
[Book Title], Edited by [Editor’s Name].
ISBN 0-471-XXXXX-X Copyright © 2000 Wiley[Imprint], Inc.

Chapter 4

Differential and Pass-Transistor CMOS
Digital Circuits

Oklobdzija, Yano

Introduction
Computational and market demands have driven VLSI processors to double their

performance every two to three years. The same trend has been observed in the computer
market represented by the X’86 architecture, as shown in Fig.1. The clock frequencies
have reached 3.8GHz [28]. This demand for higher speed has been exercising a
significant pressure on the circuit design and the circuit design style. Keeping this rate of
performance increase is not possible only through the advances in fabrication technology.
Therefore the improvements in all the other aspects of the design are necessary to support
the rate of this progress.

PIII
IBM-G4

P-4

P-4

Athlon 3200+

Athlon 3800+

Itanium-2

Cray-1 SCray-X-MP
CDC-Cyber IBM 3090

MIPS-X

Alpha 21064
Alpha 21164

UltraSparc II
IBM S/390

Alpha 21264
Exponential

PowerPC

Alpha 21164
PIII Xeon

Athlon

Athlon

Pentium 4

Itanium

Pentium 4

Itanium

Athlon 2100+

Athlon1900

0

500

1000

1500

2000

2500

3000

3500

4000

1975 1980 1985 1990 1995 2000 2005 2010Year

N
om

in
al

 C
lo

ck
 F

re
qu

en
cy

 (M
H

z)

 Fig. 1. Microprocessor clock frequency increase over years (source: MDR)

Wiley STM / Editor: VLSI Digital Circuits Design,
Chapter 4 / Oklobdzija, Yano / filename: Chpt-4.doc

page 2

As the technology reaches into the deep sub-micron region, the use of regular

CMOS is coming to its limits. The problems associated with the power and speed
required that the other types of logic be invented and the old ones re-examined. In order
to reach the required performance goals, the use of dynamic logic in the critical paths of a
processor is quite common, if not standard. Every high-performance processor today uses
non-conventional CMOS circuits such as: Domino logic and Skew-Tolerant Domino,
(also known as Opportunistic Time Borrowing) as well as pass-transistor circuits []. The
circuits in the critical part of a high-performance processor are so important that it is
essential for the leading processor design centers today to have a very skilled circuit
design team. The interaction between the circuit and the architecture team in those
organizations is so close that the logic design stage is eliminated for those parts of the
processor or confined to verification [].

The use of pass-transistor logic is regaining interest because it may behave better

then the ordinary CMOS as the power-supply voltage scales down. It was not only the
performance gain over the conventional CMOS that is of interest, but the energy-delay
product yielding the optimal design point. The power has increasingly becoming more
important than speed. This is an issue as the processor has been migrating into the
consumer market, portable and hand-held devices in particular.

Differential Logic

The introduction of differential CMOS logic evolved from the development of
dynamic CMOS, “Domino Logic” in particular. A significant effort was undertaken in
the early 1980s while exploring the circuit families that are to be replacement for nMOS
logic []. This development took place within IBM and AT&T Bell Laboratories and
resulted in several new circuit and logic configurations.

CVS Logic

Cascode Voltage Switch Logic (CVSL) was developed in IBM [1] as an
improvement over the use of pseudo n-MOS. It comes in two forms: single-output and
differential output (or double-rail). The later form of the logic is also known as DCVSL
(Differential Cascode Voltage Switch Logic).

Wiley STM / Editor: VLSI Digital Circuits Design,
Chapter 4 / Oklobdzija, Yano / filename: Chpt-4.doc

page 3

f

N

n-type transistor
network

f

GND

+Vcc

Clock

small keeper transistor

evaluation
Pre-

charge

Input
Signals

CVS IBM

differential
inputs

N1 N2

n-fet
trees

Q Q

Vdd

N1 N2

differential
inputs n-fet

trees

Q QClock

Clock

Vdd

(a)
 (b)

Fig. 2. Differential Cascode Voltage Switch Logic (DCVSL): (a) Static DCVLS (b) Dynamic DCVSL

DCVSL is made of two n-type switching networks, one implementing f and the
other , and of two p-type transistors, connected in a cross-coupled combination to Vdd,
used as pull-up devices (Fig.2.a,b). Depending on the state of the differential inputs,
either node N1 or N2 is pulled down by one of the nMOS logic tree (but never both). The
regenerative action of the pMOS latches keeps the outputs Q and

f

Q static and assures the
full voltage swing, Vdd or ground, of its outputs.

The two logic trees are capable of processing complex functions within a single

circuit delay. The advantage of DCVS logic is that both polarities of the output are
represented, thus inversion operation is not necessary. This eliminates the need for the
inverter and makes this type of logic inherently faster. The presence of both polarities of

Wiley STM / Editor: VLSI Digital Circuits Design,
Chapter 4 / Oklobdzija, Yano / filename: Chpt-4.doc

page 4

the output has other advantages as well. If the circuit is operating correctly, the values of
the output signals can only assume 0-1 or 1-0, i.e. the 0-0 or 1-1 combination can never
occur. This gives this logic “self-checking” properties. If one of the forbidden
combinations is detected by a circuit with self-checking properties (known as self-
checking checker), a failure is immediately signaled. Depending on the system logic, the
system could switch to “fail” state and take the appropriate action.

Another variation of CVSL is Static and Dynamic CVSL circuit. Dynamic logic is

available in two forms: single-ended (single-output) and double-ended (where true and
complements of the function are present). Dynamic DCVSL is shown in Fig. 2.b.

One the problem of static DCVSL is the signal asymmetry which can appear

during the transition. Given that the pMOS transistors are the only pull-up devices there
may be a time window during which both the pMOS and the nMOS are ON. This
situation will create a current from Vdd to ground node causing current spikes and
additional delay. The choice of the size of the pMOS is thus very important. If the pMOS
is made too small the transition of the signal from GND to Vdd is too slow. If on the other
hand, the pMOS devices are made too big the transition of the output node from Vdd to
ground is too slow. This makes static CVS to be a “ratioed” logic. In general to assure a
good “pull-up” of the output signal the pMOS devices should be twice the size of the
nMOS devices. There is no direct current from Vdd to ground after the transition,
however because of the asymmetry of the circuit the power consumption of CVSL can be
high.

