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Chapter 4 

Differential and Pass-Transistor CMOS 
Digital Circuits  

Oklobdzija, Yano 

Introduction 
Computational and market demands have driven VLSI processors to double their 

performance every two to three years. The same trend has been observed in the computer 
market represented by the X’86 architecture, as shown in Fig.1. The clock frequencies 
have reached 3.8GHz [28]. This demand for higher speed has been exercising a 
significant pressure on the circuit design and the circuit design style. Keeping this rate of 
performance increase is not possible only through the advances in fabrication technology. 
Therefore the improvements in all the other aspects of the design are necessary to support 
the rate of this progress. 
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 Fig. 1. Microprocessor clock frequency increase over years (source: MDR) 
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As the technology reaches into the deep sub-micron region, the use of regular 

CMOS is coming to its limits. The problems associated with the power and speed 
required that the other types of logic be invented and the old ones re-examined. In order 
to reach the required performance goals, the use of dynamic logic in the critical paths of a 
processor is quite common, if not standard. Every high-performance processor today uses 
non-conventional CMOS circuits such as: Domino logic and Skew-Tolerant Domino, 
(also known as Opportunistic Time Borrowing) as well as pass-transistor circuits [ ]. The 
circuits in the critical part of a high-performance processor are so important that it is 
essential for the leading processor design centers today to have a very skilled circuit 
design team. The interaction between the circuit and the architecture team in those 
organizations is so close that the logic design stage is eliminated for those parts of the 
processor or confined to verification [ ]. 

 
The use of pass-transistor logic is regaining interest because it may behave better 

then the ordinary CMOS as the power-supply voltage scales down. It was not only the 
performance gain over the conventional CMOS that is of interest, but the energy-delay 
product yielding the optimal design point. The power has increasingly becoming more 
important than speed. This is an issue as the processor has been migrating into the 
consumer market, portable and hand-held devices in particular. 

Differential Logic 

The introduction of differential CMOS logic evolved from the development of 
dynamic CMOS, “Domino Logic” in particular. A significant effort was undertaken in 
the early 1980s while exploring the circuit families that are to be replacement for nMOS 
logic [ ]. This development took place within IBM and AT&T Bell Laboratories and 
resulted in several new circuit and logic configurations. 

CVS Logic 

Cascode Voltage Switch Logic (CVSL) was developed in IBM [1] as an 
improvement over the use of pseudo n-MOS. It comes in two forms: single-output and 
differential output (or double-rail). The later form of the logic is also known as DCVSL 
(Differential Cascode Voltage Switch Logic). 
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Fig. 2. Differential Cascode Voltage Switch Logic (DCVSL): (a) Static DCVLS (b) Dynamic DCVSL 

DCVSL is made of two n-type switching networks, one implementing f  and the 
other , and of two p-type transistors, connected in a cross-coupled combination to Vdd,  
used as pull-up devices (Fig.2.a,b). Depending on the state of the differential inputs, 
either node N1 or N2 is pulled down by one of the nMOS logic tree (but never both). The 
regenerative action of the pMOS latches keeps the outputs Q and 

f

Q static and assures the 
full voltage swing, Vdd or ground, of its outputs.  

 
The two logic trees are capable of processing complex functions within a single 

circuit delay. The advantage of DCVS logic is that both polarities of the output are 
represented, thus inversion operation is not necessary. This eliminates the need for the 
inverter and makes this type of logic inherently faster. The presence of both polarities of 
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the output has other advantages as well. If the circuit is operating correctly, the values of 
the output signals can only assume 0-1 or 1-0, i.e. the 0-0 or 1-1 combination can never 
occur. This gives this logic “self-checking” properties. If one of the forbidden 
combinations is detected by a circuit with self-checking properties (known as self-
checking checker), a failure is immediately signaled. Depending on the system logic, the 
system could switch to “fail” state and take the appropriate action. 

 
Another variation of CVSL is Static and Dynamic CVSL circuit. Dynamic logic is 

available in two forms: single-ended (single-output) and double-ended (where true and 
complements of the function are present). Dynamic DCVSL is shown in Fig. 2.b. 

