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Power in Hand-held Electronics
• Battery capacity is limited

– Batteries are heavy
• Capacity is proportional to weight

• Problematic for hand-held devices
– Cell phone batteries typically 600 to 1200 mA hrs

• Power budget shared between analog, digital, and transmit
– Digital IC budget decreasing while performance increases

• Two scenarios
– Active operation—100’s mW

• Limits talk time (typically few hrs)
– Standby—100 µW

• Limits time waiting for calls (typically 100’s hrs)
– There is active power in standby mode

• Each contact with the cell is an active transmit/receive operation—
occurs on the order of once every 1-2 seconds
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Voltage scaling
• Voltages must scale as transistors scale to avoid excessively 

high fields—this in turn requires Vt scaling�Higher leakage
• Total IC power

• VDD
2 active power dependence makes supply scaling the 

most effective lever for low power design
– Makes low power and high performance design the same

• Higher absolute (maximum VDD performance) affords meeting lower 
application demand for performance at lower voltages

• High performance equals low power if done efficiently
– Assumes that operating voltage is not a constraint

• Frequency proportional to voltage so dropping voltage 
derives roughly VDD

3 change in power
– Assumes that lower frequency is acceptable

• Also greatly affects leakage components on advanced 
processes

PTOTAL = αCVDD
2F + ILEAKVDD
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Voltage Scaling: Effect of Vt
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Deep Sub-micron MOSFET Leakage
• Four Primary Components

– Drain Source Leakage (Ioff)
– Gate Leakage
– Gate induced drain leakage (GIDL)
– Junction band to band tunneling currents
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Circuit Methods for Leakage Control
• Body bias techniques

– Reverse body bias (RBB) [1-2]
– Forward body bias (FBB) [3]
– These are the least invasive to the design, small area cost

• MTCMOS techniques [4]
– State retentive

• Balloon latches [5]
• Multi-Vt design [6-7]

– Non-state retentive
• Thick gate storage

– Alleviates gate leakage [8-10]
• Essentially store state in a generation N-x transistor

– Highest area cost, most effective, potentially difficult design
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Multi-threshold CMOS (MTCMOS)

• High Vt transistors gate 
power to low Vt circuits 
[4]
– Leakage dominated by 

the high Vt gating 
transistors

• Not inherently state 
retentive
– Power cost of moving 

state off chip is a penalty 
paid on entry and exit to 
low power state

VSSSUP
pad

VDD pad

VSS
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The Need for State Retention
• Integrated circuits have increasing storage capacity

– The storage constitutes the “state” of the machine
• Many commercially shipping low power standby 

modes have not been state retentive
– Save in external memory

• Incurs power penalty for the IO to save state
• Still requires low power storage—somewhere

• Example: SA-1100 StrongARM microprocessor [11]
– Write back cache state requires 16 µs at 66 MHz for 8 kB
– 3.3V IO pins loaded with 35pF each gives 12.5 µJ

• This creates a power floor of 1.25 mW if used 100 times/second
– Still must account for the external storage power
– Standby power and leakage of IO ring and real-time clock 

specified to be 165 µW
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Reverse Body Bias
• State retentive
• Design only

– Can be used on any process
– Allows use of a leakier, faster process at same ISB

• Increase VSB during standby
– Raises Vt due to “body effect”

• Electrical control allows this only during standby
– Use VSB = 0 during active operation

• Done first commercially on 0.25 µm 
microprocessor [1]
– VDD = 1.8 V
– N-well driven to IO voltage (3.3 V)
– Charge pump drives P type substrate to –2 V
– Fine granularity power supply grids

• 1000’s of local supply switches
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Drowsy: RBB and Supply Collapse
• Drain Source Leakage (Ioff)

– Decreases at linear or better rate with VDD collapse
• Depends on process DIBL

– Decreases with a square root VSB dependency
• Gate Leakage

– Decreases faster than VDG
2 (can give V4 power impact)

• Sensitive to physical oxide thickness

• Gate induced drain leakage (GIDL)
– Lower voltage has a very large effect

• Essentially eliminated with supply collapse

• Junction band to band tunneling currents
– Unaffected!

