
Chapter 11

POWER-DELAY CHARACTERISTICS OF CMOS
ADDERS

Vojin G. Oklobdzija and Bart R. Zeydel
ACSEL Laboratory, University of California Davis

Abstract: Choosing the right algorithm and a corresponding adder topology depends on
many factors closely related to the technology of implementation. With
transition to CMOS where circuit delay has a complex relation to
implementation parameters and with transition to deep-submicron technology
with its own complexity, to make the right choice becomes even more
difficult. This relationship is even more complicated with inclusion of power
consumption. In this chapter we present this complex relationship and
highlight the important factors that influence the right choices in the algorithm,
circuit topology, operating conditions and power consumption

Key words: adders, digital arithmetic, digital circuits, energy-delay optimization, VLSI
arithmetic, fast digital circuits.

1. INTRODUCTION

For almost half a century realizations of addition algorithms have been
continually refined to improve performance due to changing technology and
operating constraints. With each technology generation, the gap between the
underlying algorithms for addition and efficient realization of those
algorithms has grown. Many of the adders in use today were developed for
older technologies and under a different set of constraints than those
imposed by current technology, such as energy-efficiency. To solve this
problem a method for analyzing designs in the energy-delay space was
developed [15,16] which allowed for the energy-delay tradeoffs to be taken
into account. In addition this method provides guidance for algorithm
selection and realization. Using the method we explore the leading addition

2 Chapter 11

recurrence algorithms and their realizations that have been developed, to
identify favorable characteristics of each for efficient realization in modern
CMOS technology. A comparison of various schemes in the energy-delay
space is presented to demonstrate the relative performance and energy-
efficiency of the proposed structures.

The most important step in the process of VLSI adder design is selection
of the initial adder topology which is expected to yield desired performance
in the allotted power budget. However, the performance and power will be
known only after a time consuming design and simulation process is
completed. Therefore, the validity of the initial selection will not be known
until the late stage of the design process, or even after several schemes under
consideration have been designed and completed. Going back and forth
between several designs is often prohibited by the design schedule, making it
impossible to correct initial mistakes. Thus an uncertainty always remains as
to whether a higher performance or lower power was possible with a more
appropriate choice, different topology or simply more effort. This problem is
aggravated by a lack of proper delay and power estimation techniques that
are guiding development of computer arithmetic algorithms. The majority of
algorithms in use today are based on out-dated methods of counting the
number of logic gates on the critical path, thus, producing inaccurate and
misleading results. The importance of transistor sizing, load effects and
power are not taken into account by most.

 Different adder topologies may influence fan-out and wiring density,
thus influencing design decisions and yielding better area/power trade-offs
than known cases [1]. This emphasizes the disconnect existing between
algorithms and implementation. The importance of for fan-in and fan-out
effects on the critical path was demonstrated at the time CMOS technology
started replacing nMOS [2]. Similar conclusions were expressed later in the
Logical Effort (LE) method of Sutherland and Sproull [3] regarding critical-
path delay estimation. Further, Logical Effort method was introduced into
common practice by Harris [4]. Comparison of delay estimates of various
VLSI adders obtained via Logical Effort, to simulation results obtained using
H-SPICE [5] demonstrates good matching confirming validity of the Logical
Effort. This matching is well under 10% in most cases (Table I). However,
this is still an incomplete picture, because delay and energy can be traded
against each other, thus, the energy aspect of this analysis is missing.

 A method for estimation adder performance which allows for the
energy-delay tradeoffs of a design was developed following the Logical
Effort guidelines [16]. Using this method it is possible to compare different
adders in the energy-delay space (see Fig.1). This method satisfies two
requirements: it is simple and quick, yet sufficiently accurate to guarantee
correct selection of the appropriate algorithm (topology).

11. Power-Delay Characteristics of CMOS Adders 3

In this chapter we elaborate on the problem of power and performance
design trade-offs and estimation of it, showing how different technology
parameters affect performance of different algorithms. Further, we want to
show how the best algorithm and topology should be selected and point to
the most important factors in their selection. Finally, we show the best
topology for a power-efficient adder that was obtained in such a way.

2. COMPARISON OF VLSI ADDERS

The most common approach in comparing VLSI adders was to use of a
single delay point [1,2]. An example of such comparison (based only on
delay) of high-performance 64-bit adders is shown in Table 1. The
comparison is showing LE delay estimates and H-SPICE pre-layout
simulation in 130nm technology.

Table 11-1. Delay Comparison of 64-bit Adders Using Logical Effort
Circuit
Family

Adder
Topology

HSPICE
(F04) LE Estimate (F04)

Kogge-Stone [7] 11.8 10.9

Mux Based Adder [8] 11.4 12.8 Static

Han-Carlson [9] 12.8 13.3

Kogge-Stone [7] 8.7 9.2

Ling [11] 9.0 9.5 Dynamic

Han-Carlson [9] 9.8 9.9

The comparison, show a significant speed difference between Static

CMOS and Dynamic CMOS implementations. This fact has been well
known to practitioners: all high-speed processors use Dynamic CMOS logic
[10,11,14]. However, while the delay difference between different circuit
families is more apparent, the delay difference between topologies using the
same circuit family is relatively small, making it difficult to know which
design can be improved further in terms of speed. Energy is also important
because if too much power is used in order to achieve a target delay, hot
spots can be created [6].

