Balanced Energy Optimization

John Cornish
Director of Product Marketing
ARM Limited
john.cornish@arm.com
Energy Efficiency Matters to End Users

Users of consumer products care about:

- Convenient form factor
- Advanced Feature set
- Low Cost
- Long battery life
- High reliability
Higher Performance and Lower Cost

<table>
<thead>
<tr>
<th>Year</th>
<th>Model</th>
<th>Battery Life</th>
<th>Battery Type</th>
<th>Weight</th>
<th>Features</th>
<th>Price</th>
</tr>
</thead>
<tbody>
<tr>
<td>1983</td>
<td>Motorola DynaTAC 8000X</td>
<td>0.5h - 1h talk, 8h standby</td>
<td>Lead Acid, 500g</td>
<td>800g</td>
<td>Talk for brokers</td>
<td>$3995</td>
</tr>
<tr>
<td>1995</td>
<td>Nokia 232</td>
<td>1h talk, 13h standby</td>
<td>NiMh, 100g</td>
<td>205g</td>
<td>Talk for the masses</td>
<td>$500</td>
</tr>
<tr>
<td>2003</td>
<td>Nokia 6600</td>
<td>4h talk, 240h (>1 week) standby</td>
<td>Li-Ion, 21g</td>
<td>125g</td>
<td>Talk, play, web, photo, organize</td>
<td>$250</td>
</tr>
</tbody>
</table>
New Technology - New Rules

- Technology scaling trends are not in our favour
 - New processes are expensive
 - Diminishing performance gains from process scaling
 - Dynamic power remains high
 - Leakage power increasing exponentially

- Solutions need to cut across traditional boundaries
 - (SW / architecture / micro architecture / circuits)
 - Employ aggressive energy management techniques
Balancing Energy Efficiency

- Scalable processing
 - Energy efficiency vs Responsiveness
- Customized processing
 - Energy efficiency vs Generality
- Error tolerant processing
 - Energy efficiency vs Determinism
Scalable Processing
The Need for Parallelism

- More bits to more places
 - ARMv5TE Signal processing instructions
 - ARMv6 SIMD media instructions
 - AMBA Multi-layer bus architectures
- More instructions per cycle
 - Deeper pipelines
 - Superscalar, VLIW
- More algorithms at once
 - Coprocessors, accelerators
- More applications
 - Multiple processors
Where to Best Apply Parallelism

‘Optimal’ support for both ILP and TLP brings the most performance for the least cost / effort

Expensive on hardware to continue to attempt to extract instruction level parallelism (ILP)

Expensive on hardware and software to continue to attempt to share work between more instances of thread level parallelism (TLP)
ARM and NEC Collaboration

- NEC ELECTRONICS AND ARM ANNOUNCE LONG-TERM STRATEGIC COLLABORATION — Oct. 20, 2003

- NEC Electronics and ARM to co-develop and co-market next-generation multiprocessor-based CPU cores for home and automotive multimedia applications, and mobile handset markets

- NEC Electronics have licensed the current ARM11 family

- In addition there is a Multiprocessing collaboration effort
 - Multiprocessing can be higher performance and lower power

- ARM announced MPCore multiprocessor at EPF’04
Multi-Processing Models

- Asymmetric operation (AMP)
 - ‘Static’ task allocation
 - Distributed or common view of memory
 - Synchronization and communication via explicit message passing mechanism
 - Either homogeneous or heterogeneous CPUs
 - Manual allocation of work-items within definition of a SoC design (partitioned)

- Symmetric operation (SMP)
 - ‘Dynamic’ task allocation
 - Shared view of memory
 - Synchronization and communication via shared state in memory
 - Normally homogeneous CPU arrangement
 - Automatic allocation of work-items within an abstract definition of the SoC design
ARM SMP Evaluation Platform

- FPGA MPCore Implementation
 - 4 way ARM9-class CPU

- Software Environment
 - Pre-ported Linux SMP
 - GNU toolset
 - POSIX Thread library

- Availability
 - Today
 - Partners interested in MP application development
Thread Level Parallelism

- Measurements made on the ARM SMP Evaluation Platform
 - MPEG2 with color conversion deactivated, 20 frames

![2 Threads](image)