 
One the problem of static DCVSL is the signal asymmetry which can appear 

during the transition. Given that the pMOS transistors are the only pull-up devices there 
may be a time window during which both the pMOS and the nMOS are ON. This 
situation will create a current from Vdd to ground node causing current spikes and 
additional delay. The choice of the size of the pMOS is thus very important. If the pMOS 
is made too small the transition of the signal from GND to Vdd is too slow. If on the other 
hand, the pMOS devices are made too big the transition of the output node from Vdd to 
ground is too slow. This makes static CVS to be a “ratioed” logic. In general to assure a 
good “pull-up” of the output signal the pMOS devices should be twice the size of the 
nMOS devices. There is no direct current from Vdd to ground after the transition, 
however because of the asymmetry of the circuit the power consumption of CVSL can be 
high. 
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Fig. 3. Switching asymmetry in CVSL. This asymmetry causes current spikes and increased power 
consumption. 
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CVSL versus CMOS 

The main difference between CMOS and DCVSL is in the way the switching 
function is implemented. While both CMOS and DCVSL implement the true function 
and its complement, DCVSL uses only n-type devices for both switching trees whereas 
CMOS use p-type for the  tree and n-type for f f  tree, as shown in Fig. 4. 
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Fig. 4. (a) DCVS Logic consisting of two shared nMOS transistor switching networks (b) CMOS 
consisting of two separate: nMOS and pMOS transistor switching networks. 

In terms of the area this allows CVSL to be smaller than CMOS. Since the carrier 
mobility in the pMOS transistor is half of that in the nMOS, the pMOS transistors need to 
be made twice as large. Therefore the area taken to implement the switching network 
representing the function is usually twice as large as compared to the switching 
network representing

f
f . In DCVSL those switching networks are approximately the 

same. It is also possible to share transistors between the and f f switching networks for 
further reduction of the total number of transistors, Fig.4. In addition to the area 
reduction, the use of nMOS transistors results in a reduced input capacitance thus 
contributing to the speed of the circuit. DCVSL uses both polarities of all input signals, 
thus doubling the number of wires. However, due to its differential nature, both output 
polarities are available, eliminating the need for an inverter. Inversion is achieved without 
delay penalty, by simply choosing the appropriate polarity of the output signal. This 
feature also helps to improve speed of DCVS logic as compared to CMOS. 
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In general, due to the lower input capacitance and a better intrinsic transistor 
speed CVSL is faster as compared to CMOS using the same transistor sizes. In studies 
done by IBM, CVSL has shown an overall performance improvement [1]. Other studies 
[2], show an improvement of performance but at the cost of increased power 
consumption. 

 
In terms of the number of transistors, CVSL uses two extra pMOS transistors in 

the cross-coupled combination, as compared to CMOS. However the implementation of 
both functions andf f doesn’t necessarily mean that duplication of the transistors is 
necessary given that a number of transistors are usually shared between 

andf f switching trees. The amount of such overlap is dependent on the function. Thus 
the number of transistors in CVSL is generally the same or lower as compared to CMOS. 

 
The sharing of the transistors is illustrated in the example of a 3 input XOR gate 

shown in Fig. 5. 
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Fig. 5. Example of transistor sharing in DCVS Logic: Implementation of 3-input XOR function 
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Pass-Transistor Logic 
With the technology moving into the sub-micron region, the new circuit structures 

were rapidly introduced trying to overcome the limitations of the regular CMOS. The 
driving force was an ever increasing requirement for performance and higher level of 
integration. This commanded that other types of logic be examined. An extensive 
consideration was given to the use of pass-transistors which saw its resurrection from the 
early days of VLSI. Several experimental prototypes were built to demonstrate the 
feasibility and advantages of the new circuit topologies. 

 
One of the first papers examining pass-transistor logic and formalizing pass-

transistor design style was published by Whitaker, in 1983 [Whitaker, Electronics]. The 
paper describes how the logic functions can be efficiently and optimally built using pass-
transistor logic. It shows some fundamental pass transistor building blocks which became 
very popular in VLSI design practices. A methodology for synthesis of pass-transistor 
functions was established presenting a modified Karnaugh map which employs the pass 
variables, not only logic zeroes and ones. A formal design procedure for pass transistor 
switching circuits was developed later in [Whitaker, Jo SSC].  This work was further 
extended and formalized in [Markovic, Oklobdzija, Microelectronics]. 

