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Abstract: Choosing the right algorithm and a corresponding adder topology depends on 
many factors closely related to the technology of implementation. With 
transition to CMOS where circuit delay has a complex relation to 
implementation parameters and with transition to deep-submicron technology 
with its own complexity, to make the right choice becomes even more 
difficult.  This relationship is even more complicated with inclusion of power 
consumption. In this chapter we present this complex relationship and 
highlight the important factors that influence the right choices in the algorithm, 
circuit topology, operating conditions and power consumption  
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1. INTRODUCTION 

For almost half a century realizations of addition algorithms have been 
continually refined to improve performance due to changing technology and 
operating constraints. With each technology generation, the gap between the 
underlying algorithms for addition and efficient realization of those 
algorithms has grown. Many of the adders in use today were developed for 
older technologies and under a different set of constraints than those 
imposed by current technology, such as energy-efficiency. To solve this 
problem a method for analyzing designs in the energy-delay space was 
developed [15,16] which allowed for the energy-delay tradeoffs to be taken 
into account. In addition this method provides guidance for algorithm 
selection and realization. Using the method we explore the leading addition 
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recurrence algorithms and their realizations that have been developed, to 
identify favorable characteristics of each for efficient realization in modern 
CMOS technology. A comparison of various schemes in the energy-delay 
space is presented to demonstrate the relative performance and energy-
efficiency of the proposed structures.  

The most important step in the process of VLSI adder design is selection 
of the initial adder topology which is expected to yield desired performance 
in the allotted power budget. However, the performance and power will be 
known only after a time consuming design and simulation process is 
completed. Therefore, the validity of the initial selection will not be known 
until the late stage of the design process, or even after several schemes under 
consideration have been designed and completed. Going back and forth 
between several designs is often prohibited by the design schedule, making it 
impossible to correct initial mistakes. Thus an uncertainty always remains as 
to whether a higher performance or lower power was possible with a more 
appropriate choice, different topology or simply more effort. This problem is 
aggravated by a lack of proper delay and power estimation techniques that 
are guiding development of computer arithmetic algorithms. The majority of 
algorithms in use today are based on out-dated methods of counting the 
number of logic gates on the critical path, thus, producing inaccurate and 
misleading results. The importance of transistor sizing, load effects and 
power are not taken into account by most. 

 Different adder topologies may influence fan-out and wiring density, 
thus influencing design decisions and yielding better area/power trade-offs 
than known cases [1]. This emphasizes the disconnect existing between 
algorithms and implementation. The importance of for fan-in and fan-out 
effects on the critical path was demonstrated at the time CMOS technology 
started replacing nMOS [2]. Similar conclusions were expressed later in the 
Logical Effort (LE) method of Sutherland and Sproull [3] regarding critical-
path delay estimation. Further, Logical Effort method was introduced into 
common practice by Harris [4]. Comparison of delay estimates of various 
VLSI adders obtained via Logical Effort, to simulation results obtained using 
H-SPICE [5] demonstrates good matching confirming validity of the Logical 
Effort. This matching is well under 10% in most cases (Table I). However, 
this is still an incomplete picture, because delay and energy can be traded 
against each other, thus, the energy aspect of this analysis is missing. 

  A method for estimation adder performance which allows for the 
energy-delay tradeoffs of a design was developed following the Logical 
Effort guidelines [16]. Using this method it is possible to compare different 
adders in the energy-delay space (see Fig.1). This method satisfies two 
requirements: it is simple and quick, yet sufficiently accurate to guarantee 
correct selection of the appropriate algorithm (topology). 
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In this chapter we elaborate on the problem of power and performance 
design trade-offs and estimation of it, showing how different technology 
parameters affect performance of different algorithms. Further, we want to 
show how the best algorithm and topology should be selected and point to 
the most important factors in their selection. Finally, we show the best 
topology for a power-efficient adder that was obtained in such a way. 

2. COMPARISON OF VLSI ADDERS 

The most common approach in comparing VLSI adders was to use of a 
single delay point [1,2]. An example of such comparison (based only on 
delay) of high-performance 64-bit adders is shown in Table 1. The 
comparison is showing LE delay estimates and H-SPICE pre-layout 
simulation in 130nm technology.  