• This requires careful transistor design and circuit design 
interaction

• Otherwise likely to be the limiting factor in future usage
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RBB Circuit Design
• Apply body bias by raising the source

– Naturally applies supply collapse
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Power Supply Routing
• Substrate and well taps on a 50 µm grid [11]

– Highly doped epi substrate for low VSSSUP impedance
– N-wells contiguous to grid in substrate for VDDSUP

50 µµµµm

50 µµµµm

VSSSUP

VDDSUP

= tap cell

N well

N well
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RBB Circuit Design
• Amplifier & reference voltage based VSS regulator

– Reference tracks with VDD
• Allows larger VDS and VSB if needed
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Drowsy Operation
• Well is actively pulled up for RBB

– Logic circuit leakage passively pulls VSS up to produce 
RBB and power supply collapse
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VSS Regulator Stability and Power
• Design achieves 

60o phase margin 
at all process 
corners

• Amplifier operates 
in subthreshold
– Low gain

• VSS regulator 
consumes less 
than 4 µA
– Key since it 

contributes to total 
power consumption 
in Drowsy mode
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N-well (VDDSUP) Regulator Design
• Low value and high cost to using high voltage
• Use a textbook bootstrapped voltage reference

– Low Vt VDNMOS source follower
• Provides very low dropout even with high body bias
• Note startup circuit

RESET

VDDSUP

VDDIO

VDD

Vbias

Vref
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Testing with Guardband
• External access to the internal supply nodes essential

– Allows observability [12]
– Allows controllability

• Find point of fail independent of regulator
• Drive current into core to provide guardband
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Time Division Multiplexed Drowsy
• Time Multiplex between active operation and 

Drowsy mode to simulate a low leakage process 
[11]
– At low effective frequency (FEFF) burst operate at a high 

frequency to make time for low standby power mode
– E.g., 300 MHz operation, 30 bursts per second, 100k 

instructions per burst achieves 3 MHz FEFF
• 99% of the time is spent in the low standby power mode

• Energy cost of entry and exit must be small
– Need to amortize this penalty with leakage savings
– Can’t know a-priori duration of standby state

• Applicable to cellular communications
– 1-2 seconds between contact with cells in standby

• Applicable to hand-held devices, e.g., PDAs
– Between keystrokes or pen-strokes
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Experimental Operation
• Board using an Intel XScale 80200 microprocessor

– Power supplies brought external to measure power 
consumption using Agilent ammeter and PC

– Separate measurements accounted for IR drop
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TDM Drowsy: Code and Behavior
• Code was programmable to run a loop of instructions 

as the interrupt handler
– Loop counter determined the interrupt instruction count

• At the end of the loop, the microprocessor re-entered 
Drowsy mode
– Drowsy mode is exited by interrupts

• Code:

• BTB holds state, no cache misses

outerLoop:
MOV R0, #instructions_per_interrupt

work: SUBS R0, R0, #1 ; decrement count
BNE work ; loop while count != 0
DROWSE ; wait for interrupt
B outerLoop
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Energy Cost of Entry and Exit
• Power Components

– Active power
• Active mode leakage—lumped with the above

– PLL power
• During operation and for 20 µs before active operation to lock

– Drowsy mode leakage
– Power supply movement power

• Passive entry saves ½ of the VSS component
• Also saves power if resume soon after entering Drowsy
• Both VSS and VSSSUP are small swing
• CVSS = 55 nF
• CVSSSUP = 5 nF

• Total energy overhead equivalent to approximately 
60 clock cycles of active power at VDD = 1V
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Voltage scaling: Effect of Drowsy
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Interfacing Domians
• It is easy to create sneak paths! [12]

– Signals between voltage domains must be driven full rail
– Avoid pass gate interfaces

• Latches suffice to isolate domains

VDD=1V

0V

1V

Vss(GND)=0V

1V

0.
65

V

Drowsy Domain Vss=0.65V

Vss(GND)=0V

See also [13] for a set of rules for MTCMOS designs

Non-Drowsy domain

Drowsy domain

Both “off” 
transistors

connect the 
domains
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Low Leakage ESD Clamping
• Drowsy mode current small enough to make 

otherwise negligible contributors significant
– Large PMOS transistors in ESD clamps important
– Fixed by RBB on clamp devices [14]

