
Take-Home Exam Solution #2 
 
 
For problems 1-6, normalize each answer for g and p to following reference inverter. 
Use equal pull-up and pull-down sizing unless stated otherwise. 
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For this Exam: 
gup-inv = gdown-inv = 1 
pup-inv = pdown-inv = 1 

 
Problem 1:  
Size each gate to have the same pull up and pull down resistance as the reference inverter. 
Calculate the logical effort (gup, gdown, gavg) and parasitic delay (pup, pdown, pavg) for each input of 
the following gates. 
Note:   gavg = ½(gup+gdown)  

pavg = ½(pup + pdown) 
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For simplicity, size the above circuits to have the same effective sizing as the above inverter. 
(a) AOI gate 
Input a, b: gup = (1*6)/(1*3) = 2  gdown = (1*6)/(1*3) = 2  gavg = 2 
Input c: gup = (1*5)/(1*3) = 5/3 gdown = (1*5)/(1*3) = 5/3  gavg = 5/3 
 
(b) OAI gate 
Input a, b: gup = (1*6)/(1*3) = 2  gdown = (1*6)/(1*3) = 2  gavg = 2 
Input c: gup = (1*4)/(1*3) = 4/3 gdown = (1*4)/(1*3) = 4/3  gavg = 4/3 
 



Problem 2: 
Calculate the logical effort (gup, gdown, gavg) for each input of the following asymmetric gates.  
 
 

     
 

(a) Skewed Inverter 
Input a: gup = (2*2)/(1*3) = 4/3 gdown = (1*2)/(1*3) = 2/3  gavg = 1 
 
(b) Skewed NAND 
Input a, b: gup = (2*3)/(1*3) = 2  gdown = (1*3)/(1*3) = 1  gavg = 3/2 
 
 
 
Problem 3: 
 
Find the p/n ratio which gives the best delay for the following path. 
 
Note: Use gavg and pavg for your calculation 
 

Cout = 128Cinv, Cin = Cinv.  
 

 
 
Denote the P/N ratio of the inverter is γ.  Then, the average logical effort is: 
 gup = (2/γ)(γ +1)/3 = (2/3)(γ +1)/γ gdown = (γ +1)/3   ⇒  gavg = (γ +1)(γ +2)/(3γ) 
From given condition that pinv = 1, we’ll get Cp,inv = Cinv.  So, the average parasitic delay is: 
 pup = (2/γ)(γ +1)/3 = (2/3)(γ +1)/γ pdown = (γ +1)/3   ⇒  pavg = (γ +1)(γ +2)/(3γ) = gavg 
 
Since the path has an even number of inverters, the total delay will be minimal if and only if all 
inverters have the same P/N ratio.  The result optimal stage effort is: 
 fopt = (gavg

4.Cout/Cin)1/4 = gavg (256Cin/Cin)1/4 = 4 gavg. 
The total delay, 
 Td = 4 (fopt + pavg) = 20 gavg = (20/3)(γ +1)(γ +2)/γ 
With the form of the delay function, it reaches minimal if and only if dTd / dp = 0.  After simple 
algebraic transformation, we’ll get: 
 γ = 21/2 ≈ 1.41 



Problem 4: 
 

 
Given the following path, with Cout = 64, Cin = C1 = 1.  Size the circuit using LE and determine 
the total delay for (See Horowitz’s slides): 
a. Coffpath = 0 
 
Due to no off-path loading, the optimal stage effort f and sizing can be done directly. 
 fo = (GBH)1/4 = [(1)(4/3)(53)(4/3).(1).(64/1)]1/4 ≈ 3.71 
The gate sizes: 
 C4 = g4 (Cout / fo) = (4/3) (64/3.71) ≈ 23.0 
 C3 = g3 (C4 / fo) = (5/3) (23.0/3.71) ≈ 10.3 
 C2 = g2 (C3 / fo) = (4/3) (10.3/3.71) ≈ 3.71 
 C1 = g1 (C2 / fo) = (1) (3.71/3.71) = 1.0:  matching to given input size! 
Total delay: 
 Td = 4fo + Σp = 4 (3.71) + 7 ≈ 21.8 
 
