 
design cycle.

ProcessProcess

DesignDesign

Time

Uncertainty

Design
complete

ModelModel

Accurate process
noise needed
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Variability & Uncertainty
In the power delivery area, large amounts of 
uncertainty exist (more than for timing…).

Circuit activity is seldom known well enough 
to allow accurate prediction.

Relatively well known fact.

Little is known on the dependence of the 
various components of power on technology 
and its variability (hence this tutorial).
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Power Delivery Components
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Power Delivery Components

Package

Chip Wires

Chip Devices

Board

http://www.lithium.it (via Google)

http://www.lithium.it/
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Power Variability Components
Board level, not addressed in this work.

Package level.
Variability in package parasitics (R & L).

On-Chip Power Grid level.
Variability in grid parasitics (R).

Circuit level.
Variability in static and dynamic power 
consumed.
Variability in decoupling capacitance.
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Example: Power Grid Noise
Grid is predominantly resistive.
Package is predominantly inductive.
Load is modeled as a current.
Other circuits ~ lossy decoupling capacitance.

VDD

+

Load
Decoupling
Capacitance

GridPackage Vcrit

time

Voltage

Current

time
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Noise Model
Current modeled as:
I = 0 t < 0
I = µt t < tp
I = µ(2tp-t) t < 2 tp

I = 0 t > 2 tp

Ignoring L, maximum noise is:
Vmax= µ tp Rg – µ R2

g Cd (1 – e-tp/τ)

τ = (Rg + Rd) Cd

VDD

+
Rg

Rd

Cd

Current

timetp

µ

L

DC Decap

l µ tp Rg / (Rg + Rd)
(for large Cd)

Originally presented at SLIP ‘02
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Noise Model + L

With package, maximum noise becomes:
Vmax l µ tp Rg + µL – µ R2

g Cd (1 – e-tp/τ)

Accurate expression:
Vmax = µ tp Rg + µL – µ R2

g Cd + ψ1 + ψ2

e1 = exp –(τ+β)tp/2CdL e2 = exp –(τ–β)tp/2CdL
β = (τ2 – 4LCd)½

ψ
1 = (e1 + e2) µ (L – Cd Rg

2) / 2
ψ

2 = (e1 – e2) µ Cd (τ Rg
2 – L(3Rg-Rd)) / 2β

DC DecapPackage

VDD

+
Rg

Rd

Cd

L
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VDD

+
Rg

Rd

Cd

LNoise Trends
VDD

tp
µ

Cd

0.6X

0.6X

3.3X

2X

Based on conservative ITRS trends

~2X ~3X

Vmax l µ tp Rg + µL – µ R2
g Cd (1 – e-tp/τ)

DC DecapPackage

~Same

Each of these components has a variability/tolerance!
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Some Source of Power Variability

VDD
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Load
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GridPackage

Package R/L 
vary with 
design & 

manufacturing 
tolerances.

Grid resistance 
varies due to 

CMP and other 
physical 
factors.

Load varies 
with operation, 

∆L, VT, and 
other physical 

factors.

Decap varies 
with operation, 

VT, TOX, and 
other physical 

factors
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Circuit Power Dissipation
Circuits dissipate power when performing 
function.

P ~ α f C V2

C is a combination of wire and device 
capacitance (different sources of variability!).
V is the power supply (more than one may exist on 

a chip).
f is the frequency of operation.
The α factor models switching frequency & 
second order effects (e.g. short circuit current).
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Circuit Power Breakdown
For a modern digital system, power can be 
broken down by major type of component.

1. Clock distribution and latches.
2. Data-Path and custom logic.
3. Arrays and Memories.
4. Random Logic (cell based).
5. Embedded cores (recursive).

Each design has a different breakdown, so 
generalizations are not very useful.
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Component Power Characteristics
Each type of component lends itself to a 
specific form of power estimation, and hence 
power variability estimation.

Example: Clocks.
Large amount of power (C ↑).
Highest frequency in the chip (f ↑).
Highest switching probability (α ↑).
Variability from technology, VDD and from 
design specifics (clock gating).
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Component Power Variability
Rough breakdown of sensitivity to variability 
by component (mostly based on my opinion).

Denote highest 2 components… (YMWV).