To illustrate the problem, suppose that two adders A and B were
compared against each other based on delay only. Such a hypothetical
comparison is illustrated in Fig. 1, where the delay of adder A and adder B
are shown as points A and B respectively. From the single point comparison,
adder A appears faster than adder B leading to a conclusion that the topology
of the adder A is better. However, such a comparison provides an incomplete
and potentially misleading picture. If we consider that energy can be traded

4 Chapter 11

for delay it is clear that further analysis is needed. Hypothetical energy-delay
dependencies of two designs, A and B, optimized under the same constraints
are illustrated in Fig. 1.

Delay

Energy

A

B

Adder A

Adder B

Region 1 Region 2

A’ B’

A”

B”

Speed of A Speed of B

A is
faster

B
uses
less

energy

Point where B becomes
better than A

With better E-D
tradeoff B can
achieve more

speed with less
power than A

Figure 11-1. Energy-Delay Dependency

As the curves show, adder B has more room for delay improvement, it
uses less energy in the high-performance region (Region 1) as compared to
the adder A.

On the other hand, if lower computational energy is the design objective,
adder A is the better choice as it uses less energy in the low performance
region (Region 2), compared to adder B.

The challenge is be able to make such comparison early in the design
process and without significant time overhead. A method for estimating
energy and delay with relatively low effort and in a short amount of time has
been developed [16]. Yet the method provides sufficient accuracy to make
appropriate choices of algorithm and circuit topology.

3. DELAY AND ENERGY ESTIMATION

The speed of a VLSI adder depends on several factors: technology,
circuit family, adder topology, transistor sizes, wires, leakage currents and
second order effects. As a result there are no simple rules to be applied when
estimating delay. Skilled engineers are capable of fine-tuning the design to

11. Power-Delay Characteristics of CMOS Adders 5

obtain the best performance and lowest energy through transistor sizing.
However, this is often an ad-hoc process not leading to the best solution.
Thus it is difficult, if not impossible, to predict the best topology.

3.1 Delay Estimation

Introduction of LE was a significant step forward because it provided a
better way to estimate delay. Further, LE provides an optimal sizing for
delay. There is a tradeoff in delay estimation where improved accuracy is
paid for by complexity or resorting to CAD tools. LE simplifies the delay
model to a single parameter referred to as stage effort f, which is used during
optimization and modeling. The LE model for gate delay is ()τpftd += ,
where ghf = [3]. Each gate has a logical effort, g, which represents its drive
capability relative to an inverter. The term h represents the effective fan-out
of the gate (Cout/Cin). The parasitic delay, p, corresponds to the delay
associated with parasitic capacitances. The term τ is the per fan-out delay
increment of an inverter, and is used to introduce technology independent
estimation of delay.

The accuracy of LE can be improved by obtaining the coefficients g and
p through H-SPICE characterization for the particular technology to be used.
This step incorporates characteristics of a particular technology, slopes, and
layout estimates into the LE parameters. Gate characterization is performed
under the constraint of fixed input-to-output slope relationship to obtain the
best matching. This would improve the accuracy of LE estimation
considerably and bring it well within 10% of H-SPICE simulation, as shown
in Table 1.

The effect of gate-to-gate wiring is not accounted for using basic LE
modeling, and is often ignored in comparisons. However, we have observed
that in 130nm technology, for example, wire resistance and capacitance can
contribute up to 1F04 delay degradation in 64-bit adders. The wire
capacitance introduces a constant load at the output of each gate, which can
be estimated from the wire length. The impact of wire resistance can be
estimated using, Twire=0.38RwireCload, which provides reasonable matching
versus H-SPICE. The comparison results are shown in Table II.

Table 11-2. Worst Case Delay Impact of Wire Resistance in 130nm 64-bit Adders
Wire Length
(bits crossed)

HSPICE
(no resistance)

HSPICE
(with resistance) Estimate

80µm (8-bits) 54.7 ps 58.5 ps 58.9 ps
160µm (16-bits) 57.7 ps 66.0 ps 66.8 ps
320µm (32-bits) 64.0 ps 84.7 ps 84.2 ps

6 Chapter 11

Application of LE to simple path delay estimation and size optimization
is straightforward; however, it is often difficult to apply the analysis to
complex paths due to branching. LE defines branching as b=(Con+Coff)/Con,
where the terms Con and Coff must be determined relatively. This analysis
becomes prohibitively complex when branches have differing gate types and
number of stages. In addition constant loads such as wiring, require iterative
computation. As a result the optimization of a complex path using the LE
gate delay model must be performed by changing individual f’s of each gate
to achieve minimal delay. Instead a simple paper and pencil method (as
suggested by LE) use of MS-Excel or other simulation tools such as
MathLab is more appropriate because of its built-in gradient based
optimization feature, and the fact that it does not require considerable
overhead than paper and pencil analysis.

3.2 Energy Estimation

The use of LE for delay optimization provides not only a delay estimate,
but the corresponding gate sizing. However, it does not provide for the
energy estimation, ignoring it completely. By including the energy model of
each gate, obtained from its LE sizing, the total energy of a design can be
estimated as developed in [15,16].

The energy of a gate is primarily a function of the output load, CL, and
parasitic capacitance (proportional to gate size). The relative energy
associated with CL and parasitic capacitance varies depending on the
effective fan-out, h. For small values of h, the parasitic energy is comparable
to the energy associated with the output load, while for larger values of h the
energy associated with the output load increases relative to the parasitic
energy.

