Managing Standby and Active Mode Leakage Power in Deep Sub-micron Design

Lawrence T. Clark Dept. of Electrical Engineering Arizona State University Rakesh Patel Timothy S. Beatty Intel Corp. Intel Corp.

Outline

- Introduction and motivation
- Standby leakage management
 - Drowsy mode: Reverse body bias and supply collapse
 - Circuit design and operation
 - System level results
 - Limitations
 - Thick gate shadow latches
- Active leakage management
 - Multiple V_t and channel assignment
 - Drowsy memories
 - Thick gate SRAM
- Conclusions

Outline

Introduction and motivation

• Standby leakage management

- Drowsy mode: Reverse body bias and supply collapse
 - Circuit design and operation
 - System level results
 - Limitations
- Thick gate shadow latches
- Active leakage management
 - Multiple V_t and channel assignment
 - Drowsy memories
 - Thick gate SRAM
- Conclusions

Power in Hand-held Electronics

- Battery capacity is limited
 - Batteries are heavy
 - Capacity is proportional to weight
- Problematic for hand-held devices
 - Cell phone batteries typically 600 to 1200 mA hrs
 - Power budget shared between analog, digital, and transmit
 - Digital IC budget decreasing while performance increases
- Two scenarios
 - Active operation—100's mW
 - Limits talk time (typically few hrs)
 - Standby—100 μW
 - Limits time waiting for calls (typically 100's hrs)
 - There is active power in standby mode
 - Each contact with the cell is an active transmit/receive operation occurs on the order of once every 1-2 seconds

Voltage scaling

- Voltages must scale as transistors scale to avoid excessively high fields—this in turn requires V_t scaling→Higher leakage
- Total IC power

$$\mathsf{P}_{\mathsf{TOTAL}} = \alpha \mathsf{C} \mathsf{V}_{\mathsf{DD}}^2 \mathsf{F} + \mathsf{I}_{\mathsf{LEAK}} \mathsf{V}_{\mathsf{DD}}$$

- V_{DD}² active power dependence makes supply scaling the most effective lever for low power design
 - Makes low power and high performance design the same
 - Higher absolute (maximum V_{DD} performance) affords meeting lower application demand for performance at lower voltages
- High performance equals low power if done *efficiently* Assumes that operating voltage is not a constraint
- Frequency proportional to voltage so dropping voltage derives roughly V_{DD}³ change in power

 Assumes that lower frequency is acceptable
- Also greatly affects leakage components on advanced processes

Voltage scaling: Effect of V_t

Low V_t helps active power if V_{DD} scaled

Voltage Scaling: Effect of V_t

Low V_t problematic for standby power

Deep Sub-micron MOSFET Leakage

- Four Primary Components
 - Drain Source Leakage (I_{off})
 - Gate Leakage
 - Gate induced drain leakage (GIDL)
 - Junction band to band tunneling currents

Circuit Methods for Leakage Control

- Body bias techniques
 - Reverse body bias (RBB) [1-2]
 - Forward body bias (FBB) [3]
 - These are the least invasive to the design, small area cost
- MTCMOS techniques [4]
 - State retentive
 - Balloon latches [5]
 - Multi-V_t design [6-7]
 - Non-state retentive
- Thick gate storage
 - Alleviates gate leakage [8-10]
 - Essentially store state in a generation N-x transistor
 - Highest area cost, most effective, potentially difficult design

Multi-threshold CMOS (MTCMOS)

- High V_t transistors gate power to low V_t circuits [4]
 - Leakage dominated by the high V_t gating transistors
- Not inherently state retentive
 - Power cost of moving state off chip is a penalty paid on entry and exit to low power state

The Need for State Retention

- Integrated circuits have increasing storage capacity

 The storage constitutes the "state" of the machine
- Many commercially shipping low power standby modes have not been state retentive
 - Save in external memory
 - Incurs power penalty for the IO to save state
 - Still requires low power storage—somewhere
- Example: SA-1100 StrongARM microprocessor [11]
 - Write back cache state requires 16 μ s at 66 MHz for 8 kB
 - 3.3V IO pins loaded with 35pF each gives 12.5 μJ
 - This creates a power floor of 1.25 mW if used 100 times/second
 - Still must account for the external storage power
 - Standby power and leakage of IO ring and real-time clock specified to be 165 μW