![4 Threads](image)
ARM Intelligent Energy Management

- **Software components**
 - Adaptively shutdown CPUs that are unused
 - Continual measurement of current level of TLP
 - Dynamic voltage and frequency scaling of active cores
 - Symmetric speed scaling – all active CPUs at same speed
 - Predict future software workloads by interacting with instrumented Operating Systems and application software
 - To determine the software deadlines
 - To balance workload and deadlines with performance

- **Hardware component**
 - To accurately measure the actual system performance
 - To independently manage the transitions of hardware scaling blocks. e.g. clock generators and power controllers
 - Together these components determine and manage the lowest performance level that gets the work done
MP Energy efficiency

- Depending on TLP, each core can run slower.
- If TLP = 1.5 (50% of non-idle time 2 threads running)
 - **Symmetric-speed MP**: each core runs at 2/3 of uni-processor speed for equivalent throughput.
 - **Asymmetric-speed MP**: depends on synchronization between threads, slower thread could run at 1/3 of uni-processor speed for equivalent throughput.

Uni-processor (UP) workload

Workload on dual-processor (DP) at full speed.

Symmetric-speed DP: speed scaled to match UP throughput.

Asymmetric-speed DP: speed of each processor scaled separately.

Increased performance

E savings, simple implementation

Largest possible E savings.
MPCore - Control Over Energy Usage

MPCore multiprocessor extends control over power usage by providing both voltage and frequency scaling and turning off unused processors.

- Reduced concurrency or lower performance required: shut down processors
- All processors active: IEM scales voltage/frequency for required performance

- Fully Powered
- Powered Down

- Energy Consumed
- Required Performance

- Shutdown
- Minimum Vdd limits IEM savings
- Adaptive shutdown beyond IEM

- 4 CPU operation with IEM
- 4 CPU operation
- 3 CPU operation
- 2 CPU operation
- 1 CPU operation
- 1 CPU in dormant mode

- 50% saving from Intelligent Energy Manager (IEM)
- 85% from IEM and Adaptive Shutdown

Dormant mode for standby
Scalable Processing - Summary

- Exploit workload variance to minimise energy consumption (e.g. Toyota Prius)
- Attempt to match processing resources to the computational workload in real time
- Need to use multiple processors to have fine granularity and wide dynamic range
 - This constrains maximum single thread performance so software must be multi-threaded
- Employ adaptive algorithms to predict what level of performance will be required
- System responsiveness constrained by time constant of power management devices
Customized Processing
ARM OptimoDE

- Configurable VLIW style architecture
 - High datapath parallelism → high performance (> 3GOPS)*
 - Low clock rate and low power implementation (0.0215mW/MHz)*
 - Allows small core (from 9,500 gates)*
 - Efficient code density using code compaction scheme
 - Fully customizable data path including addition of application specific units
- Dynamic parallelizing (patented) HLL compiler
 - C and C++ supported
 - Compiler automatically targets application specific units
- Supported by
 - Data engine customization and profiling tools
 - AMBA™ design integration kit (data engine sub-system design)

* Taken from actual implementations
Data Engine System in Context

SDRAM

SDRAM controller

ARM CPU

SDRAM

I/O

AMBA Bus Matrix

Data Engine sub-system (DESS)

Data Engine (DE)

AMBA Interface

DMA Controller

Interrupt Controller

SoC

ARM

THE ARCHITECTURE FOR THE DIGITAL WORLD™
OptimoDE - Architecture Model

Functional units ALU, MULT, SHIFTER

Memories (RAM, ROM)

I/O

VLW Controller

Build-in controller (micro-program)

'Load-store'

Interconnect

Foreground storage (registerfiles)

 regs regs regs ...