 
For example let us analyze a simple pass-transistor circuit shown in Fig. 6.a. We 

define the variable connected to the gate of the pass-transistor, thus controlling its output 
as the “control variable”, while the variable connected to its source (or drain) as “pass 
variable”. The two branches are OR-ed together by wiring them together, which is 
known as “wired-OR”. The pass variable can propagate to the output only if this is 
allowed by the control variable. Thus, we have at our disposal a basic circuit topology 
capable of implementing a Boolean function, and AND-OR structure. The structure that 
is shown in Fig. 6.a. implements an XOR function. We could have derived it from the 
Karnaough map shown in Fig. 6.b, by simply choosing A to be the control variable and 
then realizing that the desire output is equal to B when A is not true and not B when A is 
true. Connecting B and not B to the appropriate inputs will produce desired XOR 
function. In the same manner, we could have generated any one of the 16 possible 
functions. 
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Fig. 6. (a) XOR function implemented with pass-transistor circuit, (b) Karnaough map showing derivation 
of the XOR function. 
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We can generalize this derivation by connecting variables X and Y at the input of 
this simple network.  The number of the functions that can be realized in this manner is 
equal to the 2k where k=2N, N representing the number of variables that can be formed at 
the input. For N=2, this represents 16 functions. This is illustrated in Fig. 7.a. and b. If we 
use variable B as a control variable instead of the variable A, we will obtain the same set 
of 16 functions. Given that we are using only two transistors in this structure to 
implement 16 possible functions, this illustrates the power of pass transistor realization. 
However, while such a structure was very convenient for nMOS circuits, in CMOS the 
threshold drop across the pass transistor represents a problem. At this point we want to 
explain the synthesis of pass-transistor logic, but we will return to this problem later and 
will show some possible solutions that work for CMOS. 

 
If we extended this concept further, using two control variables A and B and fixed 

controls P0, P1, P2, P3 at the input, we can create a pretty powerful function generator as 
shown in Fig. 8. It is quite common to see this type of general function generator 
implementation in VLSI processors. The variables P0, P1, P2, P3 are come from the 
controller portion of the processor and they determine the function implemented by the 
variables A and B which are connected as control variables. This functional generator 
implements the same 16 possible functions of two variables A and B, but this is done in a 
more structured manner.  

A

A

X

Y
F

X Y F
0 0 0
0 1 A
1 0
1 1 1
0 B AB
0
1 B
1
B 0
B 1
B 0 A+B
B 1
B
B B
B
B B B

B

B

B

B

B

A

BA⊕

BA
BA +

BA
BA +

BA

BA +

BA⊕

 

(a) (b) 
 

Fig 7. (a) General topology of pass-transistor function generator (b) Karnaough map of 16 possible 
functions that can be realized. 
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Fig 8. Function generator implemented with pass-transistor logic. 

The function generator, shown in Fig. 8 is missing a pull-up portion. In nMOS, 
that is realized by simply connecting the output F to Vdd through a depletion mode nMOS 
transistor. In CMOS this requires duplication of the entire generator portion using pMOS 
transistors. It should not be difficult for the reader to figure out how. The simple grid 
layout style makes this implementation compact and efficient. 

 
At this point we may address the problem of the threshold voltage drop between 

the input and output when the pass transistor logic is used. The logic shown in Fig. 6 
represents no problem when the input is at the zero voltage level because the one applied 
to the gate will simply make the output voltage zero. The problem arises when the input 
is at the logic one level because the output can not reach one. For that purpose, let us 
examine the circuit in Fig. 9. 
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Fig 9. (a) Threshold voltage drop at the output of the pass-transistor gate (b) Voltage drop does not exceed 
Vth when there are multiple transistors in the path 
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When the input voltage is equal to Vdd the output can not reach Vdd simply 
because if both transistor terminals, source and drain, were to be at Vdd  the voltage at the 
transistor gate would not be above either of the terminals and transistor would not 
conduct. Thus, the output capacitor will be charged through the pass-transistor until its 
voltage is one transistor threshold voltage Vth bellow the gate voltage, as shown in Fig. 
9.a. One may naively think that when two or more transistors are connected in series the 
output voltage be lower for two or several transistor threshold voltages Vth. This thinking 
is not correct because source and drain in the MOS transistor are indistinguishable. The 
existing voltage drop caused by the first transistor in the path makes needed voltage 
difference for the second transistor (or third and any subsequent transistor in the chain) so 
that the output voltage will be lower for only one Vth voltage drop and equal to: Vdd- Vth. 

 
While this voltage drop did not represent serious problem in nMOS logic it does 

so in CMOS because this can bring the next stage into the region when both transistors (p 
and n) are conducting while seriously degrading the noise margin of the CMOS circuit. 
An obvious, but more complex solution is to always pair the nMOS transistor with a 
pMOS which would bring the output voltage to the required full swing as shown in Fig. 
10.a. Another solution is to always terminate the problematic node with a full-swing 
restoring inverter, as shown in Fig. 10.b. 