VDD

A

B

C

A B C

VDD

A

B

C

A B C

VDD

A

B

C

A B C

+ + ++
+ + ++

+

+

+

ON

1

1

1

1

1

1

0 0 0 0 0 0

a

OFF

1

0

a
OFFON

a

ON

+
+

+

+

+

++ +
ON ON

OFF

a

b b

a

b ba

c

c

ON

OFF

OFF ON
10 ++++
++++

a

b
ca

c

Vdd

timeBoth paths ON

Fig. 3. Switching asymmetry in CVSL. This asymmetry causes current spikes and increased power
consumption.

Wiley STM / Editor: VLSI Digital Circuits Design,
Chapter 4 / Oklobdzija, Yano / filename: Chpt-4.doc

page 5

CVSL versus CMOS

The main difference between CMOS and DCVSL is in the way the switching
function is implemented. While both CMOS and DCVSL implement the true function
and its complement, DCVSL uses only n-type devices for both switching trees whereas
CMOS use p-type for the tree and n-type for f f tree, as shown in Fig. 4.

(a) (b)

differential
inputs

N2

VDD

ff
N1

n-MOS transistor
switching

treesf f

VDD

f

f

finputs

Shared
Transistors

Fig. 4. (a) DCVS Logic consisting of two shared nMOS transistor switching networks (b) CMOS
consisting of two separate: nMOS and pMOS transistor switching networks.

In terms of the area this allows CVSL to be smaller than CMOS. Since the carrier
mobility in the pMOS transistor is half of that in the nMOS, the pMOS transistors need to
be made twice as large. Therefore the area taken to implement the switching network
representing the function is usually twice as large as compared to the switching
network representing

f
f . In DCVSL those switching networks are approximately the

same. It is also possible to share transistors between the and f f switching networks for
further reduction of the total number of transistors, Fig.4. In addition to the area
reduction, the use of nMOS transistors results in a reduced input capacitance thus
contributing to the speed of the circuit. DCVSL uses both polarities of all input signals,
thus doubling the number of wires. However, due to its differential nature, both output
polarities are available, eliminating the need for an inverter. Inversion is achieved without
delay penalty, by simply choosing the appropriate polarity of the output signal. This
feature also helps to improve speed of DCVS logic as compared to CMOS.

Wiley STM / Editor: VLSI Digital Circuits Design,
Chapter 4 / Oklobdzija, Yano / filename: Chpt-4.doc

page 6

In general, due to the lower input capacitance and a better intrinsic transistor
speed CVSL is faster as compared to CMOS using the same transistor sizes. In studies
done by IBM, CVSL has shown an overall performance improvement [1]. Other studies
[2], show an improvement of performance but at the cost of increased power
consumption.

In terms of the number of transistors, CVSL uses two extra pMOS transistors in

the cross-coupled combination, as compared to CMOS. However the implementation of
both functions andf f doesn’t necessarily mean that duplication of the transistors is
necessary given that a number of transistors are usually shared between

andf f switching trees. The amount of such overlap is dependent on the function. Thus
the number of transistors in CVSL is generally the same or lower as compared to CMOS.

The sharing of the transistors is illustrated in the example of a 3 input XOR gate

shown in Fig. 5.

A A A A

B BB B

C C

Q Q

Q = a ⊕ b ⊕ c

Fig. 5. Example of transistor sharing in DCVS Logic: Implementation of 3-input XOR function

Wiley STM / Editor: VLSI Digital Circuits Design,
Chapter 4 / Oklobdzija, Yano / filename: Chpt-4.doc

page 7

Pass-Transistor Logic
With the technology moving into the sub-micron region, the new circuit structures

were rapidly introduced trying to overcome the limitations of the regular CMOS. The
driving force was an ever increasing requirement for performance and higher level of
integration. This commanded that other types of logic be examined. An extensive
consideration was given to the use of pass-transistors which saw its resurrection from the
early days of VLSI. Several experimental prototypes were built to demonstrate the
feasibility and advantages of the new circuit topologies.

One of the first papers examining pass-transistor logic and formalizing pass-

transistor design style was published by Whitaker, in 1983 [Whitaker, Electronics]. The
paper describes how the logic functions can be efficiently and optimally built using pass-
transistor logic. It shows some fundamental pass transistor building blocks which became
very popular in VLSI design practices. A methodology for synthesis of pass-transistor
functions was established presenting a modified Karnaugh map which employs the pass
variables, not only logic zeroes and ones. A formal design procedure for pass transistor
switching circuits was developed later in [Whitaker, Jo SSC]. This work was further
extended and formalized in [Markovic, Oklobdzija, Microelectronics].

For example let us analyze a simple pass-transistor circuit shown in Fig. 6.a. We

define the variable connected to the gate of the pass-transistor, thus controlling its output
as the “control variable”, while the variable connected to its source (or drain) as “pass
variable”. The two branches are OR-ed together by wiring them together, which is
known as “wired-OR”. The pass variable can propagate to the output only if this is
allowed by the control variable. Thus, we have at our disposal a basic circuit topology
capable of implementing a Boolean function, and AND-OR structure. The structure that
is shown in Fig. 6.a. implements an XOR function. We could have derived it from the
Karnaough map shown in Fig. 6.b, by simply choosing A to be the control variable and
then realizing that the desire output is equal to B when A is not true and not B when A is
true. Connecting B and not B to the appropriate inputs will produce desired XOR
function. In the same manner, we could have generated any one of the 16 possible
functions.

0 10

1

0 1

B

A

1 0

A

A

B

B
F

F

B B

(a) (b)

Fig. 6. (a) XOR function implemented with pass-transistor circuit, (b) Karnaough map showing derivation
of the XOR function.