 
b. Coffpath = 5 
 
Branching cannot be computed directly, so recursive solving is needed.  However, as Coffpath << 
C4.  So, C4 is not expected to change much.  Then, branching at C4 can be estimated. 
 b4 = (C4 + Coffpath)/C4 ≈ (23.0 + 5)/23.0 ≈ 1.22 
The approximated optimal stage effort: 
 fo = (GBH)1/4 = [(1)(4/3)(5/3)(4/3).(1.22).(64/1)]1/4 ≈ 3.90 
The gate sizes: 
 C4 = g4 (Cout / fo) = (4/3) (64/3.90) ≈ 21.9 
 C3 = g3 (C4 / fo) = (5/3) (21.9+5.0)/3.90 ≈ 11.5 
 C2 = g2 (C3 / fo) = (4/3) (11.5/3.90) ≈ 3.93 
 C1 = g1 (C2 / fo) = (1) (3.93/3.90) = 1.01:  matching quite close to given input size! 
Since calcuated C1 matches well to the given value, the total delay can be computed from: 
 Td = 4fo + Σp = 4 (3.90) + 7 ≈ 22.6 
 
 
c. Coffpath = 30 
 
Coffpath ~ C4 of problem 1.  So, estimated branching using the value C4 of problem 1 will not be 
accurate.  Recursive computation of C4 must be used.  For the sake of comparison, let’s do both. 
 
* Estimated branching: 
 b4 = (C4 + Coffpath)/C4 ≈ (23.0 + 30)/23.0 ≈ 2.30 
The approximated optimal stage effort: 
 fo = (GBH)1/4 = [(1)(4/3)(5/3)(4/3).(2.30).(64/1)]1/4 ≈ 4.57 



The gate sizes: 
 C4 = g4 (Cout / fo) = (4/3) (64/4.57) ≈ 18.7 
 C3 = g3 (C4 / fo) = (5/3) (18.7+30.0)/4.57 ≈ 17.7 
 C2 = g2 (C3 / fo) = (4/3) (17.7/4.57) ≈ 5.12 
 C1 = g1 (C2 / fo) = (1) (5.12/4.57) ≈ 1.13: off by 13% compared to given input size. 
The total delay 
 Td = (C2/Cin) + 3fo + Σp = (5.12/1) + 3 (4.57) + 7 ≈ 25.8 
 
* Recursive computation: 
 fo ≈ 4.74 
The gate sizes: 
 C4 = g4 (Cout / fo) = (4/3) (64/4.74) ≈ 18.0 
 C3 = g3 (C4 / fo) = (5/3) (18.0+30.0)/4.74 ≈ 16.9 
 C2 = g2 (C3 / fo) = (4/3) (16.9/4.74) ≈ 4.74 
 C1 = g1 (C2 / fo) = (1) (4.74/4.74) ≈ 1.00: matching to given input size. 
The total delay 
 Td = 4fo + Σp = 4 (4.74) + 7 ≈ 26.0: even with Coffpath comparable to C4, the delay error 
due to simple branching estimation results within 1% of the accurate result. 
 
d. Coffpath = 120 
 
* Estimated branching: 
Coffpath >> C4.  So, the offpath load dominates the size of gate C3.  So, the optimal stage effort is 
best estimated from the first 3 gates.  (Note that using all 4-gate path in the estimation would 
cause more error because Coffpath / C4 would vary more when C4 is changed) 
 fo ≈ (GBH)1/3 = [(1)(4/3)(5/3).(1).(120+23)/1]1/3 ≈ 6.44 
The gate sizes: 
 C4 = g4 (Cout / fo) = (4/3) (64/6.44) ≈ 13.3 
 C3 = g3 (C4 / fo) = (5/3) (13.3+120.0)/6.44 ≈ 34.5 
 C2 = g2 (C3 / fo) = (4/3) (34.5/6.44) ≈ 7.15 
 C1 = g1 (C2 / fo) = (1) (7.15/6.44) ≈ 1.11: off by 11% compared to given input size. 
The total delay: 
 Td = (C2/Cin) + 3fo + Σp = (7.15/1) + 3 (6.44) + 7 ≈ 33.5 
 