Interconnection network (wires, mux, buffer)

ARM

THE ARCHITECTURE FOR THE DIGITAL WORLD™

CONFIDENTIAL
Example Configurations

- Wide range of configurations and customizations possible
- To reduce development time, ARM supplies:
 - Variety (19) of partially and fully defined example configurations
 - Library of optional engine resources for any data engine implementation
- Applications programs (C or C++) can be immediately compiled and profiled to these implementations

Example configuration OMA111FSc:
- 1 ALU, 1 multiplier, 1 RAM
- Central register file
- Support for subroutine spilling
OptimoDE Compiler

- Converts C-source into a Data and Control flow graph
- Performs patented Dataflow Analysis
 - Analyzes data-dependencies in C code
 - Reconstructs parallelism from sequential C code
- Works across hierarchy and arrays
- Improves results in several ways
 - Parallelism
 - Software pipelining
 - Address computation

\[
\begin{align*}
p_1 &= a \times b; \\
p_2 &= c \times d; \\
s &= p_1 + p_2;
\end{align*}
\]

\[
\begin{align*}
p_2 &= c \times d; \\
p_1 &= a \times b; \\
s &= p_1 + p_2;
\end{align*}
\]
Static Profiling

Performance profiling reports automatically generated

core_activity

register_activity

bus_activity
Video Example - Target Platform

- MPEG4 Decoder implementation
- Prototype using ARM Versatile platform with FPGA card
 - OptimoDE data engine targeting an FPGA implementation for prototype development
 - Fast (near real-time) verification
VideoDE™ – Schematic View
Example VideoDE Result

- Single Instruction Multiple Data (SIMD) datapath
 - 128-bit configured as 8 * 16 bit or 16 * 8 bit
 - Parallel multiplier and adder
 - Sum of Absolute Difference (SAD)
- VLIW controller - 160-bit instruction word
- 16-bit ALU
- Three address generators
- Two RAM (128-bit and 16-bit wide)
- Support for efficient block rotation
- 150K gates
- 150-200MHz clock rate
Customised Processing - Summary

- Optimise the processing resources to the intended workload at design time
- Trade-off generality for energy efficiency
 - Processor will be efficient for a class of algorithms
 - For many embedded applications this is acceptable
- Need tools to analyze, compile, and profile target algorithms against the design

![Energy Efficiency Graph]

Range of algorithms
Error Tolerant Processing
Uncertainty in Design Parameters

- Uncertainty leads to performance and power overheads
 - Increasing uncertainty with design scaling
 - Intra-die process/temperature variations, inductive noise
- Key Observation: worst-case conditions are highly improbable
 - Significant gain for circuits optimized for common case
 - Efficiency mechanisms needed to tolerate infrequent worst-case scenarios
“Better Than Worst-Case” Design

- ‘Making Typical Silicon matter with Razor’
 - Austin, Blaauw, Mudge, Flautner

- Low-power pipelines based on circuit timing error detection & correction

- Uses voltage scaling to eliminate worst case design margins

March 2004
Voltage Margins

- Noise Margin
- Ambient Margin
- Process Margin
- Critical voltage determined by critical circuit path
Detecting & Correcting Timing Errors

- Razor flip-flop implements a shadow latch using a locally inverted clock signal
- Allowable operating voltage constrained to ensure shadow latch setup time is always met
- Error signal is XOR of latch and critical flip-flop
- Many non-critical flip-flops will not need Razor
- Two methods developed for recovering pipeline state after timing error detection: global clock gating, and counterflow pipelining
- Multiplyer experiments showed 35% energy saving at 1.3% error rate
Error Rate Studies – Empirical Results

Error rates rise even slower for real program data

Once every 20 seconds!
Razor I - Razor Prototype Design

- Six stage 64-bit Alpha pipeline
 - 200MHz in 0.18mm @ 1.8V
 - Tunable via software from 200-50MHz, 1.8-1.1V
- 32-entry, 3-port register file, 8K I-Cache, 8K D-Cache
- Branch-not-taken branch predictor
- Implements substantial subset of 64-bit Alpha integer instructions
- Ability to service software interrupts
- Full scan capability
- Razor overhead:
 - Total of 192 Razor flip-flops out of 2408 total (9%)
 - Error-free power overhead 3.1%
 - Recovery power overhead at 10% error rate 1%
Conclusions

- Energy efficiency is the #1 issue for many applications
 - Mobile devices need more performance & longer battery life

- Scalable processing
 - Multi-processor designs with DVS and adaptive shutdown increase efficiency by scaling to widely varying workloads

- Customized processing
 - Trades-off generality for energy efficiency which is acceptable for many embedded applications

- Error tolerant processing
 - Offers very attractive efficiency gains for small overhead