Gate energy can be extracted from H-SPICE simulation by varying CL
and gate size. A linear dependence of energy on CL and size is observed in
[15], which results in the following energy model:

E = Ep ⋅ gate size + Eg ⋅ CL + Einternal-wire

where Ep is the energy per unit size, Eg is energy per unit load, and
Einternal-wire is an offset for internal wiring introduced by layout estimation.
The energy model directly accounts for parasitics, local wiring, and output
load, while performing a best fit for crowbar current and leakage. Eg, Ep, and
Einternal-wire are obtained using the same gate characterization setup as LE with
the slight overhead of performing the characterization for multiple gate sizes.

11. Power-Delay Characteristics of CMOS Adders 7

4. ENERGY-DELAY ESTIMATION METHOD

The objective of the Energy-Delay Estimation method (EDE) is to
provide a way to compare designs in the energy-delay space [16], that is
relatively simple and quick, so that it can be performed before design
decisions were made and committed.

LE provides reasonable delay results and sizing, however it does not

account for wiring. To improve LE the inclusion of wires and correct
handling of branches must be done. As we are interested in comparing
designs over a range of performance targets, each design should be
compared over the same range of path gain, H=Cout/Cin. After characterizing
a technology to find g, p, Eg, Ep, and Ewire for each gate, the following steps
are performed to obtain a delay and energy estimate of a design for each H:

1. Determine the critical path of the design.
2. Optimize the delay of the critical path to determine fopt.
3. Use fopt to size the gates on the critical path.
4. Estimate the energy of the entire design.

Using the sizing from Step 3 we can estimate the energy of the critical

path. However, Step 4 requires an estimate for the energy of the entire
design and not just the critical path. The energy of gates within a design can
be estimated according to two cases: gates on paths with the same number of
stages as the critical path; and gates on paths with fewer stages than the
critical path.

For paths with the same number of stages as the critical path, the size of
each gate is proportional to the gates on the critical path, allowing for the
energy of each gate to be computed directly. To facilitate this analysis, the
energy of each gate is assumed to have the same energy of the gate on the
critical path.

For paths with different number of stages than the critical path, the size
of each gate is not directly proportional to the gates on the critical path.
Instead, to obtain an energy estimate, the path must first be sized to have the
same delay as the critical path. Once the sizing is obtained, the energy of
each gate can be estimated. Similar to first case, any subsequent paths with
the same number of stages can be computed proportionally to this path.

The energy of each gate depends on its switching activity. In application
of EDE to VLSI adders it is common to use a 15% switching activity factor
for each gate in the static adders and a 50% switching activity for each gate
in the dynamic adders. These switching factors were obtained as an average

8 Chapter 11

of designs that were analyzed based on experience consistent with the “rule
of thumb” used in the industry.

Figure 11-2. Energy dependence of a gate on fanout and size

5. ENERGY-DELAY ESTIMATION OF ADDERS

Energy-Delay Estimation is a useful tool in comparing various tradeoffs
in adder design, such as the algorithm or circuit topology. The choice of the
adder topology and design style is also dependent on the required
performance and pressures to meet the critical path. In some instances, the
adder may not be in the critical path and the speed requirements may be
relaxed, or it may be possible to improve the speed of the clocked storage
elements (flip-flops and latches) and meet the required timing in this way.
The analysis of these tradeoffs was performed by Zyuban who termed these
design characteristics “hardware intensity” [17,18]. Hardware intensity
defines the design point in terms of the trade-off between energy and delay.
A tangent on the energy-delay curve represents the percentage of delay
reduction being paid for by the percentage increase in energy. Thus, various
algorithms can be examined in various design regions and the best one can
be chosen. Also, various circuit design styles can be examined. For example,
the analysis of three different circuits design styles: Static CMOS, Dynamic
CMOS and Compound (Dynamic-Static) CMOS design, reviled that
Compound CMOS achieves speed of dynamic design while maintaining the
low energy of static-CMOS design. The figure comparing the three different
design styles is shown in Fig.3.

0

2

4

6

8

10

8
12

16
20

3 4 5 6 7 8

En
er

gy

Si
ze

Fanout

11. Power-Delay Characteristics of CMOS Adders 9

Energy vs. Delay: Cout = 1mm wire (160u gate cap), Cin = min. input to 50*min. input

0

100

200

300

400

500

600

700

800

900

0 50 100 150 200 250 300
Delay [pS]

En
er

gy
 [p

J]

HC Dynamic (2-2)

KS Dynamic (2-0)

HC Dynamic (2-0)

KS Dynamic (2-2)

KS Static Prefix 2

HC Static Prefix 2

Quarternary Dynamic (2-2)

Quarternary Static

Dynamic Design

Static DesignCompound Design

Figure 11-3. Different design styles: Compound CMOS shows benefits of Static and
Dynamic CMOS circuits.

5.1 Domino and Compound Domino CMOS Analysis

In order to improve adder performance, Domino CMOS logic is often
used for implementation of adder Carry-Merge (CM) blocks resulting in the
circuit shown in Fig. 4a. The static CMOS inverter is necessary after each
dynamic block in order to make the logic behave in a “domino” fashion. The
inversion of the signal, which is necessary in the Domino CMOS logic
block, can be achieved with a more complex inverting static gate, which
performs additional function. This is often referred to as Compound-
Domino, or Dynamic-Static CMOS. Thus, two Domino Carry-Merge stages
can be merged into one by replacing the inverter with an AOI (Fig. 4b).

 The difference between Domino and Compound-Domino CMOS circuit
realization of the Carry-Merge stage is shown in Fig. 4.