Outline

Introduction and motivation

Standby leakage management

- Drowsy mode: Reverse body bias and supply collapse
 - Circuit design and operation
 - System level results
 - Limitations
- Thick gate shadow latches
- Active leakage management
 - Multiple V_t and channel assignment
 - Drowsy memories
 - Thick gate SRAM
- Conclusions

Reverse Body Bias

- State retentive
- Design only
 - Can be used on any process
 - Allows use of a leakier, faster process at same I_{SB}
- Increase V_{SB} during standby
 - Raises V_t due to "body effect"
 - Electrical control allows this only during standby
 - Use V_{SB} = 0 during active operation
- Done first commercially on 0.25 μm microprocessor [1]
 - $-V_{DD} = 1.8 V$
 - N-well driven to IO voltage (3.3 V)
 - Charge pump drives P type substrate to -2 V
 - Fine granularity power supply grids
 - 1000's of local supply switches

RBB and Power Supply Collapse

0.18 μm PMOS transistor measurements

14

Drowsy: RBB and Supply Collapse

- Drain Source Leakage (I_{off})
 - Decreases at linear or better rate with V_{DD} collapse
 - Depends on process DIBL
 - Decreases with a square root V_{SB} dependency
- Gate Leakage
 - Decreases faster than V_{DG}^2 (can give V⁴ power impact)
 - Sensitive to physical oxide thickness
- Gate induced drain leakage (GIDL)
 - Lower voltage has a very large effect
 - Essentially eliminated with supply collapse
- Junction band to band tunneling currents
 - Unaffected!
 - This requires careful transistor design and circuit design interaction
 - Otherwise likely to be the limiting factor in future usage

RBB Circuit Design

Apply body bias by raising the source

 Naturally applies supply collapse

Power Supply Routing

- Substrate and well taps on a 50 μm grid [11]
 - Highly doped epi substrate for low V_{SSSUP} impedance
 - N-wells contiguous to grid in substrate for V_{DDSUP}

RBB Circuit Design

- Amplifier & reference voltage based V_{SS} regulator
 - Reference tracks with V_{DD}
 - Allows larger V_{DS} and V_{SB} if needed

Drowsy Operation

- Well is actively pulled up for RBB
 - Logic circuit leakage passively pulls $V_{\rm SS}$ up to produce RBB and power supply collapse

V_{SS} Regulator Stability and Power

- Design achieves 60° phase margin at all process corners
- Amplifier operates in subthreshold

 Low gain
- V_{SS} regulator consumes less than 4 μA
 - Key since it contributes to total power consumption in Drowsy mode

N-well (V_{DDSUP}) Regulator Design

- Low value and high cost to using high voltage
- Use a textbook bootstrapped voltage reference
 Low V, VDNMOS source follower
 - Provides very low dropout even with high body bias
 - Note startup circuit

Testing with Guardband

- External access to the internal supply nodes essential
 - Allows observability [12]
 - Allows controllability
 - Find point of fail independent of regulator
 - Drive current into core to provide guardband

Outline

- Introduction and motivation
- Standby leakage management
 - Drowsy mode: Reverse body bias and supply collapse
 - Circuit design and operation
 - System level results
 - Limitations
 - Thick gate shadow latches
- Active leakage management
 - Multiple V_t and channel assignment
 - Drowsy memories
 - Thick gate SRAM
- Conclusions

Time Division Multiplexed Drowsy

- Time Multiplex between active operation and Drowsy mode to simulate a low leakage process
 [11]
 - At low *effective frequency* (F_{EFF}) burst operate at a high frequency to make time for low standby power mode
 - E.g., 300 MHz operation, 30 bursts per second, 100k instructions per burst achieves 3 MHz F_{EFF}
 - 99% of the time is spent in the low standby power mode
- Energy cost of entry and exit must be small
 - Need to amortize this penalty with leakage savings
 - Can't know *a-priori* duration of standby state
- Applicable to cellular communications