• Also provides FBB during ESD transients
• Equivalent or better performance when tested using HBM, MM

VSSSUP

P1

VDD
VDDIO

N1

N2



34

Other Implementations
• Same scheme used in [15] for 0.13 µm SRAM

– No PMOS body bias
• We can speculate that the PMOS leakage was substantially 

lower than NMOS, so no value in PMOS RBB
• We have seen this on other 0.13 µm processes

• This approach will be used for 65 nm handheld 
devices [16]
– 0.5 V VDD-VSS
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Limitations of Drowsy Modes
• State stability [2]

– High fan-in domino circuits can have N to P ratios of 
100’s to 1

• Need highly balanced storage, MTCMOS logic

• Channel length
– Aggressively scaled transistors have poor body 

transconductance gMB
• Need to back off from the highest performance possible

• Drain to bulk tunneling currents
– Requires less steep halo doping gradient at drain

• No halo is best—this will limit transistor scaling

• Defects
– Stacking faults generate nearly 10 µA of leakage

• Turns Drowsy cells into defect detectors
• May be problematic for strained silicon
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Leakage Control Limitations
• Body bias vs. channel length

– Bulk control lost as transistors approach punchthrough
• This is where high performance processes are often targeted
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Combining MTCMOS and Drowsy

State retaining domainMTCMOS
Logic

 domain

VSSmemVSS

To regulator

D

VSSSUP

Q

VDD

VDDSUPCLK
VDD

M20

DI

• Only state elements have 
RBB applied [11]
– The rest of the circuits are 

“slept” using MTCMOS
• This eliminates about 2/3 of 

the total leakage
– Allows highly balanced 

state elements
• Drowsy can be pushed to 

even lower VDS
• Leverage high Igate VGS

dependency
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“Balloon” Latches

• A state retentive 
MTCMOS scheme [5]
– High Vt transistors gate 

low Vt circuits
– State retained in high Vt

balloons
• Circuit speed remains a 

function of low Vt

• Does not address Igate
leakage component
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Leakage on Advanced Processes
• Many of the old techniques will still be applicable

– RBB and supply collapse still works
• Supply collapse (VOLTAGE SCALING) is key

– 10 µm wide 65 nm NMOS characteristics using BPTM [17]
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Leakage on Advanced Processes

• Gate leakage suppressed 2 orders of magnitude
– Consistent with previous results [18]

• RBB and supply collapse still works
– Cutting the voltage is critical

• Lowers Ioff by the DIBL coefficient
• Pulls the transistor away from punchthrough and gives control back to 

bulk
• Longer channel suppresses DIBL the same way

• Key point not obvious is drain to bulk band to band 
tunneling
– This is becoming the dominant component and is helped by lower 

voltage
– Transistor design is also important

• Future devices will apply “Drowsy” style RBB and supply 
collapse for SRAM’s on 90 and 65 nm [16]
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Addressing Igate: Thick Gate State Retention

• Add a “shadow” thick 
gate (and high Vt) 
latch to retain state 
during standby [8]
– Using the thick gate IO 

transistors implies
higher Vt

• The gate length can be 
pushed--not exposed to 
high drain voltages

• Eliminate thin gate 
latch if speed is 
unimportant

STDBYEN

CLK

D#

Q

M4 M5

SHADOW
LATCH



44

Thick Gate State Retention Operation
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– TSMC 0.18 µm thick gate and BPTM 65 nm thin gate
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Safer Thick Gate State Retention
• The VDD supply 

needn’t be completely 
discharged if a uni-
directional path is 
provided from the 
thick to thin gate 
circuitry [9]
– Recall that it is best to 

disable supplies, 
allowing movement via 
leakage rather than 
driving them low
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Thick Gate State Retention: Another Approach
• This approach uses

uni-directional circuits 
in both directions
– More transistors
– May ensure thick gate 

write-ability over a 
wider voltage range

• Adding transistors to 
slave in MSFF does 
not incur a speed 
penalty

– From USPTO website 
[10]
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Thick Gate State Retention: Results
• Master-slave flip-flop