α C wire C device V f

Clock X X

Data Path X X

Arrays X X

Random 
Logic X X
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Specifics: Random Logic
Probably the hardest of the various 
components to analyze.

Inputs usually ill specified, requiring higher 
level architectural simulation in order to 
properly assess.

BUT… usually a modest portion of overall chip 
power (for µ-Processor like designs).

Not often worth the effort except for 
designs with a large synthesized portion.
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Example: ISCAS C432 Circuit
Small combinational-only circuit.

37 inputs, 7 output.
160 gates, (1 AND 8, 3 AND 9, 64 NAND 2, 1 NAND 3, 14 NAND 4, 19 NOR 2, 
40 NOT,   18 XOR 2).

Strategy: explore process/pattern dependence.
Could have also looked at VDD and T!

Pattern: apply 50 random patterns (@1GHz) 
with 20% of the bits changing each cycle.
Process: apply 58 unique sets of MOSIS 0.18µ
CMOS parameters (represent wafer averages).
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Example: IDD Waveform
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Example: Detail Waveform
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Pattern Influence Metric
Compare peaks within each clock cycle.

Highest vs. lowest peak ∀ clock cycles.
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IDD Peaks Per Clock Cycle
Maximum absolute value of IDD ∀ clock cycle.
Max/Min range indicates overall influence.
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IDD Peak Range Analysis
Compare max-min range vs. process & pattern.

Matrix of Peak IDD values

Different process settings

Pattern
Ranges

Process Ranges

Same input, 
different processing

Same processing, 
different inputs
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IDD Range Statistics
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Conclusion
For random logic, switching pattern dominates 
the variability.

Knowing the activity factor (α) is crucial.

Since the process dependency is weak, higher 
level simulation (i.e. not Spice) can do well.

Details of process dependence can be 
abstracted away without too much loss of 
information.

We have not looked at VDD and Temperature!
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More Conclusions
For other components in the design, special 
purpose estimation techniques can be used to 
reduce the task to a few representative circuit 
simulations.

Example: cross-sections of a RAM + overall 
expected activity factors.
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Decoupling Capacitance
MOSFETs have intrinsic and extrinsic linear 
and non-linear capacitances.
When a circuit is not active, these capacitors 
act as a reservoir of charge which can be 
supplied to neighboring active circuits.
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Decoupling Example: Inverter
With the input True, 
certain capacitors are 
discharged, while others 
are charged.

The charged capacitors 
are the ones that can 
act as decoupling.

Total decoupling 
capacitance depends on 
topology and on the 
state of the circuit.

1 0
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Intentional Decoupling Capacitors
Designers often add 
“intentional” decoupling 
capacitors.
A possible design might 
use the CGX components.

Relatively easy to 
characterize, so will not 
discuss further in this 
work.
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Decoupling Capacitance Estimation
Heuristic method may rely on total device 
area (~ total capacitance) and de-rate it by 
some factor to account for the fact that 
certain components are charged / discharged.

Cd = αN Σ AN + αP Σ AP

A represents device area, α is the de-rating 
factor.
Summations over all devices.

A more precise method can rely on simulation.
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Simulation-Based Estimation
Use AC analysis!

IDD

Frequency

Circuit of
interest

DC

AC

IDD

0
1
0
0
1
0
0

Inputs set to DC 
values!

VDD
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RC circuit
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Simulation Example
Same ISCAS C432 combinational circuit example.
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C = 16.7fF

Frequency
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Pattern Dependence
64 different random input patterns, get R/C for each.

0

5

10

15

20

25

7.5
0E

+06

8.7
5E

+06

1.0
0E

+07

1.1
3E

+07

1.2
5E

+07

1.3
8E

+07

1.5
0E

+07

More 0

5

10

15

20

25

30

1.62E-11 1.64E-11 1.66E-11 1.68E-11 1.70E-11 1.72E-11 More

R C

R C
min 7.87E+06 1.64E-11

max 1.49E+07 1.72E-11

µ 1.10E+07 1.67E-11

σ 1.87E+06 2.00E-13

σ/µ (%) 17.0 1.2

Very little 
pattern 

dependence!