Wiley STM / Editor: VLSI Digital Circuits Design,
Chapter 4 / Oklobdzija, Yano / filename: Chpt-4.doc

page 8

We can generalize this derivation by connecting variables X and Y at the input of
this simple network. The number of the functions that can be realized in this manner is
equal to the 2k where k=2N, N representing the number of variables that can be formed at
the input. For N=2, this represents 16 functions. This is illustrated in Fig. 7.a. and b. If we
use variable B as a control variable instead of the variable A, we will obtain the same set
of 16 functions. Given that we are using only two transistors in this structure to
implement 16 possible functions, this illustrates the power of pass transistor realization.
However, while such a structure was very convenient for nMOS circuits, in CMOS the
threshold drop across the pass transistor represents a problem. At this point we want to
explain the synthesis of pass-transistor logic, but we will return to this problem later and
will show some possible solutions that work for CMOS.

If we extended this concept further, using two control variables A and B and fixed

controls P0, P1, P2, P3 at the input, we can create a pretty powerful function generator as
shown in Fig. 8. It is quite common to see this type of general function generator
implementation in VLSI processors. The variables P0, P1, P2, P3 are come from the
controller portion of the processor and they determine the function implemented by the
variables A and B which are connected as control variables. This functional generator
implements the same 16 possible functions of two variables A and B, but this is done in a
more structured manner.

A

A

X

Y
F

X Y F
0 0 0
0 1 A
1 0
1 1 1
0 B AB
0
1 B
1
B 0
B 1
B 0 A+B
B 1
B
B B
B
B B B

B

B

B

B

B

A

BA⊕

BA
BA +

BA
BA +

BA

BA +

BA⊕

(a) (b)

Fig 7. (a) General topology of pass-transistor function generator (b) Karnaough map of 16 possible
functions that can be realized.

Wiley STM / Editor: VLSI Digital Circuits Design,
Chapter 4 / Oklobdzija, Yano / filename: Chpt-4.doc

page 9

A A B B

P0

P1

P2

P3

F(A,B)

Fig 8. Function generator implemented with pass-transistor logic.

The function generator, shown in Fig. 8 is missing a pull-up portion. In nMOS,
that is realized by simply connecting the output F to Vdd through a depletion mode nMOS
transistor. In CMOS this requires duplication of the entire generator portion using pMOS
transistors. It should not be difficult for the reader to figure out how. The simple grid
layout style makes this implementation compact and efficient.

At this point we may address the problem of the threshold voltage drop between

the input and output when the pass transistor logic is used. The logic shown in Fig. 6
represents no problem when the input is at the zero voltage level because the one applied
to the gate will simply make the output voltage zero. The problem arises when the input
is at the logic one level because the output can not reach one. For that purpose, let us
examine the circuit in Fig. 9.

A

B=Vdd

B

Fmax = Vdd-Vth

A=Vdd

Vth
+

-

Cout

Vdd

Vdd

Fmax = Vdd-Vth

Cout

Vth
+

-
Vth

+
-

Vdd

(a) (b)

Fig 9. (a) Threshold voltage drop at the output of the pass-transistor gate (b) Voltage drop does not exceed
Vth when there are multiple transistors in the path

Wiley STM / Editor: VLSI Digital Circuits Design,
Chapter 4 / Oklobdzija, Yano / filename: Chpt-4.doc

page 10

When the input voltage is equal to Vdd the output can not reach Vdd simply
because if both transistor terminals, source and drain, were to be at Vdd the voltage at the
transistor gate would not be above either of the terminals and transistor would not
conduct. Thus, the output capacitor will be charged through the pass-transistor until its
voltage is one transistor threshold voltage Vth bellow the gate voltage, as shown in Fig.
9.a. One may naively think that when two or more transistors are connected in series the
output voltage be lower for two or several transistor threshold voltages Vth. This thinking
is not correct because source and drain in the MOS transistor are indistinguishable. The
existing voltage drop caused by the first transistor in the path makes needed voltage
difference for the second transistor (or third and any subsequent transistor in the chain) so
that the output voltage will be lower for only one Vth voltage drop and equal to: Vdd- Vth.

While this voltage drop did not represent serious problem in nMOS logic it does

so in CMOS because this can bring the next stage into the region when both transistors (p
and n) are conducting while seriously degrading the noise margin of the CMOS circuit.
An obvious, but more complex solution is to always pair the nMOS transistor with a
pMOS which would bring the output voltage to the required full swing as shown in Fig.
10.a. Another solution is to always terminate the problematic node with a full-swing
restoring inverter, as shown in Fig. 10.b.

A=0V

In=Vdd Fmax= Vdd

A=Vdd

Vth
+

-

Cout

Vdd

Vdd

Cin

Vth
+

-

(a) (b)

+
-Vdd

ON

+Vdd

Fig 10. Elimination of the threshold voltage drop by: (a) pairing nMOS transistor with a pMOS (b) using a
swing-restoring inverter

Wiley STM / Editor: VLSI Digital Circuits Design,
Chapter 4 / Oklobdzija, Yano / filename: Chpt-4.doc

page 11

CPL and DPL Logic

New CMOS logic families using pass-transistor circuits were introduced with the
objective of improving speed and power [4,6]. Two of them, simultaneously developed
by Hitachi: CPL [4] and DPL [6], are the most notable. The Double Pass-Transistor
Logic, developed by Hitachi in 1993 demonstrated an 1.5nS 32-bit ALU in 0.25 µm
CMOS technology [4] and a 4.4nS 54X54 bit multiplier [9]. New developments followed
from IBM and from Toshiba introducing DCVSL-PG [3] and SRPL [5]. Recent studies
have shown that the use of pass-transistor logic not only brings speed and area
improvement, but also results in lower power.