10 Chapter 11

Clk

Gi+3

Gi+2 Pi+3

Gi+2:i+3

Clk

Pi+2 Pi+3

Pi+2:i+3

Delayed
Clk Gi:i+3

Gi:i+1

Clk

Gi+3

Gi+2 Pi+3

Gi+2:i+3

Clk

Pi+2 Pi+3

Pi+2:i+3

Gi:i+1

Static AOI

Gi:i+3

(a) (b)

Figure 11-4. (a) Carry-Merge: Domino Implementation (b) Carry Merge: Compound Domino
Implementation

Comparison of the 64-bit Kogge-Stone (KS) [7] and Han-Carlson (HC)
[9] adders implemented in: Dynamic CMOS Domino and Compound-
Domino CMOS is shown in Fig. 5.

0

100

200

300

400

500

600

700

250 300 350 400 450 500 550 600

Delay [ps]

En
er

gy
 [p

J]

Kogge-Stone
Compound

Han-Carlson
Compound

Han-Carlson
Domino

Kogge-Stone
Domino

50% Switching Activity
Applied for All Adders

Figure 11-5. Comparison of 64-bit HC and KS Domino and Compound-Domino Adders in
130nm technology

Comparing Domino to Compound-Domino, EDE helps us to appreciate
the benefits obtained by utilizing Compound-Domino logic. For the same
energy budget (e.g. 200pJ) Compound-Domino KS yields 20% delay

11. Power-Delay Characteristics of CMOS Adders 11

improvement over Domino KS. EDE provides a clear picture of the impact
Compound-Domino can have on adder design.

6. ADDER COMPARISON

The ability, provided by EDE method, to observe differences between
implementations of the same adder using different circuit families is
beneficial in selecting appropriate circuit design style. However it is also
important to see tradeoffs between adder topologies implemented using the
same circuit family. The accuracy of EDE for demonstrating tradeoffs in the
energy-delay space is shown by comparing optimized H-SPICE results for
32-bit Compound-Domino KS [7] and QT [10] adders versus EDE results in
100nm technology. The simulation results for KS and QT in 130nm were
shown. Comparison of the simulation results with EDE estimation adopted
for 100nm is shown in Fig. 6 [13]. EDE estimates demonstrate the same
tradeoffs as observed in simulation. These results confirmed the validity of
choosing the QT adder over KS or HC as a viable option for reducing energy
without sacrificing performance.

Compound-Domino and static 64-bit adders were analyzed using EDE to

see what tradeoffs exist (Fig. 7). Different points on the energy-delay curve
were obtained by varying the size of the input gates for each adder. The
output of each adder was loaded with a 1mm wire. A range of H was chosen
from H=2 to the maximum H (i.e. where minimum input size occurs).

12 Chapter 11

0

10

20

30

40

50

60

90 100 110 120 130 140 150 160

Delay [ps]

En
er

gy
 [p

J]

QT-Estimate

QT Spice [9]

KS-Estimate

KS-Spice [9]

Figure 11-6. Comparison of 32-bit QT and KS adders: EDE vs. simulation in 100nm
technology.

0

50

100

150

200

250

300

350

275 325 375 425 475 525 575 625 675

Delay [ps]

En
er

gy
 [p

J] KS Compound
HC Compound
KS4-IBM
KS Static
HC Static
QT-Compound
QT-static

50% Switching Activity Applied
 for All Compound Adders

15% Switching Activity
Applied for all Static Adders

Figure 11-7. EDE Analysis of 64-bit Compound-Domino and Static Adders in 130nm
technology

11. Power-Delay Characteristics of CMOS Adders 13

The results show the benefits associated with sparse designs: HC and QT,
however the benefits of Compound-Domino QT are lesser at 64-bits than for
the 32-bit design. This is a result of the one extra stage that the QT
implementation used versus the KS implementation. In the 32-bit design the
QT implementation used the same number of stages as KS. We also observe
that a Compound-Domino KS prefix-4 adder KS4-IBM [12] which utilizes
fewer stages at the cost of increased gate complexity and branching shows
further benefits. The increased gate complexity in the KS4-IBM adder is
offset by a significant reduction in parasitic delay associated with the
number of stages, which allows for the KS4-IBM to achieve lower delay
with less energy penalty than the other designs. At lower performance
targets this overhead is dominating and designs such as QT and HC achieve
lower energy.

6.1 Representative High-Performance Adders

We show comparison of high-performance adders used in leading
processors in the industry. All of the adders compared were implemented
using compound-domino design style which combines the best of the “both
worlds”: low-power and high-performance as it has been realized by the
design community. The comparison, shown in Fig. 8, includes: IBM
implementation of KS adder [12], Kogge-Stone 4-2 consisting of fan-in of 4
dynamic and fan-in of two static compound domino stage [7], Quarternary
adder developed by Intel [10], Ling adder used by IBM and Intel Itanium
processor and Han-Carlson adder [9]. We choose to include Energy-Delay2
factor as a figure of merit of their respective designs. As we know, this is
only one point on the E-D curve and the one chosen by high-performance
designs [24]. In Zyuban’s analysis, this represents “hardware intensity”
equal to 2, which means that they are willing to trade 2% of energy increase
for 1% increase in speed [17,18]. The tangent to the E-D curve at this point
has a slope of 2. We see that even though it is not the fastest, IBM adder
(developed by Park) shows the best ED2 figure of merit.

14 Chapter 11

Figure 11-8. Comparison of representative high-performance adders used in the industry.

“cd” designates Compound-Domino circuit design style.