 1-2 seconds between contact with cells in standby
- Applicable to hand-held devices, e.g., PDAs – Between keystrokes or pen-strokes

Experimental Operation

- Board using an Intel XScale 80200 microprocessor
 - Power supplies brought external to measure power consumption using Agilent ammeter and PC
 - Separate measurements accounted for IR drop

TDM Drowsy: Code and Behavior

- Code was programmable to run a loop of instructions as the interrupt handler
 - Loop counter determined the interrupt instruction count
- At the end of the loop, the microprocessor re-entered Drowsy mode
 - Drowsy mode is exited by interrupts
- Code:

outerLoop:MOVR0, #instructions_per_interruptwork:SUBSR0, R0, #1; decrement countBNEwork; loop while count != 0DROWSE; wait for interruptBouterLoop

• BTB holds state, no cache misses

TDM Drowsy: Results

• Measured system results

$$- 300 \text{ MHz}, \text{ V}_{\text{DD}} = 1 \text{ V}$$

TDM Drowsy: Results

Comparison with "Standby" mode Standby has single IO clock interrupt latency

TDM Drowsy: Results

• "Standby" with PLL disabled

- Leakage reduction limited by regulator resolution

Energy Cost of Entry and Exit

- Power Components
 - Active power
 - Active mode leakage—lumped with the above
 - PLL power
 - During operation and for 20 μ s before active operation to lock
 - Drowsy mode leakage
 - Power supply movement power
 - Passive entry saves $\frac{1}{2}$ of the V_{SS} component
 - Also saves power if resume soon after entering Drowsy
 - Both V_{SS} and V_{SSSUP} are small swing
 - $C_{VSS} = 55 \text{ nF}$
 - $C_{VSSSUP} = 5 \text{ nF}$
- Total energy overhead equivalent to approximately 60 clock cycles of active power at $V_{DD} = 1V$

Voltage scaling: Effect of Drowsy

Interfacing Domians

- It is easy to create sneak paths! [12]
 - Signals between voltage domains must be driven full rail
 - Avoid pass gate interfaces
 - Latches suffice to isolate domains

See also [13] for a set of rules for MTCMOS designs

Low Leakage ESD Clamping

- Drowsy mode current small enough to make otherwise negligible contributors significant
 - Large PMOS transistors in ESD clamps important
 - Fixed by RBB on clamp devices [14]
 - Also provides FBB during ESD transients
 - Equivalent or better performance when tested using HBM, MM

Other Implementations

- Same scheme used in [15] for 0.13 μm SRAM
 - No PMOS body bias
 - We can speculate that the PMOS leakage was substantially lower than NMOS, so no value in PMOS RBB
 - We have seen this on other 0.13 μm processes
- This approach will be used for 65 nm handheld devices [16]
 – 0.5 V V_{DD}-V_{SS}

Outline

- Introduction and motivation
- Standby leakage management
 - Drowsy mode: Reverse body bias and supply collapse
 - Circuit design and operation
 - System level results
 - Limitations
 - Thick gate shadow latches
- Active leakage management
 - Multiple V_t and channel assignment
 - Drowsy memories
 - Thick gate SRAM
- Conclusions

Limitations of Drowsy Modes

- State stability [2]
 - High fan-in domino circuits can have N to P ratios of 100's to 1
 - Need highly balanced storage, MTCMOS logic
- Channel length
 - Aggressively scaled transistors have poor body transconductance g_{MB}
 - Need to back off from the highest performance possible
- Drain to bulk tunneling currents
 - Requires less steep halo doping gradient at drain
 - No halo is best—this will limit transistor scaling
- Defects
 - Stacking faults generate nearly 10 μ A of leakage
 - Turns Drowsy cells into defect detectors
 - May be problematic for strained silicon
Leakage Control Limitations

- Body bias vs. channel length
 - Bulk control lost as transistors approach punchthrough
 - This is where high performance processes are often targeted