Complementary Pass-Transistor Logic (CPL)

In 1990, researchers from Hitachi Research Center in Japan published the
structure known as Complementary Pass-Transistor Logic, CPL [9]. The CPL structure
was significant in the fact that it brought back the pass-transistor efficiency in
implementation of logic circuits. The logic function built from the pass-transistors not
only efficiently utilized the space on silicon, but resulted in a very fast logic. Importantly,
this type of logic also consumed less power.

f

Inputs

Pass Variables

Control
Variables

F F

f

Fig.11. Complementary Pass-Transistor Logic structure

The general structure of CPL is shown in Fig.11. The given function f is
implemented from two pass transistor logic blocks implementing the function f and its
complement f . The transistor logic is built from the pass-transistor networks taking
advantage of pass-transistor design efficiency. Resulting logic is differential, which
means that both the function f and its complement f are present at the outputs, while
requiring both polarities of the inputs, i.e. every variable is represented in its true and
complement form. This does not represent a significant problem since the logic itself

Wiley STM / Editor: VLSI Digital Circuits Design,
Chapter 4 / Oklobdzija, Yano / filename: Chpt-4.doc

page 12

produces both polarities. It is also assumed that both polarities are readily available from
the registers. In an AND gate implementation, for example, a NAND output is readily
available. Thus, complementation does not require additional inverters. Instead it rather
consists of choosing the proper polarity of the signal.

A ABB

B

B

A ABB

B

B

A B

A B

A A

B

B

A A

A ABB

C

C

A B

A C B C

Fig.12. Basic logic functions in CPL: circuit diagram is followed by a logic symbol

CPL went one step further from CVSL because it de-coupled the p-transistor
latching combination used in CVSL by replacing it with two separate inverters instead. A
family of gates is implemented in this fashion including the XOR / XNOR combination
as well as multiplexer as shown in Fig. 12.

A distinguished feature of CPL circuits is that the implementation of the

multiplexer circuit is especially effective and fast. The same circuit topology is used to
implement an XOR gate resulting in equally fast and efficient realization. This feature
has much importance in digital system design given that multiplexer and XOR gates are

Wiley STM / Editor: VLSI Digital Circuits Design,
Chapter 4 / Oklobdzija, Yano / filename: Chpt-4.doc

page 13

essential building blocks which are found in the critical paths of various components. A
CPL implementation of and XOR gate and sum bit of full-adder are shown in Fig.13.

AA

S S

A A

B

B

C

C

SS
(a) (b)

B

B

Q Qb

n1 n2

n4n3

Fig.13. CPL provides an efficient implementation of XOR function: (a) XOR gate (b) Sum circuit

Using CPL was proven not only to yield efficient implementation, but also a fast
logic. In double metal 0.5µ CMOS technology of its introduction it yielded an 3.8nS
16X16b multiplier, which was very fast for that time.

However, at its introduction CPL suffered from the threshold voltage drop

problem. When passed through a series of pass-transistors, the signal voltage is degraded
by one VT (threshold voltage drop). This brings both transistors in the output inverter to
the conducting region, causing static current to flow from Vcc to GND thus, resulting in
static power dissipation. To alleviate this problem, two types of transistors were used:
logic transistors (with VT = 0 V) and inverter transistors (with VT = 0.4V and -0.4V).
Though this reduced static power dissipation and delay time, it increased the process
complexity and the sensitivity to noise. In the new version of CPL, the problem of the
"threshold drop" was alleviated by using a special type of inverter which has the ability
to restore the voltage level to its full potential. This inverter is shown in Fig.14.

OutputInput

Feedback Inverter

Output Inverter
Level Restoration

Transistor

Fig.14. CPL inverter

Wiley STM / Editor: VLSI Digital Circuits Design,
Chapter 4 / Oklobdzija, Yano / filename: Chpt-4.doc

page 14

The clever property of CPL inverter is that the level restoration transistor is
connected to a separate small Feedback Inverter. This inverter is connected to the input
of the Output Inverter, thus it is not sensitive to the load on the output. If this was not the
case, the level restoration in circuit with the loaded output would occur at a slower rate
and would be output load dependent, which is not the case here. In CPL the restoration of
the signal level is independent on the load at the output, thus resulting in faster signal
level restoration and decrease in power during the signal transition.

The concept of CPL was further extended into a design style associated with the

tool for automatic generation of the logic block named “Lean Integration” [8]. The use of
this design style has provided improvement in performance, power and area of the ASIC
and micro-processor units. Another advancement of the CPL concept termed LEAP is
described in [15].

Double Pass-transistor Logic (DPL)

Another pass-transistor logic family, developed at Hitachi Research Laboratories,
is Double Pass-transistor Logic (DPL) (see Okhubo [6]). DPL was originally developed
to overcome the "threshold drop" problems of CPL and to provide an alternative "pass-
transistor logic". In creating the switching network f, DPL uses both: n-MOS and p-MOS
transistors in parallel. This eliminates the problem of the "threshold drop" and the use of
inverters after each logic block is not necessary, thus enhancing the speed of DPL.
Elimination of inverters results in enhanced speed, however, buffering of the signal after
every 2-3 stages is necessary.

A

B

A B B A
VDD

B

A

O
O

A B

AND/
NAND

A

B

A B BA

B

A

O
O

B

A

B A B A

B

A

A B

XOR/
XNOR

Fig.15. Double Pass-Transistor Logic (DPL): circuit implementation of basic logic functions

Wiley STM / Editor: VLSI Digital Circuits Design,
Chapter 4 / Oklobdzija, Yano / filename: Chpt-4.doc

page 15

The two basic gates used in DPL are shown in Fig.15. The simplicity of DPL
family is apparent. For this logic family to be complete it is necessary to implement only
one logic function (AND/NAND) and inversion which is obtained by simply choosing an
appropriate output. An efficient implementation of XOR gate was also achieved. As in
CPL the basic circuit structure in DPL is a multiplexer which topology is equivalent to
that of an XOR gate. However, unlike in CPL those two basic building blocks (XOR and
MUX) do not necessarily have to be followed by an inverter, thus making an
implementation of a pass-transistor chain possible. When the signal is propagated through
several stages of pass-transistors, restoration of the signal is necessary which is achieved
by inserting inverters. Unlike in CPL it is not necessary for this inverter to be of a special
kind.