© Nassif, ISLPED 2004

47

Decoupling Capacitance Variability
Variables of interest:

Technology
Circuit State (DC input pattern)

Technology modeled via same collection of 58 
sets of MOSIS 0.18µ parameters representing 
lot averages as used before.

State modeled by a random sample of 64 
unique input vectors. 
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Capacitance Variability Analysis
Capacitance is approximately constant with 
respect to both process and pattern.
Coefficient of variance (σ/µ) is less than 2%.
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Resistance Variability Analysis
Resistance varies substantially with respect to 
both process and pattern.
Note that Resistance ≡ Leakage!

0.00E+00

1.00E+07

2.00E+07

3.00E+07

4.00E+07

5.00E+07

6.00E+07

7.00E+07

0 10 20 30 40 50 60

Resistance



© Nassif, ISLPED 2004

50

Resistance Variability Analysis
Compare means vs. process and vs. pattern.

Different process settings
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Process vs. Pattern Means

Pattern Process
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Conclusions
Decoupling capacitance can be estimated 
using a simple AC analysis.
The capacitive part of the decoupling 
capacitance of a circuit is ~ constant.
The resistive part of the decoupling 
capacitance of a circuit depends strongly on 
technology and weakly on circuit state.

For certain types of analyses, however, the 
resistance may not be needed.
BUT… Resistance variations are useful to 
assess leakage variations.
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On-Chip Power Grid
Connection to Package

Connection to Circuits
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On-Chip Power Grid Variability
Determine contribution to IR drop variability 
of various grid system components:

Grid wires.
Package resistance.
Spatial power consumption (design).

Methodology:
Perform a Design Experiment, measure total 
voltage drop (differential) and create a linear 
model with respect to design parameter.
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Design Experiment
3 x 3 C4 region.

~1500 x 1500 µ.

6 levels of metal
Two at 1x, two at 2x, 
and two at 4x 
thickness.
Both VDD and GND 
wires included.

Nominal drop of 10% of 
VDD at the center.
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Power Grid Wires
M1, M2 15% density ρ=0.08Ω/
M3, M4 20% density ρ=0.04Ω/
M5, M6 25% density ρ=0.02Ω/

Used a 10% tolerance in grid resistivity.
Since the goal is to build a model, exact 
values are not important. Relative 
importance of the various effects is.

Package resistance taken as 0.25Ω per pin 
with a 10% tolerance (remember for later…).
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Power Grid Loading

Test 
Point

VDD C4 GND C4

Three variables 
in experiment:

1. Loading (DC) 
at test point.

2. Loading in local 
loading blocks.

3. Loading in 
global loading 
blocks.

Local 
Loading

Global 
Loading
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Example Output: VDD Distribution
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Experiment Structure
Used Latin-Hypercube sampling to generate a 
sample of 200 uniformly distributed parameter 
settings for:

Metal sheet resistivities.
Local and Global loading parameters.
Package per-pin resistance.

Larger sample sizes produced essentially the 
same results!
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Results: Model Fit

Simulated (mV)

M
od

el
ed

 (
m

V)

Residual

200 
simulations

Modeled VDD at 
center as a linear 
function of the 
various design 
variables.
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Results: Model Coefficients
Variable Coefficient Nominal Normalized
M1 0.000994 0.08 0.00008
M2 0.008102 0.08 0.00065
M3 0.006799 0.04 0.00027
M4 0.003414 0.04 0.00014
M5 0.054165 0.02 0.00108
M6 0.076293 0.02 0.00153
Package 0.323526 0.25(16) 0.00506
B-center 0.593441 0.002 0.00119
B-local 0.504067 0.002(8) 0.00101
B-global 0.058480 0.002(72) 0.00012
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M1
1%

M2
5%

M3
2%

M4
1%

M5
9%

M6
13%

C4
42%

B0
10%

B1
8%

B2
9%

Relative Impact

Package has 
the largest 

relative impact 
on IR drop!



© Nassif, ISLPED 2004

64

Conclusion
Power grid variability (DC) can be readily 
assessed by performing a designed 
experiment.

A similar analysis can be done for AC.

Lower levels of metal are less variation 
sensitive than higher levels.