Combining MTCMOS and Drowsy

- Only state elements have RBB applied [11]
 - The rest of the circuits are "slept" using MTCMOS
 - This eliminates about 2/3 of the total leakage
 - Allows highly balanced state elements
 - Drowsy can be pushed to even lower $V_{\rm DS}$
 - Leverage high $I_{gate} V_{GS}$ dependency

"Balloon" Latches

- A state retentive MTCMOS scheme [5]
 - High V_t transistors gate
 low V_t circuits
 - State retained in high V_t balloons
 - Circuit speed remains a function of low V_t
- Does not address I_{gate} leakage component

Leakage on Advanced Processes

- Many of the old techniques will still be applicable
 - RBB and supply collapse still works
 - Supply collapse (VOLTAGE SCALING) is key
 - 10 μ m wide 65 nm NMOS characteristics using BPTM [17]

Leakage on Advanced Processes

- Gate leakage suppressed 2 orders of magnitude
 - Consistent with previous results [18]
- RBB and supply collapse still works
 - Cutting the voltage is critical
 - Lowers I_{off} by the DIBL coefficient
 - Pulls the transistor away from punchthrough and gives control back to bulk
 - Longer channel suppresses DIBL the same way
- Key point not obvious is drain to bulk band to band tunneling
 - This is becoming the dominant component and is helped by lower voltage
 - Transistor design is also important
- Future devices will apply "Drowsy" style RBB and supply collapse for SRAM's on 90 and 65 nm [16]

Outline

- Introduction and motivation
- Standby leakage management
 - Drowsy mode: Reverse body bias and supply collapse
 - Circuit design and operation
 - System level results
 - Limitations
 - Thick gate shadow latches
- Active leakage management
 - Multiple V_t and channel assignment
 - Drowsy memories
 - Thick gate SRAM
- Conclusions

Addressing I_{gate}: Thick Gate State Retention

- Add a "shadow" thick gate (and high V_t) latch to retain state during standby [8]
 - Using the thick gate IO transistors implies higher V_t
 - The gate length can be pushed--not exposed to high drain voltages
- Eliminate thin gate latch if speed is unimportant

Thick Gate State Retention Operation

– TSMC 0.18 μ m thick gate and BPTM 65 nm thin gate

Safer Thick Gate State Retention

- The V_{DD} supply needn't be completely discharged if a unidirectional path is provided from the thick to thin gate circuitry [9]
 - Recall that it is best to disable supplies, allowing movement via leakage rather than driving them low

Thick Gate State Retention: Another Approach

- This approach uses uni-directional circuits in both directions
 - More transistors
 - May ensure thick gate write-ability over a wider voltage range
- Adding transistors to slave in MSFF does not incur a speed penalty
 - From USPTO website
 [10]

Thick Gate State Retention: Results

- Master-slave flip-flop
 - Using projected 65 nm thin gate transistors
 - $I_{off} = 10.1 \text{ nA/}\mu\text{m}$
 - $I_{gate} = 8.0 \text{ nA/}\mu\text{m}$
 - Using TSMC 0.18 μ m thick gate
 - $I_{off} = 10 \text{ pA/}\mu\text{m}$
 - 40 angstrom electrical t_{ox} provides negligable gate leakage
 - Result is over 7200x leakage savings for just MSFF!
 - Does not include thin gate logic between the flip-flops
- So we've eliminated the I_{gate} standby contribution

• But... The real limiter will be drain edge band to band tunneling

- Not modeled in this analysis
- Will require process work
 - Cost?