A=0V

In=Vdd Fmax= Vdd

A=Vdd

Vth
+

-

Cout

Vdd

Vdd

Cin

Vth
+

-

(a) (b)

+
-Vdd

ON

+Vdd

 

Fig 10. Elimination of the threshold voltage drop by: (a) pairing nMOS transistor with a pMOS (b) using a 
swing-restoring inverter 
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CPL and DPL Logic 

New CMOS logic families using pass-transistor circuits were introduced with the 
objective of improving speed and power [4,6]. Two of them, simultaneously developed 
by Hitachi: CPL [4] and DPL [6], are the most notable. The Double Pass-Transistor 
Logic, developed by Hitachi in 1993 demonstrated an 1.5nS 32-bit ALU in 0.25 µm 
CMOS technology [4] and a 4.4nS 54X54 bit multiplier [9]. New developments followed 
from IBM and from Toshiba introducing DCVSL-PG [3] and SRPL [5]. Recent studies 
have shown that the use of pass-transistor logic not only brings speed and area 
improvement, but also results in lower power.  

Complementary Pass-Transistor Logic (CPL) 

In 1990, researchers from Hitachi Research Center in Japan published the 
structure known as Complementary Pass-Transistor Logic, CPL [9]. The CPL structure 
was significant in the fact that it brought back the pass-transistor efficiency in 
implementation of logic circuits. The logic function built from the pass-transistors not 
only efficiently utilized the space on silicon, but resulted in a very fast logic. Importantly, 
this type of logic also consumed less power.  

f

Inputs

Pass Variables

Control
Variables

F F

f

 

Fig.11. Complementary Pass-Transistor Logic  structure 

The general structure of CPL is shown in Fig.11. The given function f is 
implemented from two pass transistor logic blocks implementing the function f and its 
complement f . The transistor logic is built from the pass-transistor networks taking 
advantage of pass-transistor design efficiency. Resulting logic is differential, which 
means that both the function f and its complement f  are present at the outputs, while 
requiring both polarities of the inputs, i.e. every variable is represented in its true and 
complement form. This does not represent a significant problem since the logic itself 
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produces both polarities. It is also assumed that both polarities are readily available from 
the registers. In an AND gate implementation, for example, a NAND output is readily 
available. Thus, complementation does not require additional inverters. Instead it rather 
consists of choosing the proper polarity of the signal. 
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Fig.12. Basic logic functions in CPL: circuit diagram is followed by a logic symbol 

CPL went one step further from CVSL because it de-coupled the p-transistor 
latching combination used in CVSL by replacing it with two separate inverters instead. A 
family of gates is implemented in this fashion including the XOR / XNOR combination 
as well as multiplexer as shown in Fig. 12. 

 
A distinguished feature of CPL circuits is that the implementation of the 

multiplexer circuit is especially effective and fast. The same circuit topology is used to 
implement an XOR gate resulting in equally fast and efficient realization. This feature 
has much importance in digital system design given that multiplexer and XOR gates are 
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essential building blocks which are found in the critical paths of various components. A 
CPL implementation of and XOR gate and sum bit of full-adder are shown in Fig.13. 
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Fig.13. CPL provides an efficient implementation of XOR function: (a) XOR gate (b) Sum circuit 

Using CPL was proven not only to yield efficient implementation, but also a fast 
logic. In double metal 0.5µ CMOS technology of its introduction it yielded an 3.8nS 
16X16b multiplier, which was very fast for that time.  

 
However, at its introduction CPL suffered from the threshold voltage drop 

problem. When passed through a series of pass-transistors, the signal voltage is degraded 
by one VT (threshold voltage drop). This brings both transistors in the output inverter to 
the conducting region, causing static current to flow from Vcc to GND thus, resulting in 
static power dissipation. To alleviate this problem, two types of transistors were used: 
logic transistors (with VT = 0 V) and inverter transistors (with VT = 0.4V and -0.4V). 
Though this reduced static power dissipation and delay time, it increased the process 
complexity and the sensitivity to noise. In the new version of CPL, the problem of the 
"threshold drop" was alleviated by using a special type of inverter which has the ability 
to restore the voltage level to its full potential. This inverter is shown in Fig.14. 
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Fig.14. CPL inverter 
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The clever property of CPL inverter is that the level restoration transistor is 
connected to a separate small Feedback Inverter. This inverter is connected to the input 
of the Output Inverter, thus it is not sensitive to the load on the output. If this was not the 
case, the level restoration in circuit with the loaded output would occur at a slower rate 
and would be output load dependent, which is not the case here. In CPL the restoration of 
the signal level is independent on the load at the output, thus resulting in faster signal 
level restoration and decrease in power during the signal transition. 