Package parasitics play an important part in 
the overall variability.
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Package Variability
Packages are composed of wiring planes, 
sometimes with embedded discrete 
decoupling capacitors.
Dimensions are such that R and L are 
important, but C is not.
To first order, manufacturing variability in R is 
~ resistivity. Variability in L is much smaller.

BUT… packages are rarely symmetric so the 
systematic variability from one pin to the 
other becomes dominant!
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Package Variability Estimation
Used an in-house tool to extract equivalent 
resistance and inductance for each C4 of a 
typical mid-range ASIC package.

Tool is based on detailed layout extraction 
and uses an L−1 formulation to perform 
accurate full-package inductance extraction.

Processing time for full package: ~3 hours.
This is a very hard problem!
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Example: Package Statistics
Package Size : 23mm X 23mm
Chip Size : 10mm X 10mm
Layers : 17
Top Pins : 129 VDD + 261 GND
Bottom Pins :   36 VDD + 80 GND
# of shapes : ~ 80,000
R extraction time : 0.5 min
L extraction time : 156 min
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VDD Pin Systematic Differences

resistance (mΩ)

inductance (pH)
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Systematic Resistance Variations
Statistics (mΩ):

µ=263.4
σ=63.6 (24%)
Min=157.5
Max=519.6

A 10% tolerance on 
resistivity is insignificant
compared to the 
systematic variations!
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Remember that we used 
0.25 Ω  ± 10% in the 

Power Grid Experiment!
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Systematic Inductance Variations
Statistics (nH):

µ=4.24
σ=0.57 (13.5%)
Min=3.11
Max=6.61

Inductance has a 
smaller coefficient of 
variation than 
resistance!
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GND Pin Systematics: Resistance
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GND Pin Systematics: Inductance
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Conclusion
Package parasitics (for high performance 
packages) have systematic variability that is 
large compared to expected manufacturing 
tolerances.

Not being able to assess such variability 
makes it an uncertainty and may cause 
excessive over-design!

The lack of automated full-package analysis 
tools is a huge problem in this area.
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Power Grid Design Trends
Increasing number of levels of metal.

More degrees of freedom for tradeoff between 
interconnect and power.
More effort in grid design.

More design restrictions on wires (Cu, CMP).
Example: maximum width, metal density, oxide 
density within metal area, etc…

Package design choices critical:
More package power pins (fixed IMAX per pin).
Area array (distributed) versus wirebond (edge).
May need to correct for systematic errors on chip.
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Power Grid Design Issues
Power grid design:

Done before detailed implementation starts.
Spatial power requirements approximated.
Impacts implementation of all Physical Design 
components.

Placement of high-power devices (I/O, clock, arrays).
Placement and allocation of decoupling caps.

“Interface” between power distributions costly.
Result:

Rampant over-design.
15 to 20% of wiring resources needed.
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IBM Power Grid Planner
To help explore options early in design cycle.
Tool needs to be very fast (interactive).

Typical questions:
Can a grid with X% metal density handle P 
watts per square mm?
How much decoupling cap does an I/O 
buffer need? How close does it need to be?
How much reduction in L di/dt do I gain by 
introducing deliberate skew?
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IBM Power Grid Planner

Spreadsheet-like 
interface to define 
overall power grid.
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IBM Power Grid Planner
Lots of Visualization and Analysis…
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Other Tool Requirements
As mentioned previously, automated full 
package analysis is a necessity!

Current tools require large amounts of 
engineering to produce results.

Decoupling capacitance modeling is not 
recognized as a first-class problem.

Yet decoupling matters a lot for L di/dt.
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This Talk
Defined variability and uncertainty.

Delineated components of the power delivery 
system.

Illustrated several techniques for analysis and 
estimation of power delivery component 
performance and variability.
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Conclusions
Power grid noise and its variability depends 
on both:

Technology factors.
Design specifics.

Recent design trends result in a need to:
Perform early power delivery design.

Packaging technology and package selection.
Density and Distribution of routing resources.
Decoupling capacitance allocation.
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Some Open Issues
Coupling of power and timing analysis.
Placement (PD), clock design, and power 
delivery analysis integration.
Chip/package analysis and interaction.
Vector-less Chip-level power estimation.

Design flows need early power analysis and 
decoupling estimation steps.

Coupling of power and thermal analysis to 
improve reliability estimation.
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