6.2 Contribution of Wires

In order to properly evaluate all of the adder topologies an important
factor such as the wire effect and contribution to adder performance and
energy consumption needs to be properly qualified. The wires contribute in
two ways: add delay to the adder (effect of long wires), and use energy. In
the past, these effects were negligible, but as the technology continues to
scale wire effects could make a substantial difference. If we are to model
performance in the energy-delay space, the energy contribution of wires, as
well as delay must be appropriately included in the model.

Fig. 9 shows the wire effects expressed as a total wire capacitance in the
adder. This capacitance contributes to performance and energy deterioration.
The impact of wires on the delay is shown in Fig. 10. Depending on the wire
length of wires on the critical path, wire delay can impact the adder delay by
up to 1FO4 (as simulated for 100nm technology node). Given the speed of
the adders, this this amounts to more than 10% of the total delay.

0

2

4

6

8

10

12

14

cdIBM cdKS4-2 cdQT7 cdLing cdKS cdHC cdQT9

Adder Topology

D
el

ay
 (F

O
4)

0

3

6

9

12

15

18

21

Th
ou

sa
nd

s

ED
2 (p

J. FO
42)

Delay
E x D^2

11. Power-Delay Characteristics of CMOS Adders 15

Figure 11-9. Impact of Wires on High-Performance Adders

This impact is expressed in total wire capacitance, which influences
delay as well as energy. Wire energy is shown as a fraction of the total
energy of the adder. The trade-off between. wire and delay is best seen on
the IBM adder.

0

20

40

60

80

100

120

140

0 100 200 300 400 500 600 700
Wire Length (microns)

D
el

ay
 (p

S)

HSPICE

no wire resistance

~1FO4

Estimate

Figure 11-10. Worst Case Delay Impact of Wires

However, given the difference between the fastest and the slowest adders
chosen from the group of the best adders, this difference can change their

0

500

1000

1500

2000

2500

3000

3500

cdIBM cdKS4-2 cdQT7 cdLing cdKS cdHC cdQT9
Adder Topology

W
ire

 C
ap

ac
ita

nc
e

(µ
m

 g
at

e)

0

30

60

90

120

150

180

210

E
ne

rg
y

(p
J)

Wire Cap
Total Energy
Wire-Energy

16 Chapter 11

ranking. Comparison of representative adders, with and without wire effect
is shown in Fig. 11(a),(b).

0

1E-10

2E-10

3E-10

4E-10

5E-10

7 8 9 10 11 12 13
Delay (FO4)

Es
tim

at
ed

 E
ne

rg
y

(J
)

cdKS_LE
cdHC_LE
cdQT9_LE
cdQT7_LE
cdKS4-2_LE
cdLing_LE
cdIBM_LE

(a)

0

1E-10

2E-10

3E-10

4E-10

5E-10

7 8 9 10 11 12 13
Delay (FO4)

Es
tim

at
ed

 E
ne

rg
y

(J
)

cdKS
cdHC
cdQT7
cdIBM
cdLing
cdKS4-2
cdQT9

(b)
Figure 11-11. Energy-Delay behavior of representative high-performance adders used in the
industry: (a) Energy-Delay with wire excluded from the model, (b) Energy-Delay with wire

11. Power-Delay Characteristics of CMOS Adders 17

impact included. It should be noted that in general, wire effect do diminish performance
differences between them, while energy increases only slightly.

The impact of wire is to diminish the differences between the best and
the worse scheme. This shows that a hidden trade-off exists in some of these
schemes between the wiring and logic complexity. We can trade a stage of
the adder for a more intense wiring. If wire contribution is not properly
accounted for, unfair advantage may be apparent, but this appearance is
misleading. Looking at, for example, 6-stage KS with 7-stage QT7, in Fig.
11(a) and (b), one notice that they completely switch order when wire effects
are properly accounted for.

By applying optimization techniques to transistor sizing [optim ref] the
energy can be reduced even further. The ultimate energy-delay figure of the
representatinve adders is shown in Fig. 12. This is about the best energy and
performance one can achieve [25].

0E
+0

0
1E

-1
0

2E
-1

0
3E

-1
0

4E
-1

0
5E

-1
0

7 8 9 10 11 12 13
Delay (FO4)

E
st

im
at

ed
 E

ne
rg

y
(J

)

cdKS cdKS_LE
cdHC cdHC_LE
cdQT7 cdQT7_LE
cdIBM cdIBM_LE
cdLing cdLing_LE
cdKS4-2 cdKS4-2_LE

27%

18%
52%

21%

26%24%

Figure 11-12. Energy-Delay behavior of representative high-performance adders after energy
optimization. The best behavior is that of IBM adder designed by Park [12].

7. THE ULTIMATE ADDER TOPOLOGY

Efficient adder design requires proper selection of a recurrence algorithm
and its realization. Using the insight obtained through the application of

18 Chapter 11

EDE tool, we analyzed several algorithms for their flexibility and suitability
for realization in CMOS. We found that the use of Ling’s algorithm provides
up to 12% improvement in performance of 32-bit static adders with similar
recurrence trees. Using Ling’s algorithm we developed general techniques
for efficient realizations based on technology constraints. From these
techniques we propose several high-performance realizations of Ling’s
algorithm that achieve better performance and energy efficiency than
existing Ling and Weinberger designs [23].

Technology characteristics limit potential realizations of Weinberger’s

and Ling’s recurrences for addition. The primary constraint in current
CMOS is fan-in of a gate, which is commonly limited to between 3 and 5.
Several realization techniques have been developed to map recurrence
algorithms to CMOS under these constraints [23].