* Recursive computation: 
 fo ≈ 6.66 
The gate sizes: 
 C4 = g4 (Cout / fo) = (4/3) (64/6.66) ≈ 12.8 
 C3 = g3 (C4 / fo) = (5/3) (12.8+120.0)/6.66 ≈ 33.2 
 C2 = g2 (C3 / fo) = (4/3) (33.2/6.66) ≈ 6.66 
 C1 = g1 (C2 / fo) = (1) (6.66/6.66) ≈ 1.00: matching to given input size. 
The total delay 
 Td = 4fo + Σp = 4 (6.66) + 7 ≈ 33.6: using the above estimation, the delay error due to 
simple branching estimation results within 1% of the accurate result. 
 



Problem 5: 
 

 
Assume Cout = 64C and Cin = C = C1.  
 
a. Size the following circuit using simple branching.  Report the total delay. 
 
Using the inv (C1) – NAND (C2) – NOR (C3) – NAND (C4) path and simple branching (= counts 
of gate input), the optimal stage effort can be estimated. 
 fo = (GBH)1/4 = ((4/3)(5/3)(4/3).(2)(2).(64/1))1/4 ≈ 5.25 
The gate sizes: 
 C9 = g(Co/Ci) = (4/3)(64/5.25) ≈ 16.3 
Similarly, 
 C8 ≈ 3.1; C4 ≈ 16.3; C3 ≈ 5.16 
 C2 ≈ (4/3)(3.1 + 5.16)/5.25 ≈ 2.10 
 C7 ≈ 20.3; C6 ≈ 6.45; C5 ≈ 2.05 
Check: 
 finv C1 = (1)(2.10 + 2.05) / 1 ≈ 4.15: it’s 26% from the estimated fo! 
The total delay from input to: 
* Cout2 or Cout3: 
 Td = Σ(f + p) ≈ (4.15 + 3(5.25)) + (1 + 2 + 2 + 2) ≈ 26.9 
* Cout1

 Td = Σ(f + p) ≈ (4.15 + 3(5.25)) + (1 + 2 + 1 + 2) ≈ 25.9 
 
 
b. Size the circuit using exact branching and report the total delay.  
 
Ignore effects of parasitic delay difference between paths and use the same path as in part a 
(having worst parasitic delay). 
Branching at C3: 
 bC3 = (gnor gnand Cout2 + ginv gnand Cout1) / (gnor gnand Cout2) 
  = [(5/3)(4/3)Cout + (1)(4/3)Cout] / [(5/3)(4/3)Cout] = 8/5 
Branching at C2: 
 bC3 = (gnand bC3 gnor gnand Cout2 + gnor gnor gnor Cout3) / (gnand bC3 gnor gnand Cout2) 
  = [(4/3)(8/5)(5/3)(4/3)Cout + (5/3)(5/3)(5/3)Cout] / [(4/3)(8/5)(5/3)(4/3)Cout] ≈ 1.98 
The optimal stage effort: 
 fo = (GBH)1/4 = ((1)(4/3)(5/3)(4/3).(8/5)(1.98).(64/1))1/4 ≈ 4.95 (simple branching is off 
by 6%) 



The gate sizes: 
 C9 = g(Co/Ci) = (4/3)(64/4.95) ≈ 17.24 
Similarly, 
 C8 ≈ 3.48; C4 ≈ 17.24; C3 ≈ 5.81 
 C2 ≈ (4/3)(3.48 + 5.81)/4.95 ≈ 2.50 
 C7 ≈ 21.6; C6 ≈ 7.26; C5 ≈ 2.44 
Check: 
 C1 = g(Co/Ci) = (1)(2.50 + 2.44)/4.95 ≈ 1.00 (the same as given input). 
The total delay from input to: 
* Cout2 or Cout3: 
 Td = Σ(f + p) ≈ 4 (4.95) + (1 + 2 + 2 + 2) = 26.8 
* Cout1

 Td = Σ(f + p) ≈ 4 (4.95) + (1 + 2 + 1 + 2) = 25.8 
Despite simple branching assumption, the delay in part (a) is within 1% of the optimal delay.  
The main reason is the error in total branching is offset by the 4th-root of fo computation. 
 
 
c. Identify the critical path on the schematic. Explain your selection. 
 