Table 11-1. Delay Comparison of 64-bit Adders Using Logical Effort 
Circuit 
Family  

Adder 
Topology 

HSPICE  
(F04) LE Estimate (F04) 

Kogge-Stone [7] 11.8 10.9 

Mux Based Adder [8] 11.4 12.8 Static 

Han-Carlson [9] 12.8 13.3 

Kogge-Stone [7] 8.7 9.2 

Ling [11] 9.0 9.5 Dynamic 

Han-Carlson [9] 9.8 9.9 

 
The comparison, show a significant speed difference between Static 

CMOS and Dynamic CMOS implementations. This fact has been well 
known to practitioners: all high-speed processors use Dynamic CMOS logic 
[10,11,14]. However, while the delay difference between different circuit 
families is more apparent, the delay difference between topologies using the 
same circuit family is relatively small, making it difficult to know which 
design can be improved further in terms of speed. Energy is also important 
because if too much power is used in order to achieve a target delay, hot 
spots can be created [6].  

To illustrate the problem, suppose that two adders A and B were 
compared against each other based on delay only. Such a hypothetical 
comparison is illustrated in Fig. 1, where the delay of adder A and adder B 
are shown as points A and B respectively. From the single point comparison, 
adder A appears faster than adder B leading to a conclusion that the topology 
of the adder A is better. However, such a comparison provides an incomplete 
and potentially misleading picture. If we consider that energy can be traded 
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for delay it is clear that further analysis is needed. Hypothetical energy-delay 
dependencies of two designs, A and B, optimized under the same constraints 
are illustrated in Fig. 1. 
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Figure 11-1. Energy-Delay Dependency 

As the curves show, adder B has more room for delay improvement, it 
uses less energy in the high-performance region (Region 1) as compared to 
the adder A.  

On the other hand, if lower computational energy is the design objective, 
adder A is the better choice as it uses less energy in the low performance 
region (Region 2), compared to adder B.  

The challenge is be able to make such comparison early in the design 
process and without significant time overhead. A method for estimating 
energy and delay with relatively low effort and in a short amount of time has 
been developed [16]. Yet the method provides sufficient accuracy to make 
appropriate choices of algorithm and circuit topology. 

3. DELAY AND ENERGY ESTIMATION 

The speed of a VLSI adder depends on several factors: technology, 
circuit family, adder topology, transistor sizes, wires, leakage currents and 
second order effects. As a result there are no simple rules to be applied when 
estimating delay. Skilled engineers are capable of fine-tuning the design to 
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obtain the best performance and lowest energy through transistor sizing. 
However, this is often an ad-hoc process not leading to the best solution. 
Thus it is difficult, if not impossible, to predict the best topology.  

3.1 Delay Estimation 

Introduction of LE was a significant step forward because it provided a 
better way to estimate delay. Further, LE provides an optimal sizing for 
delay. There is a tradeoff in delay estimation where improved accuracy is 
paid for by complexity or resorting to CAD tools. LE simplifies the delay 
model to a single parameter referred to as stage effort f, which is used during 
optimization and modeling. The LE model for gate delay is ( )τpftd += , 
where ghf =  [3]. Each gate has a logical effort, g, which represents its drive 
capability relative to an inverter. The term h represents the effective fan-out 
of the gate (Cout/Cin).  The parasitic delay, p, corresponds to the delay 
associated with parasitic capacitances. The term τ is the per fan-out delay 
increment of an inverter, and is used to introduce technology independent 
estimation of delay. 

The accuracy of LE can be improved by obtaining the coefficients g and 
p through H-SPICE characterization for the particular technology to be used. 
This step incorporates characteristics of a particular technology, slopes, and 
layout estimates into the LE parameters. Gate characterization is performed 
under the constraint of fixed input-to-output slope relationship to obtain the 
best matching. This would improve the accuracy of LE estimation 
considerably and bring it well within 10% of H-SPICE simulation, as shown 
in Table 1. 

The effect of gate-to-gate wiring is not accounted for using basic LE 
modeling, and is often ignored in comparisons. However, we have observed 
that in 130nm technology, for example, wire resistance and capacitance can 
contribute up to 1F04 delay degradation in 64-bit adders. The wire 
capacitance introduces a constant load at the output of each gate, which can 
be estimated from the wire length. The impact of wire resistance can be 
estimated using, Twire=0.38RwireCload, which provides reasonable matching 
versus H-SPICE. The comparison results are shown in Table II. 