Hitachi has shown two very fast implementations using DPL: one a 1.5nS 32-b

ALU [6] and another 4.4nS 54X54-b parallel multiplier [9], both built in 0.25u
technology. DPL multiplier was the fastest 54-bit multiplier for quite some time.

An XOR and Sum bit of a DPL full-adder are shown in Fig. 16.

(a) (b)

B

B

A A

C

C

O

Q Qb

n1

p1 n2

p2 n1

p1 n2

p2

B

B

A A

SS
O

Fig.16. DPL Logic: (a) XOR (b) One bit full-adder: Sum circuit

Wiley STM / Editor: VLSI Digital Circuits Design,
Chapter 4 / Oklobdzija, Yano / filename: Chpt-4.doc

page 16

C C

A
A

B
B

S

S

Vcc

BufferXOR/XNOR Multiplexer

Fig. 17. DPL Full Adder. The critical path traverses two transistors only (not counting the buffer)

Extensions to CPL and DPL

An extensive consideration was given to the use of pass-transistor logic networks
in the design of high-speed digital systems, [1]-[12]. However, no systematic approach in
the synthesis of pass-transistor circuits exists, that takes into account the impact of circuit
technology and signal arrangements on circuit performance. Traditional approach to pass-
transistor circuit synthesis was based on binary decision diagrams (BDD), which uses
both NMOS and PMOS devices in circuit implementation. BDD approach does not
guarantee full swing of output voltage – it can be degraded by the threshold voltage of
NMOS or PMOS devices for some input test vectors [6]. Another commonly used design
practice was library-based design, with library cells realized as combination of simple
logic gates. Therefore, more attention should be directed to optimization of pass-
transistor logic gates, which is often overlooked.

 In this section, we present the rules for algorithmic and systematic synthesis of

complementary and dual logic functions, with emphasis on different signal arrangements.
The method is based on Karnaugh-map coverage and circuit transformations as an
approach to logic gate synthesis. An algorithmic method for synthesis of basic logic gates
in three conventional pass-transistor techniques will be treated here.

Wiley STM / Editor: VLSI Digital Circuits Design,
Chapter 4 / Oklobdzija, Yano / filename: Chpt-4.doc

page 17

0 0

0 1

0 1

0

1A

B

L 1 L 2

B

B

AND

A B

L 2 L 1

1 1

1 0

0 1

0

1A

B

L 1 L 2

1 1

1 0

0 1

0

1

A

B

L 1 L 2

B

B

NAND (OR)

A B

L 2 L 1

B

B

OR

A B

L 1 L 2

B

A A

B

A

B

A

B

AND NAND

OR OR

Fig. 17. Construction of dual logic function

A. CPL

 Logic function can be implemented in CPL following the algorithm given below:

1. Cover the Karnaugh-map with largest possible cubes (overlapping allowed)
2. Express the value of the function in each cube in terms of input signals
3. Assign one branch of transistor(s) to each of the cubes and connect all the branches

to one common node, which is the output of NMOS pass-transistor network

 Complementary function can be implemented from the same circuit structure by
applying complementarity principle, as given below. By applying duality principle, a dual
function is synthesized.

 Complementarity Principle: Using the same circuit topology, with pass signals inverted,
complementary logic function is constructed in CPL.

 Duality Principle: Using the same circuit topology, with gate signals inverted, dual
logic function is constructed. Following pairs of basic functions are dual:

 AND-OR (and vice-versa)
 NAND-NOR (and vice-versa)
 XOR and XNOR are self-dual (dual to itself)

Wiley STM / Editor: VLSI Digital Circuits Design,
Chapter 4 / Oklobdzija, Yano / filename: Chpt-4.doc

page 18

Proof of complementarity principle is trivial since the pass variables are directly

passed from inputs to the outputs, so for obtaining complementary function an inversion
of pass variables is needed.

Proof of duality principle follows from De Morgan rules and it is illustrated on the

example how OR gate can be obtained from AND gate, Fig. 17.

0 0

0 1

B
A 0 1

0

1A

B

L 1 L 2

(a)

B

B

AND

A A

B

B

OR NOR

A A

(c)

NAND

(b)

B BB B

L 2 L 1

Fig. 18. Two-input CPL logic: (a) AND function Karnaugh map, (b) AND/NAND circuit, (c) OR/NOR
circuit

The logic gate synthesis procedure is shown on two-input AND example, Fig.
18.a, b. All the input vectors of Fig. 18.a are covered with cubes L1 and L2. The value of
the function covered with cube L1 is equal to B, which becomes pass signal at the source
of transistor branch, representing L1. Branch L1 is driven with B on its gate. Therefore B
is passed when B is high. Similarly for the cube L2 pass signal is input variable A, driven
by gate signal B (A is passed when B is high). These two cubes are represented with two
NMOS transistor branches, implementing the desired function. By applying
complementarity principle on AND circuit we obtain NAND circuit, Fig. 18.b.
Furthermore, by applying duality principle on AND we synthesize two-input OR
function. NOR circuit is generated from OR (complementarity) or from NAND (duality),
Fig. 18.c.

0 1

1 0

B
A 0 1

0

1A

B

L 1 L 2

(a)

B

B

XOR

A A

XNOR

(b)

A A

L 2 L 1

Fig. 19. Synthesis of two-input CPL logic: (a) XOR function Karnaugh map, (b) XOR/XNOR circuit

Wiley STM / Editor: VLSI Digital Circuits Design,
Chapter 4 / Oklobdzija, Yano / filename: Chpt-4.doc

page 19

 Implementation of 2-input XOR/XNOR function is shown in Fig. 19.

 The synthesis of three input AND function is shown in Fig. 20. The cubes L1

and L3 are overlapped. It has a consequence that the corresponding branches are active
for the input vectors at which the cubes are overlapped. That saves the circuit area.