Outline

- Introduction and motivation
- Standby leakage management
 - Drowsy mode: Reverse body bias and supply collapse
 - Circuit design and operation
 - System level results
 - Limitations
 - Thick gate shadow latches

• Active leakage management

- Multiple V_t and channel assignment
- Drowsy memories
- Thick gate SRAM
- Conclusions

Managing Active Leakage

- Leakage is becoming a large part of overall power
 - Up to 40% of total power at the worst-case corners on high performance processes
 - Not as problematic on low power processes...yet
- Transistor scaling will increasingly force "low power," really low-leakage processes to lower V_t's or some of the scaling value will be lost
 - Designers that deal with the leakage will provide a competitive advantage compared to those that don't
- But this is hard
 - All schemes create some kind of cost
 - Cost must be optimized to balance active/standby power
 - Including the energy cost of moving between the states

Shutting Down Units

- Can work well for low activity factor blocks
 - Floating point, small granularity cache banks on μP
 - Some blocks may be unused for applications on SOC
- Key factor is the cost of discharging and charging the block power supply
 - The power cost must be amortized by the leakage savings
 - Also must be careful about IR drop through the switches
 - Very difficult
- Switch overhead is very low
 - Beware of inductive effects on supplies [18]
 - My solution is under-driving the switch transistor gates [2]
 - [18] used staged turn-on of the switches

Shutting down units: Example

- Multiplier total transistor width is 60 mm
- Leakage power savings is

 $P = VI = \frac{1}{2} (0.8) V I_{leak} = 6.5 mW$

(essentially 0.065 nJ per cycle at 1 GHz)

at V_{DD} = 1.3 V and $I_{\text{leak}} \sim I_{\text{off}}$ = 100 nA/µm @ 100°C

- Power supply capacitance of 0.5 nF
 - One on gating is 0.33 nJ
 - That's 5 clock cycles at 1 GHz
 - Results will be very sensitive to decoupling capacitance
 - More is better for performance and noise
 - Less is better for gating
- It can be difficult to do this effectively and easy for particular behaviors to become higher power

Outline

- Introduction and motivation
- Standby leakage management
 - Drowsy mode: Reverse body bias and supply collapse
 - Circuit design and operation
 - System level results
 - Limitations
 - Thick gate shadow latches
- Active leakage management
 - Multiple V_t and channel assignment
 - Drowsy memories
 - Thick gate SRAM
- Conclusions

Dual Threshold Voltages

- About 5% fabrication cost adder
 - No active power adder
 - Leakage cost is over 10x per low V_t compared to high V_t
- Minimize low V_t transistors for low power
 - Design with high V_t
 - Don't forget this increases active (switching) power
 - Higher supply voltage for the same speed
 - Insert low V_t only on difficult speed paths
 - Tendency for widely separated high and low V_t targets
- Can be very difficult for high performance design
 - Tendency to over-insert
 - Difficulty with noise on dynamic circuits
 - Less separated high and low V_t targets
 - Timing accuaracy effects
 - High and low V_t needn't track each other

Multiple Channel Lengths

- Longer channel decreases DIBL rapidly

 About 7x I_{off} decrease on aggressive 90 nm process
- No process cost
 - But a small size adder (1-2%)
- Active power cost
 - Up to 15%, depending on activity factor
 - Caution required with insertion on high speed circuits
 - Slow circuits dominated by leakage can be all long L
- High V_t and low V_t track each other at process corners
 - Essentially, both get faster and slower together

Multiple Channel Lengths: Physical Design

- Add one grid
 - Layout must have one grid of space to add the gate length
 Small overall area cost
- Can also be added at mask synthesis – Better resolution, but harder to check

Multiple Channel Lengths: Timing

- Priority for insertion
 - Low activity factor
 - Leave the clocks alone! Maximize leakage savings
 - Wide transistors
 - Maximize leakage savings
 - Low activity factor
- Work on post-layout data
 - Otherwise you don't really know your timing margin
- Fix hold time violations after long channel insertion

 Slower (long L) gates fix these for free
- Logic block long L insertion must be automated
 - Timing must be re-calculated after each insertion
 - We used an insertion tool using Langrangian Relaxation

Timing Margin

- Cumulative block timing shows timing slack
 - Negative path fixes comprise the work to meet timing

Timing Margin

Low V_t insertion moves paths from negative slack to zero slack

- Without Low V_t, this requires logic, sizing changes

Timing Margin: Long L insertion

- Don't fix every path to zero timing margin
 - Statistical variation will impact the yield
 - Timing tools are not perfect

Timing Margin: Effect of Variation

- Variation modeled as channel length
 - Likelihood of a path becoming worse than 0 ns slack with variation (creating a timing failure) vs. original path distance from critical [19]