Table 11-2. Worst Case Delay Impact of Wire Resistance in 130nm 64-bit Adders  
Wire Length  
(bits crossed) 

HSPICE  
(no resistance) 

HSPICE  
(with resistance) Estimate  

80µm (8-bits) 54.7 ps 58.5 ps 58.9 ps 
160µm (16-bits) 57.7 ps 66.0 ps 66.8 ps 
320µm (32-bits) 64.0 ps 84.7 ps 84.2 ps 
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Application of LE to simple path delay estimation and size optimization 
is straightforward; however, it is often difficult to apply the analysis to 
complex paths due to branching. LE defines branching as b=(Con+Coff)/Con, 
where the terms Con and Coff must be determined relatively. This analysis 
becomes prohibitively complex when branches have differing gate types and 
number of stages. In addition constant loads such as wiring, require iterative 
computation. As a result the optimization of a complex path using the LE 
gate delay model must be performed by changing individual f’s of each gate 
to achieve minimal delay. Instead a simple paper and pencil method (as 
suggested by LE) use of MS-Excel or other simulation tools such as 
MathLab is more appropriate because of its built-in gradient based 
optimization feature, and the fact that it does not require considerable 
overhead than paper and pencil analysis. 

3.2 Energy Estimation 

The use of LE for delay optimization provides not only a delay estimate, 
but the corresponding gate sizing. However, it does not provide for the 
energy estimation, ignoring it completely. By including the energy model of 
each gate, obtained from its LE sizing, the total energy of a design can be 
estimated as developed in [15,16]. 

The energy of a gate is primarily a function of the output load, CL, and 
parasitic capacitance (proportional to gate size). The relative energy 
associated with CL and parasitic capacitance varies depending on the 
effective fan-out, h. For small values of h, the parasitic energy is comparable 
to the energy associated with the output load, while for larger values of h the 
energy associated with the output load increases relative to the parasitic 
energy. 

Gate energy can be extracted from H-SPICE simulation by varying CL 
and gate size. A linear dependence of energy on CL and size is observed in 
[15], which results in the following energy model:  

 
E = Ep ⋅ gate size + Eg ⋅ CL + Einternal-wire  

 

where Ep is the energy per unit size, Eg is energy per unit load, and 
Einternal-wire is an offset for internal wiring introduced by layout estimation. 
The energy model directly accounts for parasitics, local wiring, and output 
load, while performing a best fit for crowbar current and leakage. Eg, Ep, and 
Einternal-wire are obtained using the same gate characterization setup as LE with 
the slight overhead of performing the characterization for multiple gate sizes. 
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4. ENERGY-DELAY ESTIMATION METHOD 

The objective of the Energy-Delay Estimation method (EDE) is to 
provide a way to compare designs in the energy-delay space [16], that is 
relatively simple and quick, so that it can be performed before design 
decisions were made and committed.  

 
LE provides reasonable delay results and sizing, however it does not 

account for wiring. To improve LE the inclusion of wires and correct 
handling of branches must be done. As we are interested in comparing 
designs over a range of performance targets, each design should be 
compared over the same range of path gain, H=Cout/Cin. After characterizing 
a technology to find g, p, Eg, Ep, and Ewire for each gate, the following steps 
are performed to obtain a delay and energy estimate of a design for each H: 

 
1. Determine the critical path of the design. 
2. Optimize the delay of the critical path to determine fopt. 
3. Use fopt to size the gates on the critical path. 
4. Estimate the energy of the entire design. 

 
Using the sizing from Step 3 we can estimate the energy of the critical 

path. However, Step 4 requires an estimate for the energy of the entire 
design and not just the critical path. The energy of gates within a design can 
be estimated according to two cases: gates on paths with the same number of 
stages as the critical path; and gates on paths with fewer stages than the 
critical path. 

For paths with the same number of stages as the critical path, the size of 
each gate is proportional to the gates on the critical path, allowing for the 
energy of each gate to be computed directly. To facilitate this analysis, the 
energy of each gate is assumed to have the same energy of the gate on the 
critical path.  