0 0

0 0

BC
A 00 01

0

1A

C

L 3

L 2

(a)

A

B

AND

C

(b)

11 10

0 0

1 0

L 1

NAND

C

A

B

B

A B A B

L 3L 2L 1

Fig. 20. Synthesis of three-input CPL logic: (a) AND function Karnaugh map, (b) AND/NAND circuit

Three-input OR/NOR circuit is shown in Fig. 21. Three-input XOR/XNOR circuit
in CPL is implemented as cascade of two-input XOR/XNOR modules [7].

A

B

OR

C

NOR

C

A

B

A B A B

Fig. 21. Three-input CPL logic: OR/NOR circuit

B. DPL
 Random logic function in DPL can be synthesized from Karnaugh-map as

follows:

1. Two NMOS branches can not be overlapped covering logic 1s. Similarly, two
PMOS branches can not be overlapped covering logic 0s.

2. Pass signals are expressed in terms of input signals or supply. Every input vector
has to be covered with exactly two branches.

Wiley STM / Editor: VLSI Digital Circuits Design,
Chapter 4 / Oklobdzija, Yano / filename: Chpt-4.doc

page 20

 At any time, excluding transitions, exactly two transistor branches are active
(any of the pairs NMOS/PMOS, NMOS/NMOS and PMOS/PMOS are possible), i.e. they
both provide output current.

 Complementarity Principle: Complementary logic function in DPL is generated

after the following modifications:

 Exchange PMOS and NMOS devices
 Invert all pass and gate signals

Duality Principle: Dual logic function in DPL is generated when PMOS and

NMOS devices are exchanged, and signals VDD and GND are exchanged.

In obtaining complementary function it is necessary to invert pass signals and gate

signals also, since we exchanged PMOS and NMOS devices. Proof of duality principle is
similar to that in CPL.

 The synthesis method is illustrated on the example of two-input AND function,

Fig. 22. Cube L1 of Fig. 22.a is represented with NMOS transistor, with the source
connected to GND and the gate connected to A . PMOS branch of L2 passes B, when gate
signal A is low etc. Complementary circuit (NAND), Fig. 22.b, is generated from AND,
according to complementarity principle.

 According to duality principle OR circuit is formed from AND circuit, its dual

counterpart, Fig. 23.

0 0

0 1

BA 0 1

0

1A

B

L 1 L 2

(a)

A B

B A

(b)

L

L

3

4

BA

GND GND

AND

A B

B A

BA

NAND

+VDD +VDD

L 2L 4

L 1L 3

Fig. 22. Two-input DPL logic: (a) AND function Karnaugh map, (b) AND/NAND circuit

Wiley STM / Editor: VLSI Digital Circuits Design,
Chapter 4 / Oklobdzija, Yano / filename: Chpt-4.doc

page 21

A B

BA

B A

OR

A B

B A

BA

GND GND

NOR

+VDD +VDD

Fig. 23. Two-input DPL logic: OR/NOR circuit

Different two-input XOR/XNOR circuit arrangements are shown in Fig. 24 and
Fig. 25. Mapping from Fig. 24 results in balanced load on both true and complementary
input signals. But, it is also possible to cover map as shown in Fig. 25.

This mapping strategy results in different load on input signals A and B, which

could be advantageous in case when switching probability of signals A and B is different.

Three-input functions in DPL are implemented as cascaded combinations of two-

input DPL modules.

0 1

1 0

BA 0 1

0

1A

B

L1'

L 1

(a)

B B

A A

(b)

L

L

2

2'

AA

B B

XNOR

B B

A A

AA

B B

XOR

(PMOS)

(NMOS)

(PMOS)

(NMOS)

L 2'L 1

L 2L 1'

Fig. 24. Two-input DPL logic: (a) Mapping strategy I (b) XOR/XNOR circuit I

Wiley STM / Editor: VLSI Digital Circuits Design,
Chapter 4 / Oklobdzija, Yano / filename: Chpt-4.doc

page 22

0 1

1 0

BA 0 1

0

1A

B

L 1'

L 1

(a)

A A

B B

(b)

L

L

2

2'

AA

B B

XNOR

A A

B B

AA

B B

XOR

(PMOS)

(NMOS)

(PMOS)

(NMOS)

L 2'L 1

L 2L 1'

Fig. 25. Two-input DPL logic: (a) Mapping strategy II (b) XOR/XNOR circuit II

C. DVL

Random logic function in DVL can be synthesized from Karnaugh-map according

to the algorithm given below:

1. Cover all input vectors, which produce 0 at the output, with largest possible cubes
(overlapping allowed) and represent those cubes with NMOS devices, which sources
are connected to GND

2. Repeat step 1 for input vectors, which produce 1 at the output, and represent those
cubes with PMOS devices, which sources are connected to VDD

3. Finish with mapping input vectors, not mapped in steps 1 and 2 (overlapping with
cubes from steps 1 and 2 allowed), which produce 0 or 1 at the output. Represent this
cubes with parallel NMOS (good pull-down) and PMOS (good pull-up) branches,
which sources are connected to one of the input signals

Mapping strategy and circuit implementation in DVL is shown on three-input
AND example, Fig. 26.

0 0

0 0

BC
A 00 01

0

1A

C

(a)

AND

(b)

11 10

0 0

1 0 A

L1

L 2

L3

B B B

A A

C

B

L 1 L 2 L 3

Fig. 26. Three-input DVL logic: (a) AND function Karnaugh map, (b) AND circuit

Wiley STM / Editor: VLSI Digital Circuits Design,
Chapter 4 / Oklobdzija, Yano / filename: Chpt-4.doc

page 23

From Fig. 26 we see that by overlapping cubes L1 and L2 we save the area, which
would be otherwise wasted on additional transistor in L1 or L2. That allows wider
transistors of cube L3. OR/NOR circuit, which is directly generated from AND circuit, is
shown in Fig. 27.

NOR

A B B B

A A

C

OR

A B B B

A A

C+VDD

Fig. 27. Three-input DVL logic: OR/NOR circuit

Complementarity and duality principles in DVL are the same as in DPL (both are
CMOS structures).