Results: Long L insertion

- Automatic insertion on microprocessor logic blocks
 - 90 nm process

Block	1	2	3	4	5	6	7	8	9	10	11	12	13
I _{off} reduction (%)	39	43	44	48	45	38	49	49	48	47	39	42	39

Outline

- Introduction and motivation
- Standby leakage management
 - Drowsy mode: Reverse body bias and supply collapse
 - Circuit design and operation
 - System level results
 - Limitations
 - Thick gate shadow latches
- Active leakage management
 - Multiple V_t and channel assignment
 - Drowsy memories
 - Thick gate SRAM
- Conclusions

Drowsy Memories

- Leakage dominates memory power on deep submicron processes
 - Low activity factor leads to low active power
- Supply collapse suggested for limiting cache memory leakage [20]
 - Can be done by bank or row

- Very aggressive processes have low RBB impact
 - Backing off the gate length fixes this—usually needed anyways

Drowsy Memories: Driving V_{SS}

- Driving V_{SS} allows greater leakage reduction
 - Can still be done on a row by row basis
 - Helps write speed, Ref. [3] used FBB to improve read speed and stability
 - Used effectively on a 0.13 μ m process [21]
 - Note this is the same as the full-chip Drowsy mode described previously
 - No PMOS RBB
 - NMOS and PMOS leakage not always balanced

Memory Decode

Outline

- Introduction and motivation
- Standby leakage management
 - Drowsy mode: Reverse body bias and supply collapse
 - Circuit design and operation
 - System level results
 - Limitations
 - Thick gate shadow latches
- Active leakage management
 - Multiple V_t and channel assignment
 - Drowsy memories
 - Thick gate SRAM
- Conclusions

Thick Gate SRAM

Use thick gate transistors for SRAM
 High V_t, no appreciable I_{off} or I_{gate} currents

- Bitlines precharged to the core V_{DD}
 - SRAM cells operate from V_{DDhv} –ensures stability
 - Level shift at the WL driver--keeps decoder low power

Thick Gate SRAM: Layout and Size

- Gate length cannot scale with thicker t_{OX}
- Transistors must be retargeted from the I/O transistors
 - Avoid punchthrough with high V_t
 - Eliminate halo for low drain to bulk band to band tunneling
 - Longer gate to keep gate control (but short as possible)
- Cell about 20-40% larger than thin gate cells

Thick Gate SRAM: Array Layout

SRAM Cell Read Stability

- Current through inverter pulldown raises cell logic low level during read—particularly at low voltage
 - Due to mis-match (even RDF [23]) the static noise margin can be much smaller than expected
 - Some cells flip when read

Thick Gate SRAM Cell Stability

- Stability improved in thick gate SRAM design
 - Size matters! Better matching
 - Also greatly helped by lower precharge voltage...
 - Until $V_{DD} V_{tTG}$ reached—then looks like a write

Conclusions

- Standby power is moving from a process to a design problem
 - Process scaling increases leakage
- There is a lot of room for improvement
 - Huge and growing hand-held, wearable, and medical markets will stimulate creative solutions
- Design solutions can limit many components
 - Low V_{GS} limits, thick gate eliminates I_{gate}
 - High V_t or body bias limits I_{off}
 - Drowsy limits GIDL
 - Combines low V_{GS} , simulates high V_t
- Transistor design will also matter
 - Drain to bulk tunneling current will be limiting
 - Requires limited or no halo implants
Questions?