For paths with different number of stages than the critical path, the size 
of each gate is not directly proportional to the gates on the critical path. 
Instead, to obtain an energy estimate, the path must first be sized to have the 
same delay as the critical path. Once the sizing is obtained, the energy of 
each gate can be estimated. Similar to first case, any subsequent paths with 
the same number of stages can be computed proportionally to this path.   

The energy of each gate depends on its switching activity. In application 
of EDE to VLSI adders it is common to use a 15% switching activity factor 
for each gate in the static adders and a 50% switching activity for each gate 
in the dynamic adders. These switching factors were obtained as an average 
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of designs that were analyzed based on experience consistent with the “rule 
of thumb” used in the industry. 

 

Figure 11-2. Energy dependence of a gate on fanout and size 

5. ENERGY-DELAY ESTIMATION OF ADDERS 

Energy-Delay Estimation is a useful tool in comparing various tradeoffs 
in adder design, such as the algorithm or circuit topology. The choice of the 
adder topology and design style is also dependent on the required 
performance and pressures to meet the critical path. In some instances, the 
adder may not be in the critical path and the speed requirements may be 
relaxed, or it may be possible to improve the speed of the clocked storage 
elements (flip-flops and latches) and meet the required timing in this way. 
The analysis of these tradeoffs was performed by Zyuban who termed these 
design characteristics “hardware intensity” [17,18]. Hardware intensity 
defines the design point in terms of the trade-off between energy and delay. 
A tangent on the energy-delay curve represents the percentage of delay 
reduction being paid for by the percentage increase in energy. Thus, various 
algorithms can be examined in various design regions and the best one can 
be chosen. Also, various circuit design styles can be examined. For example, 
the analysis of three different circuits design styles: Static CMOS, Dynamic 
CMOS and Compound (Dynamic-Static) CMOS design, reviled that 
Compound CMOS achieves speed of dynamic design while maintaining the 
low energy of static-CMOS design. The figure comparing the three different 
design styles is shown in Fig.3. 
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Energy vs. Delay: Cout = 1mm wire (160u gate cap), Cin = min. input to 50*min. input
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Figure 11-3. Different design styles: Compound CMOS shows benefits of Static and 
Dynamic CMOS circuits. 

5.1 Domino and Compound Domino CMOS Analysis 

In order to improve adder performance, Domino CMOS logic is often 
used for implementation of adder Carry-Merge (CM) blocks resulting in the 
circuit shown in Fig. 4a. The static CMOS inverter is necessary after each 
dynamic block in order to make the logic behave in a “domino” fashion. The 
inversion of the signal, which is necessary in the Domino CMOS logic 
block, can be achieved with a more complex inverting static gate, which 
performs additional function. This is often referred to as Compound-
Domino, or Dynamic-Static CMOS. Thus, two Domino Carry-Merge stages 
can be merged into one by replacing the inverter with an AOI (Fig. 4b). 

 The difference between Domino and Compound-Domino CMOS circuit 
realization of the Carry-Merge stage is shown in Fig. 4. 
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Figure 11-4. (a) Carry-Merge: Domino Implementation (b) Carry Merge: Compound Domino 
Implementation  

Comparison of the 64-bit Kogge-Stone (KS) [7] and Han-Carlson (HC) 
[9] adders implemented in: Dynamic CMOS Domino and Compound-
Domino CMOS is shown in Fig. 5. 
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Figure 11-5. Comparison of 64-bit HC and KS Domino and Compound-Domino Adders in 
130nm technology 

Comparing Domino to Compound-Domino, EDE helps us to appreciate 
the benefits obtained by utilizing Compound-Domino logic. For the same 
energy budget (e.g. 200pJ) Compound-Domino KS yields 20% delay 
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improvement over Domino KS. EDE provides a clear picture of the impact 
Compound-Domino can have on adder design. 

6. ADDER COMPARISON 

The ability, provided by EDE method, to observe differences between 
implementations of the same adder using different circuit families is 
beneficial in selecting appropriate circuit design style. However it is also 
important to see tradeoffs between adder topologies implemented using the 
same circuit family. The accuracy of EDE for demonstrating tradeoffs in the 
energy-delay space is shown by comparing optimized H-SPICE results for 
32-bit Compound-Domino KS [7] and QT [10] adders versus EDE results in 
100nm technology. The simulation results for KS and QT in 130nm were 
shown. Comparison of the simulation results with EDE estimation adopted 
for 100nm is shown in Fig. 6 [13]. EDE estimates demonstrate the same 
tradeoffs as observed in simulation. These results confirmed the validity of 
choosing the QT adder over KS or HC as a viable option for reducing energy 
without sacrificing performance.  