The above results show that due to equal-f sizing in all paths, the critical paths will be from the 
input to either Cout2 or Cout3, where each have the worst-case parasitic delay of 7.  In reality, the 
path to Cout3 is likely more critical as NOR gates have more parasitic delay than NAND gates. 
 
 
d. Comment on what would happen if the load at Output1, Output2 and Output3 differ. Would the 
critical path change? 
 
Changes at individual output load will directly affect the branching factors and therefore the 
optimal stage effort of all paths.  However, since the paths are all sized with equal fo, their delay 
only differ on the total parasitic delay.  So, the critical paths remain to go to Cout2 and Cout3. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 



Problem 6: 
 
Use the following characterization setup (shown for a nand2). 
 

 
 
 

Note: For inverter characterization, replace each gate in the setup with inverters, for nor2 
replace each gate in the setup with NOR2. 
 
(a) Find the p/n ratio for an inverter where gup = gdown
 
Observation: 
The above requirement implies that the 
rise and fall times are equal at both input 
and output of the inverter at the optimal 
p/n ratio.  They can be equivalently 
translated into equal delay for both output 
transitions.  In simulation, either can be 
used.  I choose to use the latter. 
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I use the above test setup and electrical 
effort of 2 (arbitrary choice).  The p/n ratio 
is swept from 1.5 to 2.5 in 0.05 step.  The 
result is graphically shown.  Clearly, the 
optimal ratio is ~1.90. 
 
 
 



(b) Characterize an INV, NAND2, and NOR2 using HSPICE. Plot the delay vs. h relationship 
for each gate and input. 
 
Using the above optimal p/n ratio, the characterization of INV, NAND2 and NOR2 is obtained.  
All delays show linear relationship to electrical effort h. 
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(c) Normalize the delay to τ-inv and plot the delay vs. h relationship  
 
The normalized delay to τ (= 8.16ps) is given below. 
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(d) Report the g and p of each gate for each input normalized to the inverter pull down g. Do the 
values for g and p differ for each input? If yes, explain. 
 
The table of g and p values of each gate and for each input: 
 

  g p 
inv 1 1.46 
nand2(a) 1.19 2.20 
nand2(b) 1.15 3.12 
nor2(a) 1.51 2.47 
nor2(b) 1.56 3.92 

 
The g and p values vary for different input of a gate.  There are a couple of main reasons, I think.  
First, driving strength of each input (which depends on the location of the transistor location in 
the pulling path) differs.  Results of g values suggest that this difference is small.  Second, each 
input see different parasitic capacitance (which it has to charge/discharge).  The p values show 
large difference.  So, the difference in parasitic capacitance is quite significant.  It emphasizes 
that the LE estimation by only counting the diffusion capacitance at the output node is not very 
accurate. 
 
 
(e) Do the values of gup and gdown for Input a on the NAND2 differ? Input b? If yes, explain. 
 
The table of g and p values in each output transition for each input of NAND2: 
 

 NAND2 g p 
Input a: up 1.26 2.44 
Input a: down 1.13 1.96 
Input b: up 1.38 3.51 
Input b: down 0.92 2.72 

 
Regardless input chosen, the gup and gdown values are different.  One reason is that the input slope 
does not match in both transitions.  In addition, the driving strength may not match any more.  
These above reasons are due to the difference between the test circuit setup and assumption in 
theory.  It is explained in more detail in the next answer. 
 
 
(f) Do the values obtained for g and p differ from the hand estimates? If yes, explain. 
 
It is clearly that the simulated values and hand estimates do not match well.  The main reason is 
due to the change in effective driving of gates.  The hand estimates assume the effective driving 
where all transistors along a path switched.  In the test setup for simulation, only ONE input is 
changed (the rest are at fixed voltage).  The resulting driving strength is clearly different than the 
effective one.  Hence, the data show quite significant a difference. 
To really set the circuit for effective driving, more detail setup is needed.  You are recommended 
to figure out how to do that and verify your results with the hand estimates. 


	Take-Home Exam Solution #2