7.1 Combined Bit Operator and 1st Carry Stage

In dynamic adder implementations, one stage can be removed by
combining the 1-bit operation for g and t into the first prefix computation
stage [11,12]. This technique is more favorable to Ling’s recurrence than to
Weinberger’s. Under the same stack height constraint a Ling realization can
use a prefix of 1 more than a realization using Weinberger’s.

Ling’s first stage prefix-2 operation using 1-bit operators:

1−+= iii ggH

1−⋅= iii ttT
Weinberger’s first stage prefix-2 operations using 1-bit operators:

iiii CtgC ⋅+=+1

1−⋅= iii ttT
It is seen that the recurrence of Hi involves one less term than Ci,

however the recurrence for T does not differ between the structures. The
result is that the critical path through first stage of the recurrence tree has the
same fan-in on the gates, whether using Ling or Weinberger. However when
the 1-bit operators are combined with the first prefix stage of the carry tree
(for example prefix 2) the resulting logic for Ling’s transformation is:

11 −−+= iiiii babaH
()()22111 −−−−− ++= iiiii babaT

and for Weinberger’s recurrence:
()()111 −−+ ++⋅= iiiiiii bababaC

()()11 −−+= iiiii babaT

11. Power-Delay Characteristics of CMOS Adders 19

The fan-in of the first logic stage for Ling’s transformation is reduced by
1 in CMOS compared to Weinberger’s. Subsequent stages for both have the
same fan-in since the recursion is performed using the first stage operations
with the prefix operator. Ling’s transformation is especially useful for static
realizations, as the first stage and bit operator stage can be combined, while
in Weinberger such a combination would result in 3-stacked pMOS
transistors.

7.2 Conditional Computation of Sum

Several adder implementations make use of conditional logic for the
computation of sum. Conditional logic allows for the number of recurrence
terms to be computed at the cost of increased fan-out in the recurrence tree.
Both Weinberger’s and Ling’s recurrence fit well into conditional
computation. The issue with conditional computation is determining how
many bits to compute conditionally and using what structure. The number of
gates in a critical path consists of the carry structure (and 1-bit operator gate
if not combined), and the sum. For example a 4-gate carry tree the critical
path would require 5-gates. The conditional sum calculation requires that the
conditional sum be calculated prior to final sum, so in a realization with a 4-
gate carry tree the conditional sum must be completed by in 4-gate delays.

The following is an estimate for the maximum number of bits that can
potentially be rippled for an n-stage carry tree using conditional sum, ripple
carry structure.

() operatorlevelbitsumsumstagestreecarrygates ____# −−+=

1__# −= stagestreecarrygates

As the number of stages in the carry tree increases, conditional
computation is a viable solution for reducing energy. If however, the number
of stages in the carry tree decreases, the possibility that the conditional sum
becomes the critical portion of the design increases. The optimal number of
bits to compute conditionally as well as the implementation of the
conditional computation, either by rippling the recurrence or through the use
of separate recurrence trees, is dependent on technology.

20 Chapter 11

7.3 Ling Realizations and their Alternatives

7.3.1 Static Adders

For static adders technology limits designs to a 2stack nMOS transistors
and 2 stack pMOS transistors. Knowles described in [1] how to create
minimum depth carry trees for static adders using Weinberger’s recurrence.
The same trees can be constructed with Ling’s transformation by combining
the first stage of the carry tree as described in 7.1. The construction allows
for one stage to be removed from the critical path of the adder.

7.3.2 Dynamic Adders

Ling’s transformation shows advantages of reduced logic complexity of
the critical path in CMOS technology and should therefore yield the good
structures for addition. Several types of 64-bit Dynamic realizations of
Ling’s transformation are proposed in the following sections.

7.3.3 Fast Parallel Prefix Ling Adders

Ling’s transformation only displays advantages over Weinberger’s when
the factored pi is removed from the carry computation. As shown in [21,22]
this can be accomplished through the use of conditional logic for the sum.
The fastest Ling implementations are dependent on CMOS technology
limitations. In current technology nMOS transistor stack height is commonly
limited from 3 to 5, while pMOS transistors are further limited to a stack
height of 2. A feature common to Weinberger’s and Ling’s transformations
is that any prefix (up to 3 and 4 respectively) can be used in the first stage
with a stack height of 5 when using operands as inputs to the first carry
stage.

7.3.4 Ling with Full Prefix Carry Tree

A three stage adder can be constructed using a fully parallel prefix tree
with Ling transformation. A technology limitation of 5 stack nMOS for
dynamic stage allows for prefix-4 gates to be used in dynamic stages, while
a limitation of 2 stack pMOS for static limits static gates to prefix 2. Under
these constraints a full prefix tree with prefix 4, 2, 4, and 2 for the first,
second, third and forth gates respectively can be constructed (Ling 4-2-4-2)
(Fig. 13).

11. Power-Delay Characteristics of CMOS Adders 21

Figure 11-13. Prefix 4-2-4-2 Adder using Ling’s Transformation

The equations for the first level Hi and Ti are:
332211221111))(()(−−−−−−−−−−−− ++++++= iiiiiiiiiiiiiii BABABABABABABAH

))()()((332211 −−−−−− ++++= iiiiiiiii BABABABAT

Resulting in a worst case stack height of 4 nMOS transistors for both
equations, since it is the first stage of the path that must be footed which
bring the worst case height to our technology limit of 5. The second, third
and forth level Hi and Ti computations follow traditional dot product
operations for prefix 2 and prefix 4. Weinberger’s can be used with the same
full parallel prefix tree for the carry recurrence at an increase of one in the
stack of the first stage for the carry recurrence relative to Ling. Variations of
such structures within the technology limitations that are close to the
minimal carry tree depth should be analyzed when determining an adder
topology to for a technology.