 
Compound-Domino and static 64-bit adders were analyzed using EDE to 

see what tradeoffs exist (Fig. 7). Different points on the energy-delay curve 
were obtained by varying the size of the input gates for each adder. The 
output of each adder was loaded with a 1mm wire. A range of H was chosen 
from H=2 to the maximum H (i.e. where minimum input size occurs). 
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Figure 11-6. Comparison of 32-bit QT and KS adders: EDE vs. simulation in 100nm 
technology. 
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Figure 11-7. EDE Analysis of 64-bit Compound-Domino and Static Adders in 130nm 
technology 
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The results show the benefits associated with sparse designs: HC and QT, 
however the benefits of Compound-Domino QT are lesser at 64-bits than for 
the 32-bit design. This is a result of the one extra stage that the QT 
implementation used versus the KS implementation. In the 32-bit design the 
QT implementation used the same number of stages as KS. We also observe 
that a Compound-Domino KS prefix-4 adder KS4-IBM [12] which utilizes 
fewer stages at the cost of increased gate complexity and branching shows 
further benefits. The increased gate complexity in the KS4-IBM adder is 
offset by a significant reduction in parasitic delay associated with the 
number of stages, which allows for the KS4-IBM to achieve lower delay 
with less energy penalty than the other designs. At lower performance 
targets this overhead is dominating and designs such as QT and HC achieve 
lower energy. 

6.1 Representative High-Performance Adders 

We show comparison of high-performance adders used in leading 
processors in the industry. All of the adders compared were implemented 
using compound-domino design style which combines the best of the “both 
worlds”: low-power and high-performance as it has been realized by the 
design community. The comparison, shown in Fig. 8, includes: IBM 
implementation of KS adder [12], Kogge-Stone 4-2 consisting of fan-in of 4 
dynamic and fan-in of two static compound domino stage [7], Quarternary 
adder developed by Intel [10], Ling adder used by IBM and Intel Itanium 
processor and Han-Carlson adder [9].  We choose to include Energy-Delay2 
factor as a figure of merit of their respective designs. As we know, this is 
only one point on the E-D curve and the one chosen by high-performance 
designs [24]. In Zyuban’s analysis, this represents “hardware intensity” 
equal to 2, which means that they are willing to trade 2% of energy increase 
for 1% increase in speed [17,18]. The tangent to the E-D curve at this point 
has a slope of 2. We see that even though it is not the fastest, IBM adder 
(developed by Park) shows the best ED2 figure of merit. 
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Figure 11-8. Comparison of representative high-performance adders used in the industry. 

“cd” designates Compound-Domino circuit design style. 

6.2 Contribution of Wires 

In order to properly evaluate all of the adder topologies an important 
factor such as the wire effect and contribution to adder performance and 
energy consumption needs to be properly qualified. The wires contribute in 
two ways: add delay to the adder (effect of long wires), and use energy. In 
the past, these effects were negligible, but as the technology continues to 
scale wire effects could make a substantial difference. If we are to model 
performance in the energy-delay space, the energy contribution of wires, as 
well as delay must be appropriately included in the model. 

Fig. 9 shows the wire effects expressed as a total wire capacitance in the 
adder. This capacitance contributes to performance and energy deterioration. 
The impact of wires on the delay is shown in Fig. 10. Depending on the wire 
length of wires on the critical path, wire delay can impact the adder delay by 
up to 1FO4 (as simulated for 100nm technology node). Given the speed of 
the adders, this this amounts to more than 10% of the total delay. 
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Figure 11-9. Impact of Wires on High-Performance Adders 

This impact is expressed in total wire capacitance, which influences 
delay as well as energy. Wire energy is shown as a fraction of the total 
energy of the adder. The trade-off between. wire and delay is best seen on 
the IBM adder. 
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Figure 11-10. Worst Case Delay Impact of Wires 
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ranking. Comparison of representative adders, with and without wire effect 
is shown in Fig. 11(a),(b). 
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(b) 
Figure 11-11. Energy-Delay behavior of representative high-performance adders used in the 
industry: (a) Energy-Delay with wire excluded from the model, (b) Energy-Delay with wire 
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impact included. It should be noted that in general, wire effect do diminish performance 
differences between them, while energy increases only slightly. 