– Using projected 65 nm thin gate transistors
• Ioff = 10.1 nA/µm
• Igate = 8.0 nA/µm

– Using TSMC 0.18 µm thick gate
• Ioff = 10 pA/µm
• 40 angstrom electrical tox provides negligable gate leakage

– Result is over 7200x leakage savings for just MSFF!
• Does not include thin gate logic between the flip-flops

• So we’ve eliminated the Igate standby contribution
• But… The real limiter will be drain edge band 

to band tunneling
– Not modeled in this analysis
– Will require process work

• Cost?
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Managing Active Leakage
• Leakage is becoming a large part of overall power

– Up to 40% of total power at the worst-case corners on 
high performance processes

– Not as problematic on low power processes…yet
• Transistor scaling will increasingly force “low 

power,” really low-leakage processes to lower Vt’s
or some of the scaling value will be lost
– Designers that deal with the leakage will provide a 

competitive advantage compared to those that don’t
• But this is hard

– All schemes create some kind of cost
– Cost must be optimized to balance active/standby power

• Including the energy cost of moving between the states
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Shutting Down Units
• Can work well for low activity factor blocks

– Floating point, small granularity cache banks on µP
– Some blocks may be unused for applications on SOC

• Key factor is the cost of discharging and charging 
the block power supply
– The power cost must be amortized by the leakage 

savings
– Also must be careful about IR drop through the switches

• Very difficult

• Switch overhead is very low
– Beware of inductive effects on supplies [18]
– My solution is under-driving the switch transistor gates [2]

• [18] used staged turn-on of the switches
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Shutting down units: Example
• Multiplier total transistor width is 60 mm
• Leakage power savings is

P = VI = ½ (0.8) V Ileak = 6.5 mW
(essentially 0.065 nJ per cycle at 1 GHz)

at VDD = 1.3 V and Ileak ~ Ioff = 100 nA/µm @ 100oC
• Power supply capacitance of 0.5 nF 

– One on gating is 0.33 nJ
• That’s 5 clock cycles at 1 GHz

– Results will be very sensitive to decoupling capacitance
• More is better for performance and noise
• Less is better for gating

• It can be difficult to do this effectively and easy for 
particular behaviors to become higher power
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Dual Threshold Voltages
• About 5% fabrication cost adder

– No active power adder
– Leakage cost is over 10x per low Vt compared to high Vt

• Minimize low Vt transistors for low power
– Design with high Vt

• Don’t forget this increases active (switching) power
• Higher supply voltage for the same speed

– Insert low Vt only on difficult speed paths
– Tendency for widely separated high and low Vt targets

• Can be very difficult for high performance design
– Tendency to over-insert
– Difficulty with noise on dynamic circuits
– Less separated high and low Vt targets
– Timing accuaracy effects

• High and low Vt needn’t track each other
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Multiple Channel Lengths
• Longer channel decreases DIBL rapidly

– About 7x Ioff decrease on aggressive 90 nm process
• No process cost

– But a small size adder (1-2%)
• Active power cost

– Up to 15%, depending on activity factor
• Caution required with insertion on high speed circuits

– Slow circuits dominated by leakage can be all long L
• High Vt and low Vt track each other at process 

corners
– Essentially, both get faster and slower together
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Multiple Channel Lengths: Physical Design

• Add one grid
– Layout must have one grid of space to add the gate length
– Small overall area cost

• Can also be added at mask synthesis
– Better resolution, but harder to check
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Multiple Channel Lengths: Timing
• Priority for insertion

– Low activity factor
• Leave the clocks alone! Maximize leakage savings

– Wide transistors
• Maximize leakage savings

– Low activity factor
• Work on post-layout data

– Otherwise you don’t really know your timing margin
• Fix hold time violations after long channel insertion

– Slower (long L) gates fix these for free
• Logic block long L insertion must be automated

– Timing must be re-calculated after each insertion
– We used an insertion tool using Langrangian Relaxation
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Timing Margin
• Cumulative block timing shows timing slack

– Negative path fixes comprise the work to meet timing
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Timing Margin
• Low Vt insertion moves paths from negative slack to zero 

slack
– Without Low Vt, this requires logic, sizing changes
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Timing Margin: Long L insertion
• Don’t fix every path to zero timing margin

– Statistical variation will impact the yield
– Timing tools are not perfect
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Timing Margin: Effect of Variation
• Variation modeled as channel length

– Likelihood of a path becoming worse than 0 ns slack with variation 
(creating a timing failure) vs. original path distance from critical [19]

0.0010

0.0100

0.1000

1.0000
0.