7.3.5 Ling with Sparse-2 Prefix Carry Tree

The amount of wiring in an adder realization can be reduced without
increasing the number of stages by generating every other Hi and performing
a conditional two-bit sum combined with Prefix 4-2-4-2 carry tree. The
conditional sum length was chosen based on the limitations on the number of
conditional sum bits described in 7.2 (Fig. 14).

22 Chapter 11

Figure 11-14. Sparse-2 Prefix 4-2-4-2 Adder using Ling’s Transformation

The increased complexity of the sum computation requires no additional
stages for the conditional computation of the sums. Similar to the full-prefix
structure in 7.3.4 such a structure should be modified according to the
technology implications on the conditional sum computation speed energy
relative to the carry tree speed and energy.

7.4 Results

All results are obtained using estimates for 130nm technology by
applying the energy-delay estimation method we developed in [15] to the
entire adder. A comparison of 32-bit static adder implementations between
Weinberger’s recurrence and Ling’s transformation is shown in Fig. 15.

11. Power-Delay Characteristics of CMOS Adders 23

0

1

2

3

4

5

6

7

8

9

10

D
el

ay
 (F

04
) Weinberger

Ling

Ladner-Fischer
prefix 2

[1-1-2-4-4]

Ladner-Fischer
prefix 2

[1-1-2-2-4]

Ladner-Fischer
prefix 2

[1-1-2-2-2]

Kogge-Stone
prefix 2

Figure 11-15. Comparison of 32-bit static Weinberger and Ling Adders.

Ling’s transformation yields an improvement in delay of up to 12%
confirming the reduced number of stages benefit that Ling can achieve in
static implementations limited to a 2-stack of pMOS transistors. For dynamic
implementations, technology constraints and adder size determine whether
the advantage of using Ling’s transformation is a logic stage or a reduction
in transistor stack height.

A comparison of 64-bit Ling dynamic adders with and without
conditional sum is shown in Fig. 16.

0

50

100

150

200

250

300

350

400

450

6 7 8 9 10 11
Delay (FO4)

En
er

gy
 (p

J)

Ling 4-2-4-2

Prefix 2 Ling

Ling 4-2-4-2
w/ 2-bit Cond. Sum

Prefix 2 Ling
w/ 2-bit Cond. Sum

Figure 11-16. Comparison of Conditional Sum in High-Performance 64-bit Dynamic Adders.

24 Chapter 11

The results show an energy savings for the 2-bit conditional sum variants.
This is primarily due to the reduced switching activity of the static gates on
the conditional path. In the fully parallel prefix-2 Ling carry tree, applying a
2-bit conditional sum improves energy at only a slight increase in delay. The
delay penalty is due to increased loading of the adder input caused from the
static gates of the conditional sum path. The Ling 4-2-4-2 with 2-bit
conditional sum results in a slight energy savings and improved performance
compared to the Ling 4-2-4-2 design. In contrast to the prefix-2 design, the
static gates of the conditional sum path reduce the loading of the inputs to
the adder due to their reduced complexity compared to the prefix-4 gates of
the carry path. A comparison of the best 64-bit adder implementations for
Ling [19] and Weinberger’s recurrence [20] and the proposed realizations
are shown in Fig. 17.

0

100

200

300

400

500

600

700

6 7 8 9 10 11
Delay (FO4)

En
er

gy
 (p

J)

Park [12]
Ling 4-2-4-2

Prefix 2 Ling

Ling 4-2-4-2
w/ 2-bit Cond.

Naffziger [11]

Figure 11-17. Energy-Delay Space Comparison of High-Performance 64-bit Dynamic Adders

The results show the significant advantage obtained by the proposed
realizations. These realizations demonstrate better performance than the
Weinberger adder and the previous best implementation of a Ling adder.
While the best delay is obtained by the fully parallel prefix 2 Ling design,
the most efficient design is the proposed Ling 4-2-4-2 with 2-bit conditional
sum.

8. CONCLUSION

We presented Energy-Delay Estimation (EDE) method based that
extends logical effort (LE) and its application to the analysis and selection of

11. Power-Delay Characteristics of CMOS Adders 25

high-performance VLSI adders. The EDE method has proven to be a much
needed and effective tool in design space exploration, in particular when
comparing high-performance adders in the early stages of design. Further,
the sufficient accuracy of the method for adder selection in the energy-delay
space was demonstrated when comparing designs implemented in 130nm
and 100nm CMOS technologies using static and dynamic circuit styles. The
method described in brings a new perspective to comparing arithmetic
circuits, and advances the analysis and design of VLSI oriented computer
arithmetic algorithms.

Ling and Weinberger addition recurrence algorithms demonstrate
favorable characteristics for efficient CMOS mapping. Ling shows a
fundamental advantage in CMOS by reducing the complexity of the first
stage of the carry tree. Guidelines which aid in the selection of efficient
realizations of Ling’s transformation are given for both prefix selection for
successive levels of recurrence and selection of conditional computation
size. The proposed prefix 4-2-4-2 structures demonstrate up to 25% savings
in energy at the same delay and from 0.5-1FO4 delay improvement at ISO-
delay when compared to the fastest previous designs [12].