The impact of wire is to diminish the differences between the best and 
the worse scheme. This shows that a hidden trade-off exists in some of these 
schemes between the wiring and logic complexity. We can trade a stage of 
the adder for a more intense wiring. If wire contribution is not properly 
accounted for, unfair advantage may be apparent, but this appearance is 
misleading. Looking at, for example, 6-stage KS with 7-stage QT7, in Fig. 
11(a) and (b), one notice that they completely switch order when wire effects 
are properly accounted for. 

By applying optimization techniques to transistor sizing [optim ref] the 
energy can be reduced even further. The ultimate energy-delay figure of the 
representatinve adders is shown in Fig. 12. This is about the best energy and 
performance one can achieve [25]. 
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Figure 11-12. Energy-Delay behavior of representative high-performance adders after energy 
optimization. The best behavior is that of IBM adder designed by Park [12]. 

7. THE ULTIMATE ADDER TOPOLOGY 

Efficient adder design requires proper selection of a recurrence algorithm 
and its realization. Using the insight obtained through the application of 
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EDE tool, we analyzed several algorithms for their flexibility and suitability 
for realization in CMOS. We found that the use of Ling’s algorithm provides 
up to 12% improvement in performance of 32-bit static adders with similar 
recurrence trees. Using Ling’s algorithm we developed general techniques 
for efficient realizations based on technology constraints. From these 
techniques we propose several high-performance realizations of Ling’s 
algorithm that achieve better performance and energy efficiency than 
existing Ling and Weinberger designs [23]. 

 
Technology characteristics limit potential realizations of Weinberger’s 

and Ling’s recurrences for addition. The primary constraint in current 
CMOS is fan-in of a gate, which is commonly limited to between 3 and 5. 
Several realization techniques have been developed to map recurrence 
algorithms to CMOS under these constraints [23].  

7.1 Combined Bit Operator and 1st Carry Stage 

In dynamic adder implementations, one stage can be removed by 
combining the 1-bit operation for g and t into the first prefix computation 
stage [11,12]. This technique is more favorable to Ling’s recurrence than to 
Weinberger’s. Under the same stack height constraint a Ling realization can 
use a prefix of 1 more than a realization using Weinberger’s. 

 
Ling’s first stage prefix-2 operation using 1-bit operators: 

1−+= iii ggH  

1−⋅= iii ttT  
Weinberger’s first stage prefix-2 operations using 1-bit operators: 

iiii CtgC ⋅+=+1  

1−⋅= iii ttT  
It is seen that the recurrence of Hi involves one less term than Ci, 

however the recurrence for T does not differ between the structures. The 
result is that the critical path through first stage of the recurrence tree has the 
same fan-in on the gates, whether using Ling or Weinberger. However when 
the 1-bit operators are combined with the first prefix stage of the carry tree 
(for example prefix 2) the resulting logic for Ling’s transformation is: 

11 −−+= iiiii babaH  
( )( )22111 −−−−− ++= iiiii babaT  

and for Weinberger’s recurrence: 
( )( )111 −−+ ++⋅= iiiiiii bababaC  

( )( )11 −−+= iiiii babaT  



11. Power-Delay Characteristics of CMOS Adders 19
 

The fan-in of the first logic stage for Ling’s transformation is reduced by 
1 in CMOS compared to Weinberger’s. Subsequent stages for both have the 
same fan-in since the recursion is performed using the first stage operations 
with the prefix operator. Ling’s transformation is especially useful for static 
realizations, as the first stage and bit operator stage can be combined, while 
in Weinberger such a combination would result in 3-stacked pMOS 
transistors. 

7.2 Conditional Computation of Sum 

Several adder implementations make use of conditional logic for the 
computation of sum. Conditional logic allows for the number of recurrence 
terms to be computed at the cost of increased fan-out in the recurrence tree. 
Both Weinberger’s and Ling’s recurrence fit well into conditional 
computation. The issue with conditional computation is determining how 
many bits to compute conditionally and using what structure. The number of 
gates in a critical path consists of the carry structure (and 1-bit operator gate 
if not combined), and the sum. For example a 4-gate carry tree the critical 
path would require 5-gates. The conditional sum calculation requires that the 
conditional sum be calculated prior to final sum, so in a realization with a 4-
gate carry tree the conditional sum must be completed by in 4-gate delays.  