00

1.
00

2.
00

3.
00

4.
00

5.
00

6.
00

7.
00

8.
00

% Distance from TMaxCP

Pr
ob

ab
ili

ty
 o

f F
ai

lu
re



61

Results: Long L insertion
• Automatic insertion on microprocessor logic blocks

– 90 nm process

Block 1 2 3 4 5 6 7 8 9 10 11 12 13

Ioff 
reduction 
(%) 

39 43 44 48 45 38 49 49 48 47 39 42 39
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Drowsy Memories
• Leakage dominates memory power on deep submicron 

processes
– Low activity factor leads to low active power

• Supply collapse suggested for limiting cache memory 
leakage [20]
– Can be done by bank or row

– Very aggressive processes have low RBB impact
• Backing off the gate length fixes this—usually needed anyways

Bank 00

Vdd VddLow

Sel00 Supply collapsed
to VDDLow

when not accessed

Normal supply voltage
when accessed
--Key for stability
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Drowsy Memories: Driving VSS

• Driving VSS allows greater leakage reduction
– Can still be done on a row by row basis

• Helps write speed, Ref. [3] used FBB to improve read speed 
and stability

– Used effectively on a 0.13 µm process [21]
• Note this is the same as the full-chip Drowsy mode described 

previously
• No PMOS RBB
• NMOS and PMOS leakage not always balanced

VssDrowsy

Bank 00

Supply collapsed to
VSSDrowsy and RBB
Applied to NMOS

Supply is VSS
for read
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Memory Decode
• Most transistor width in decode 

is in WL drivers
– WL low when inactive, PMOS 

leakage predominates
– Long channel can be used

• No logic change
– Gating VDD more effective [22]

BSel VDD

Sel0 WL0

Sel1 WL1
Virtual VDD
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Thick Gate SRAM

VDD

WLEN

B
L

WLhv

B
LN

PRECHN

VDD

Sel2
Sel1

VDDhv

VDDhv

• Bitlines precharged to the core VDD
– SRAM cells operate from VDDhv –ensures stability
– Level shift at the WL driver--keeps decoder low power

• Use thick gate transistors for SRAM
– High Vt, no appreciable Ioff or Igate currents
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Thick Gate SRAM: Layout and Size

• Gate length cannot scale with 
thicker tOX

• Transistors must be re-
targeted from the I/O 
transistors
– Avoid punchthrough with high Vt
– Eliminate halo for low drain to 

bulk band to band tunneling
– Longer gate to keep gate 

control (but short as possible)
• Cell about 20-40% larger than 

thin gate cells
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Thick Gate SRAM: Array Layout
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SRAM Cell Read Stability

 

Vout(n1), Vin(n0) 

V
ou

t(n
0)

, V
in

(n
1)

 

BLBL

WL

Iread

n0 n1

• Current through inverter pulldown raises cell logic 
low level during read—particularly at low voltage
– Due to mis-match (even RDF [23]) the static noise margin 

can be much smaller than expected
– Some cells flip when read
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Thick Gate SRAM Cell Stability

• Stability improved in thick gate SRAM design
– Size matters! Better matching
– Also greatly helped by lower precharge voltage…

• Until VDD – VtTG reached—then looks like a write
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Conclusions
• Standby power is moving from a process to a 

design problem
– Process scaling increases leakage

• There is a lot of room for improvement
– Huge and growing hand-held, wearable, and medical 

markets will stimulate creative solutions
• Design solutions can limit many components

– Low VGS limits, thick gate eliminates Igate
– High Vt or body bias limits Ioff
– Drowsy limits GIDL

• Combines low VGS, simulates high Vt

• Transistor design will also matter
– Drain to bulk tunneling current will be limiting

• Requires limited or no halo implants
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