Acknowledgment

 Many people contributed to this work: Kim Velarde Shay Demmons Franco Ricci Manish Biyani Ed Bawolek Neil Deutscher Mike Morrow Bill Brown Dave McCarroll Eric Hoffman Alfredo Barrenechea

References

- H. Mizuno, et al., An 18-μA standby current 1.8-V, 200-MHz microprocessor with self-substrate-biased dataretention mode, *IEEE JSSC*, 34, Nov., 1999, pp. 1492-1500.
- [2] L. Clark, N. Deutscher, F. Ricci, and S. Demmons, Standby power management for a 0.18 μm microprocessor, *Proc. ISLPED*, 2002, pp. 7-12.
- [3] H. Mizuno and T. Nagano, Driving source-line cell architecture for low-V high-speed low-power applications, *IEEE JSSC*, 31, April, 1996, pp. 552-558.
- [4] S. Mutoh, et al., 1V power supply high-speed digital circuit technology with multithreshold-voltage CMOS, *IEEE JSSC*, 30, Aug., 1995, pp. 847-854.
- [5] S. Shigematsu, et al., A 1-V high-speed MTCMOS circuit scheme for power-down application circuits, *IEEE JSSC*, 32, June, 1997, pp. 861-870.
- [6] J. Kao and A. Chandrakasan, "Dual-threshold voltage techniques for low-power digital circuits," *IEEE JSSC*, 25, July, 2000, pp. 1009-1018.
- [7] Q. Wang and S. Vruhula, "Algorithms for minimizing standby power in deep submicrometer, dual-Vt CMOS circuits," *IEEE Trans. On Computer-aided Design of Int. Circuits and Systems*, pp. 306-318.
- [8] L. Clark and F. Ricci, "Low standby power using shadow storage," US Patent #6,639,827
- [9] L. Clark, F. Ricci, and M. Biyani, "Low standby power state retention for sub-130 nm processes," *accepted to IEEE JSSC*.
- [10] U. Ko, D. Scott, S. Gururajarao, H. Mair, "Retention register for system-transparent state retention," US patent application 2004000871.
- [11] L. Clark, M. Morrow, and W. Brown, Reverse Body Bias and Supply Collapse for Low Effective Standby Power, *to appear in IEEE Trans. VLSI*, Sept., 2004.
- [12] L. Clark, D. McCarroll, and E. Bawolek, Characterization and debug of reverse body bias low power modes, *Electronic Device Failure Analysis*, 6, Feb., 2004, pp. 13-21.

- [13] B. Calhoun, F. Honore, and A. Chandrakasan, "A leakage reduction methodology for distributed MTCMOS," *IEEE JSSC*, 39, May, 2004, pp. 818-827.
- [14] T. Maloney, S. Poon, and L. Clark, "Methods for Designing Low-leakage Power Supply Clamps," to appear in Journal of Electrostatics, October, 2004.
- [15] K. Osada, Y. Saitoh, E. Ibe, K. Ishibashi, "16.7pA/cell tunnel-leakage-suppressed 16Mb SRAM for handling cosmic-ray-induced multi-errors," *ISSCC Proc.*, 2003.
- [16] S. Zhao, et al., "Transistor optimization for leakage power management in a 65 nm CMOS technology for wireless and mobile applications," VLSI Symp. Tech. Dig., 2004, pp. 14-15.
- [17] UC Berkeley Device Group. Berkeley predictive technology model [online]. http://www-device.eecs.berkeley.edu/~ptm.
- [18] S. Kim, S. Kosonocky, and D Knebel, "Understanding and minimizing ground bounce during mode transition of power gating structures," *Proc. ISLPED*, 2003, pp. 22 25.
- [19] A. Barrenechea, "Design impact of process variation," M.S. Thesis, University of New Mexico, 2004.
- [20] K. Flautner, et al., Drowsy caches: Simple techniques for reducing leakage power, *Proc. ISCA'02*, p. 148, 2002.
- [21] K. Min, K. Kanda, and T. Sakurai, "Row-by-row dynamic source-line voltage control (RRDSV) scheme for two orders of magnitude leakage current reduction of sub-1-V-VDD SRAM's," *Proc. ISLPED*, 2003, pp. 66-71.
- [22] K. Itoh, "Trends in low-voltage embedded-RAM technology," Proc. 23rd Int. Conf. on Microelectronics, 2002, p. 497.
- [23] A. Bhavnagarwala, T. Xinghai, J. Meindl, The impact of intrinsic device fluctuations on CMOS SRAM cell stability, *IEEE JSSC*, 36, no. 4, 2001, pp. 658-665.