The following is an estimate for the maximum number of bits that can 
potentially be rippled for an n-stage carry tree using conditional sum, ripple 
carry structure. 

 
( ) operatorlevelbitsumsumstagestreecarrygates ____# −−+=  

1__# −= stagestreecarrygates  
 

As the number of stages in the carry tree increases, conditional 
computation is a viable solution for reducing energy. If however, the number 
of stages in the carry tree decreases, the possibility that the conditional sum 
becomes the critical portion of the design increases. The optimal number of 
bits to compute conditionally as well as the implementation of the 
conditional computation, either by rippling the recurrence or through the use 
of separate recurrence trees, is dependent on technology. 
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7.3 Ling Realizations and their Alternatives 

7.3.1 Static Adders 

For static adders technology limits designs to a 2stack nMOS transistors 
and 2 stack pMOS transistors. Knowles described in [1] how to create 
minimum depth carry trees for static adders using Weinberger’s recurrence. 
The same trees can be constructed with Ling’s transformation by combining 
the first stage of the carry tree as described in 7.1. The construction allows 
for one stage to be removed from the critical path of the adder. 

7.3.2 Dynamic Adders 

Ling’s transformation shows advantages of reduced logic complexity of 
the critical path in CMOS technology and should therefore yield the good 
structures for addition. Several types of 64-bit Dynamic realizations of 
Ling’s transformation are proposed in the following sections.   

7.3.3 Fast Parallel Prefix Ling Adders 

Ling’s transformation only displays advantages over Weinberger’s when 
the factored pi is removed from the carry computation. As shown in [21,22] 
this can be accomplished through the use of conditional logic for the sum. 
The fastest Ling implementations are dependent on CMOS technology 
limitations. In current technology nMOS transistor stack height is commonly 
limited from 3 to 5, while pMOS transistors are further limited to a stack 
height of 2. A feature common to Weinberger’s and Ling’s transformations 
is that any prefix (up to 3 and 4 respectively) can be used in the first stage 
with a stack height of 5 when using operands as inputs to the first carry 
stage. 

7.3.4 Ling with Full Prefix Carry Tree 

A three stage adder can be constructed using a fully parallel prefix tree 
with Ling transformation. A technology limitation of 5 stack nMOS for 
dynamic stage allows for prefix-4 gates to be used in dynamic stages, while 
a limitation of 2 stack pMOS for static limits static gates to prefix 2. Under 
these constraints a full prefix tree with prefix 4, 2, 4, and 2 for the first, 
second, third and forth gates respectively can be constructed (Ling 4-2-4-2) 
(Fig. 13).  
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Figure 11-13. Prefix 4-2-4-2 Adder using Ling’s Transformation 

The equations for the first level Hi and Ti are: 
332211221111 ))(()( −−−−−−−−−−−− ++++++= iiiiiiiiiiiiiii BABABABABABABAH

 
))()()(( 332211 −−−−−− ++++= iiiiiiiii BABABABAT  

Resulting in a worst case stack height of 4 nMOS transistors for both 
equations, since it is the first stage of the path that must be footed which 
bring the worst case height to our technology limit of 5. The second, third 
and forth level Hi and Ti computations follow traditional dot product 
operations for prefix 2 and prefix 4. Weinberger’s can be used with the same 
full parallel prefix tree for the carry recurrence at an increase of one in the 
stack of the first stage for the carry recurrence relative to Ling. Variations of 
such structures within the technology limitations that are close to the 
minimal carry tree depth should be analyzed when determining an adder 
topology to for a technology. 

7.3.5 Ling with Sparse-2 Prefix Carry Tree 

The amount of wiring in an adder realization can be reduced without 
increasing the number of stages by generating every other Hi and performing 
a conditional two-bit sum combined with Prefix 4-2-4-2 carry tree. The 
conditional sum length was chosen based on the limitations on the number of 
conditional sum bits described in 7.2 (Fig. 14). 
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Figure 11-14. Sparse-2 Prefix 4-2-4-2 Adder using Ling’s Transformation 

The increased complexity of the sum computation requires no additional 
stages for the conditional computation of the sums. Similar to the full-prefix 
structure in 7.3.4 such a structure should be modified according to the 
technology implications on the conditional sum computation speed energy 
relative to the carry tree speed and energy. 