9. REFERENCES

[1] S. Knowles, “A Family of Adders”, Proceedings of the 14th Symposium on Computer
Arithmetic, Adelaide, Australia. April 1999.

[2] V. G. Oklobdzija and E. R. Barnes, “On Implementing Addition in VLSI Technology,”
IEEE Journal of Parallel and Distributed Computing, No. 5, 1988 pp. 716-728.

[3] E. Sutherland, and R. F. Sproull, “Logical Effort: Designing for Speed on the Back of an
Envelop,” IEEE Advanced Research in VLSI, C. Sequin (editor), MIT Press, 1991.

[4] I.E. Sutherland, R.F. Sproull, and D. Harris, “Logical Effort Designing Fast CMOS
Circuits,” Morgan Kaufmann Publishers, 1999.

[5] H.Q. Dao, V. G. Oklobdzija, “Application of Logical Effort Techniques for Speed
Optimization and Analysis of Representative Adders,” 35th Annual Asilomar Conference
on Signals, Systems and Computers, 2001.

[6] D. Harris and S. Naffziger, “Statistical clock skew modeling with data delay variations,”
IEEE Trans. VLSI Systems, vol. 9, pp. 888–898, Dec 2001.

[7] P.M. Kogge and H.S. Stone, “A parallel algorithm for the efficient solution of a general
class of recurrence equations”, IEEE Trans. Computers Vol. C-22, No. 8, Aug. 1973,
pp.786-793.

[8] Farooqui, V. G. Oklobdzija, F. Chehrazi, “Multiplexer Based Adder for Media Signal
Processing”, International Symposium on VLSI Technology, Systems, and Applications,
Taipei, Taiwan, June 1999.

[9] T. Han, D. A. Carlson, and S. P. Levitan, “VLSI Design of High-Speed Low-Area
Addition Circuitry,” Proceedings of the IEEE International Conference on Computer
Design: VLSI in Computers and Processors,1987, pp.418-422.

[10] S.K. Mathew et al, “Sub-500-ps 64-b ALUs in 0.18�m SOI/bulk CMOS: design and
scaling trends,” IEEE Journal of Solid-State Circuits, vol.36, Nov. 2001, pp.1636-46.

26 Chapter 11

[11] S. Naffziger, “A Sub-Nanosecond 0.5�m 64-b Adder Design”, 1996 IEEE

International Solid-State Circuits Conference, Digest of Technical Papers, Feb. 1996,
pp.362-363.

[12] J. Park, et. al., “470ps 64-Bit Parallel Binary Adder”, 2000 Symposium on VLSI
Circuits Digest of Technical Papers.

[13] B. Davari, R.H. Dennard, G.G. Shahidi, “CMOS Scaling for High Performance and
Low Power – The Next Ten Years,” Proceedings of the IEEE, vol. 83, April, 1995.

[14] S.K. Mathew et al, “A 4GHz 130nm Address Generation Unit with 32-bit Sparse-tree
Adder Core,” IEEE Journal of Solid-State Circuits, vol. 38, May 2003, pp.689-695.

[15] V.G. Oklobdzija, B.R. Zeydel, H.Q. Dao, S. Mathew, R. Krishnamurthy, “Energy-
Delay Estimation Technique for High-Performance Microprocessor VLSI Adders,”
Proceedings of the 16th International Symposium on Computer Arithmetic, Santiago de
Compostela, Spain, June 2003.

[16] V. G. Oklobdzija, B.R. Zeydel, H.Q. Dao, S. Mathew, R. Krishnamurthy, “Comparison
of High-Performance VLSI Adders in Energy-Delay Space”, Transaction on VLSI
Systems, Volume 13, Issue 6, pp. 754-758, June 2005.

[17] V. Zyuban and P. Strenski, “Balancing Hardware Intensity in Microprocessor
Pipelines,” IBM Journal of Research and Development, Vol. 47, No. 5/6,
September/November 2003.

[18] V. Zyuban, P. Strenski, “Unified Methodology for Resolving Power-Performance
Tradeoffs at the Microarchitectural and Circuit Levels,” Proc. Int. Symp. on Low Power
Electronics and Design, Aug. 2002, pp. 166-17.

[19] H. Ling, “High-Speed Binary Adder,” IBM Journal of Research and Development, vol.
25, no.3, pp. 156-166, May 1981.

[20] A. Weinberger, J.L. Smith, “ A Logic for High-Speed Addition,” Nat. Bur. Stand..
Circ., 591:3-12, 1958.

[21] J. Sklanski, “Conditional-Sum Addition Logic,” IRE Trans. on Electronic Computers,
Vol. EC-9, No2, pp.226-231, 1960.

[22] O. J. Bedrij, “Carry-Select Adder,” IRE Trans. on Electronic Computers, Vol. EC-11,
pp. 340-346, 1962.

[23] B.R. Zeydel, T.T.J.H. Kluter, V. G. Oklobdžija, "Efficient Mapping of Addition
Recurrence Algorithms in CMOS", International Symposium on Computer Arithmetic,
ARITH-17, Cape Cod, Massachusetts, USA, June 27-29, 2005.

[24] K. Nowka, IBM Austin Research Lab, Austin, TX, private communication, August
2001.

[25] V. G. Oklobdzija, “Energy-Delay Tradeoffs in CMOS Digital Circuits Design”,
Presentation at Dallas IEEE CAS Workshop, Richardson, Texas, October 10, 2005. (IEEE
Xplore: ……………………………)