In this section general rules for synthesis of pass-transistor gates in three

representative conventional pass-transistor techniques were established. From those rules
an algorithmic way for generation of various circuit topologies (complementary and dual
circuits), is possible. This lays the foundation for development of computer aided design
(CAD) tools capable of generating fast and power-efficient pass-transistor logic.

CVSL Pass-Gate

Further enhancement of differential CMOS family was done by Lai and Hwang
[ref]. They modified CVSL by using pass-variables instead of the ground connection at
the opposite end of the pass-transistor block implementing the function f, while leaving
the cross-coupled p-transistor latch at the opposite end as shown in Fig.28.

Wiley STM / Editor: VLSI Digital Circuits Design,
Chapter 4 / Oklobdzija, Yano / filename: Chpt-4.doc

page 24

Q = a b c

AA

BB B B

AA

C C

QQ

Vdd

Fig.28. 3-input XOR Gate implementation in CVSL-PG

They have solved the problem of current spikes in CVSL by having the CVSL-PG
switching tree act as the pull-down (accelerating the shut down of the p-transistors). The
cross-coupled pMOS is acting as a load to regenerate the output signal levels. Therefore
the size of the pMOS transistors is not critical anymore. Those transistors can be of the
minimal size, thus unlike DCVSL, DCVSL-PG is not a ratioed logic. Further, there are
fewer transistors in DCVS-PG leading to smaller and faster circuits as compared to
DCVS. The main difference between DCVSL and DVCSL-PG is in the logic trees
implemented with nMOS pass-transistors. In DCVS-PG topology they are not always
connected to ground but are, most of the time, connected to other pass variables, even, to
the supply voltage. The switching network thus does not act as a path to ground but as a
passing network. The cross-coupled pMOS pair is only used as a regenerative load to
bring the outputs to full-swing level.

DCVSL-PG logic showed better performance than DCVSL. This was

demonstrated by an implementation of 2nS 64-bit adder in 0.5µ CMOS technology.

Swing Restored Pass-Transistor Logic (SRPL)

Toshiba Corp. developed their version of differential CMOS pass-transistor logic
that does not suffer from degraded pull down performance [Iya ref]. They named it:
Swing Restored Pass-Transistor Logic (SRPL). In SRPL the generic gate consists of a
pass-transistor logic constructed of nMOS transistors (similar to CPL) and a latch type
swing restoring circuit consisting of two cross-coupled CMOS inverters as shown in
Fig.29. The nMOS transistor logic network implements any Boolean logic function while

Wiley STM / Editor: VLSI Digital Circuits Design,
Chapter 4 / Oklobdzija, Yano / filename: Chpt-4.doc

page 25

the outputs of the pass-transistor logic are restored to full swing by the cross-coupled
combination at the circuit output. In this way SRPL solves a major problem of the CPL
logic. However, it is argued that the input variable can potentially be connected to a long
chain through several gates, thus making the total output capacitance of the circuit quite
large. Toshiba has built an experimental MAC (Multiply Accumulator) in a 0.4µ CMOS
technology achieving a 150MHz speed at 3.3V supply voltage.

F F

Complementary
Output Pass-

Transistor
Nerwork
n-MOS

Control
Variables

Pass
Variables

+Vcc

GND GND

Q2

Q1Q3

Q4

Fig.29. Generic Swing Restoring Pass-Transistor Logic (SRPL) Gate

Logic Comparison

Comparisons of full adder circuits implemented with CMOS, CPL, DPL,
DCVSPG and SRPL showed CPL to be the fastest followed by SRPL and DCVSPG
logic. However, SRPL had the best power-delay product, which amounted to 21% of that
of CMOS.

Wiley STM / Editor: VLSI Digital Circuits Design,
Chapter 4 / Oklobdzija, Yano / filename: Chpt-4.doc

page 26

References:

[1] Masaki, “Deep-Submicron CMOS Warms Up to High-Speed Logic”, IEEE Circuits
and Devices Magazine, November 1992.

[2] Krambeck, C.M. Lee, H.S. Law, “High-Speed Compact Circuits with CMOS”, IEEE
Journal of Solid-State Circuits, Vol. SC-13, No 3, June 1982.

[3] V.G. Oklobdzija, R.K. Montoye, “Design-Performance Trade-Offs in CMOS-
Domino Logic”, IEEE Journal of Solid-State Circuits, Vol. SC-21, No 2, April 1986.

[4] N.F. Goncalves, H.J. DeMan, “NORA: A Racefree Dynamic CMOS Technique for
Pipelined Logic Structures”, IEEE Journal of Solid-State Circuits, Vol. SC-18, No 3,
June 1983.

[5] L.G. Heller, W.R. Griffin, et al, “Cascode Voltage Switch Logic: A Differential
CMOS Logic Family”, in 1984 Digest of Technical Papers, IEEE International
Solid-State Circuits Conference, Vol.27, p.16-17, February 1984.

[6] L.C.M.G. Pfennings, et al, “Differential Split-Level CMOS Logic for
Subnanosecond Speeds”, IEEE Journal of Solid-State Circuits, Vol. SC-20, No 5,
October 1985.

[7] K.M. Chu, D.L. Pulfrey, "A Comparison of CMOS Circuit Techniques: Differential
Cascode Voltage Switch Logic Versus Conventional Logic", IEEE Jouirnal of Solid-
State Circuits, Vol. SC-22, No.4, p.528-532, August 1987.

[8] KM Chu and DL Pulfrey, “Design Procedures for Differential Cascode Voltage
Switch Circuits”, IEEE J.Solid State Circuits, vol sc 21, no 6, December 1986.

References (CPL, DPL, DVL Synthesis)

[9] S. Whitaker, “Pass-transistor networks optimize n-MOS logic”, Electronics,
September 1983.

[10] K. Yano, et al, “A 3.8-ns CMOS 16x16-b Multiplier Using Complementary Pass-
Transistor Logic”, IEEE Journal of Solid-State Circuits, Vol. 25, No 2, p.388-395,
April 1990.