7.4 Results 

All results are obtained using estimates for 130nm technology by 
applying the energy-delay estimation method we developed in [15] to the 
entire adder. A comparison of 32-bit static adder implementations between 
Weinberger’s recurrence and Ling’s transformation is shown in Fig. 15.  



11. Power-Delay Characteristics of CMOS Adders 23
 

0

1

2

3

4

5

6

7

8

9

10

D
el

ay
 (F

04
) Weinberger

Ling

Ladner-Fischer
prefix 2

[1-1-2-4-4]

Ladner-Fischer
prefix 2

[1-1-2-2-4]

Ladner-Fischer
prefix 2

[1-1-2-2-2]

Kogge-Stone
prefix 2

 

Figure 11-15. Comparison of 32-bit static Weinberger and Ling Adders. 

Ling’s transformation yields an improvement in delay of up to 12% 
confirming the reduced number of stages benefit that Ling can achieve in 
static implementations limited to a 2-stack of pMOS transistors. For dynamic 
implementations, technology constraints and adder size determine whether 
the advantage of using Ling’s transformation is a logic stage or a reduction 
in transistor stack height.  

A comparison of 64-bit Ling dynamic adders with and without 
conditional sum is shown in Fig. 16. 
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Figure 11-16. Comparison of Conditional Sum in High-Performance 64-bit Dynamic Adders. 
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The results show an energy savings for the 2-bit conditional sum variants. 
This is primarily due to the reduced switching activity of the static gates on 
the conditional path. In the fully parallel prefix-2 Ling carry tree, applying a 
2-bit conditional sum improves energy at only a slight increase in delay. The 
delay penalty is due to increased loading of the adder input caused from the 
static gates of the conditional sum path. The Ling 4-2-4-2 with 2-bit 
conditional sum results in a slight energy savings and improved performance 
compared to the Ling 4-2-4-2 design. In contrast to the prefix-2 design, the 
static gates of the conditional sum path reduce the loading of the inputs to 
the adder due to their reduced complexity compared to the prefix-4 gates of 
the carry path. A comparison of the best 64-bit adder implementations for 
Ling [19] and Weinberger’s recurrence [20] and the proposed realizations 
are shown in Fig. 17.  
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Figure 11-17. Energy-Delay Space Comparison of High-Performance 64-bit Dynamic Adders 

The results show the significant advantage obtained by the proposed 
realizations. These realizations demonstrate better performance than the 
Weinberger adder and the previous best implementation of a Ling adder. 
While the best delay is obtained by the fully parallel prefix 2 Ling design, 
the most efficient design is the proposed Ling 4-2-4-2 with 2-bit conditional 
sum. 

8. CONCLUSION 

We presented Energy-Delay Estimation (EDE) method based that 
extends logical effort (LE) and its application to the analysis and selection of 
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high-performance VLSI adders. The EDE method has proven to be a much 
needed and effective tool in design space exploration, in particular when 
comparing high-performance adders in the early stages of design. Further, 
the sufficient accuracy of the method for adder selection in the energy-delay 
space was demonstrated when comparing designs implemented in 130nm 
and 100nm CMOS technologies using static and dynamic circuit styles. The 
method described in brings a new perspective to comparing arithmetic 
circuits, and advances the analysis and design of VLSI oriented computer 
arithmetic algorithms. 

Ling and Weinberger addition recurrence algorithms demonstrate 
favorable characteristics for efficient CMOS mapping. Ling shows a 
fundamental advantage in CMOS by reducing the complexity of the first 
stage of the carry tree. Guidelines which aid in the selection of efficient 
realizations of Ling’s transformation are given for both prefix selection for 
successive levels of recurrence and selection of conditional computation 
size. The proposed prefix 4-2-4-2 structures demonstrate up to 25% savings 
in energy at the same delay and from 0.5-1FO4 delay improvement at ISO-
delay when compared to the fastest previous designs [12]. 
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