[11] K. Yano, et al, “Lean Integration: Achieving a Quantum Leap in Performance and
Cost of Logic LSIs", Proceedings of the Custom Integrated Circuits Conference, San
Diego, California, May 1-4, 1994.

[12] K.Yano, Y.Sasaki, K.Rikino, and K.Seki, “Top-down pass-transistor logic design,”
IEEE Journal of Solid-State Circuits, vol.31, no.6, pp.792-803, June 1996.

[13] M. M.Suzuki, N.Ohkubo, T.Shinbo, T.Yamanaka, A.Shimizu, K.Sazaki, and
Y.Nakagome, “A 1.5ns CMOS 16x16 Multiplier Using Complementary Pass-
Transistor Logic,” IEEE Journal of Solid-State Circuits, vol.28, no.11, pp.599-602,
Nov. 1993.

Wiley STM / Editor: VLSI Digital Circuits Design,
Chapter 4 / Oklobdzija, Yano / filename: Chpt-4.doc

page 27

[14] N. Ohkubo, et al, “A 4.4-ns CMOS 54x54-b Multiplier Using Pass-transistor
Multiplexer”, Proceedings of the Custom Integrated Circuits Conference, San Diego,
California, May 1-4, 1994.

[15] P.Y.K.Cheung et al., “High Speed Arithmetic Design Using CPL and DPL Logic,”
Proceedings of the 23rd European Solid-State Circuits Conference, pp.360-3, Sept.
1997.

[16] V. G. Oklobdžija and B. Duchêne, “Pass-Transistor Dual Value Logic For Low-
Power CMOS,” Proceedings of the 1995 International Symposium on VLSI
Technology, Taipei, Taiwan, May 31-June 2nd, 1995.

[17] V.G.Oklobdžija and B.Duchene, “Synthesis of high-speed pass-transistor logic,”
IEEE Transactions on Circuits and Systems II: Analog and Digital Signal
Processing, vol.44, no.11, pp. 974-6, Nov.1997.

[18] D. Markovic, B. Nikolic, V.G. Oklobdzija, "General Method in Synthesis of Pass-
Transistor Circuits" 22st International IEEE Conference on Microelectronics, May,
2000, Nis, Yugoslavia.

[19] F.S. Lai, W. Hwang, “Differential Cascode Voltage Switch with the Pass-Gate
(DCVSPG) Logic Tree for High Performance CMOS Digital Systems”, Proceedings
of the 1993 International Symposium on VLSI Technology, Taipei, Taiwan, June 2-
4, 1995.

[20] Parameswar, A., H. Hara, T. Sakurai, “A Swing Restored Pass-Transistor Logic
Based Multiply and Accumulate Circuit for Multimedia Applications”, Proceedings
of the Custom Integrated Circuits Conference, San Diego, California, May 1-4,
1994.

[21] T. Fuse, et al, “0.5V SOI CMOS Pass-Gate Logic”, Digest of Technical Papers,
1996 IEEE International Solid-State Circuits Conference, San Francisco February 8,
1996.

[22] T.Kuroda and T.Sakurai, “Overview of Low-Power ULSI Circuit Techniques,”
IEICE Transactions on Electronics, E78-C, no.4, pp.334-44, April 1995. INVITED
PAPER, Special Issue on Low-Voltage Low-Power Integrated Circuits.

[23] J.H.Pasternak, A.S.Shubat, and C.A.T.Salama, “CMOS differential pass-transistor
logic design,” IEEE Journal of Solid-State Circuits, vol.SC 22, no.2, pp.216-22,
April 1987.

[24] J.H.Pasternak and C.A.Salama, “Design of Submicrometer CMOS Differential Pass-
Transistor Logic Circuits”, IEEE Journal of Solid-State Circuits, vol.26, no.9,
pp.1249-58, Sept. 1991.

[25] I.S.Abu-Khater, A.Bellaouar, and M.I.Elmashry, “Circuit techniques for CMOS low-
power high-performance multipliers,” IEEE Journal of Solid-State Circuits, vol.31,
no.10, pp.1535-46, Oct. 1996.

[26] P.Buch, A.Narayan, A.R.Newton, and A.Sangiovanni-Vincentelli, “Logic Synthesis
for Large Pass Transistor Circuits,” Proceeding of the IEEE International
Conference on Computer-Aided Design (ICCAD), pp.633-670, Nov. 1997.

http://www.ece.ucdavis.edu/acsel/Publications/Papers/99-MIEL-00-Dejan.pdf
http://www.ece.ucdavis.edu/acsel/Publications/Papers/99-MIEL-00-Dejan.pdf

Wiley STM / Editor: VLSI Digital Circuits Design,
Chapter 4 / Oklobdzija, Yano / filename: Chpt-4.doc

page 28

[27] R.Zimmermann, W.Fichtner, “Low-Power Logic Styles: CMOS Versus Pass-
Transistor Logic,” IEEE Journal of Solid-State Circuits, vol.32, no.7, pp.1079-90,
July 1997.

[28] Microprocessor Report, various issues, 1995-2004.

References:

[1] L. Gwennap, “Processor Performance Climbs Steadily”, Microprocessor Report,
p.18, January 23, 1995.

[2] Dobberpuhl, D., et al, “A 200 MHz 64 b Dual-Issue CMOS Microprocessor,” 1992
IEEE International Solid-State Circuits Conference, Digest of Technical Papers, San
Francisco, CA, USA, 19-21 Feb. 1992, pp. 106-7, 256.

[3] B. Gieske, et al, “A 600MHz Superscalar RISC Microprocessor with Out-of-Order
Execution”, 1997 ISSCC Dig. Tech. Papers, p.176-177, February 7, 1997.

[4] B. Benschneider, et al, “A 300MHz 64-b Quad-Issue CMOS RISC Microprocessor”,
IEEE Journal of Solid-State Circuits, Vol.30, No.11, November.