 
The concept of CPL was further extended into a design style associated with the 

tool for automatic generation of the logic block named “Lean Integration” [8]. The use of 
this design style has provided improvement in performance, power and area of the ASIC 
and micro-processor units. Another advancement of the CPL concept termed LEAP is 
described in [15].  

 

Double Pass-transistor Logic (DPL) 

Another pass-transistor logic family, developed at Hitachi Research Laboratories, 
is Double Pass-transistor Logic (DPL) (see Okhubo [6]). DPL was originally developed 
to overcome the "threshold drop" problems of CPL and to provide an alternative "pass-
transistor logic". In creating the switching network f, DPL uses both: n-MOS and p-MOS 
transistors in parallel. This eliminates the problem of the "threshold drop" and the use of 
inverters after each logic block is not necessary, thus enhancing the speed of DPL. 
Elimination of inverters results in enhanced speed, however, buffering of the signal after 
every 2-3 stages is necessary.  
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Fig.15. Double Pass-Transistor Logic (DPL): circuit implementation of basic logic functions 
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The two basic gates used in DPL are shown in Fig.15. The simplicity of DPL 
family is apparent. For this logic family to be complete it is necessary to implement only 
one logic function (AND/NAND) and inversion which is obtained by simply choosing an 
appropriate output. An efficient implementation of XOR gate was also achieved. As in 
CPL the basic circuit structure in DPL is a multiplexer which topology is equivalent to 
that of an XOR gate. However, unlike in CPL those two basic building blocks (XOR and 
MUX) do not necessarily have to be followed by an inverter, thus making an 
implementation of a pass-transistor chain possible. When the signal is propagated through 
several stages of pass-transistors, restoration of the signal is necessary which is achieved 
by inserting inverters. Unlike in CPL it is not necessary for this inverter to be of a special 
kind. 

 
Hitachi has shown two very fast implementations using DPL: one a 1.5nS 32-b 

ALU [6] and another 4.4nS 54X54-b parallel multiplier [9], both built in 0.25u 
technology. DPL multiplier was the fastest 54-bit multiplier for quite some time. 

 
An XOR and Sum bit of a DPL full-adder are shown in Fig. 16. 
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Fig.16. DPL Logic: (a) XOR (b) One bit full-adder: Sum circuit 
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Fig. 17. DPL Full Adder. The critical path traverses two transistors only (not counting the buffer) 

 

 

Extensions to CPL and DPL 

An extensive consideration was given to the use of pass-transistor logic networks 
in the design of high-speed digital systems, [1]-[12]. However, no systematic approach in 
the synthesis of pass-transistor circuits exists, that takes into account the impact of circuit 
technology and signal arrangements on circuit performance. Traditional approach to pass-
transistor circuit synthesis was based on binary decision diagrams (BDD), which uses 
both NMOS and PMOS devices in circuit implementation. BDD approach does not 
guarantee full swing of output voltage – it can be degraded by the threshold voltage of 
NMOS or PMOS devices for some input test vectors [6]. Another commonly used design 
practice was library-based design, with library cells realized as combination of simple 
logic gates. Therefore, more attention should be directed to optimization of pass-
transistor logic gates, which is often overlooked. 

 
   In this section, we present the rules for algorithmic and systematic synthesis of 

complementary and dual logic functions, with emphasis on different signal arrangements. 
The method is based on Karnaugh-map coverage and circuit transformations as an 
approach to logic gate synthesis. An algorithmic method for synthesis of basic logic gates 
in three conventional pass-transistor techniques will be treated here. 
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Fig. 17. Construction of dual logic function 

A.  CPL 

   Logic function can be implemented in CPL following the algorithm given below: 

1. Cover the Karnaugh-map with largest possible cubes (overlapping allowed) 
2. Express the value of the function in each cube in terms of input signals 
3. Assign one branch of transistor(s) to each of the cubes and connect all the branches 

to one common node, which is the output of NMOS pass-transistor network 

   Complementary function can be implemented from the same circuit structure by 
applying complementarity principle, as given below. By applying duality principle, a dual 
function is synthesized. 

 
   Complementarity Principle: Using the same circuit topology, with pass signals inverted, 
complementary logic function is constructed in CPL. 
 
   Duality Principle: Using the same circuit topology, with gate signals inverted, dual 
logic function is constructed. Following pairs of basic functions are dual: 
 

 AND-OR (and vice-versa) 
 NAND-NOR (and vice-versa) 
 XOR and XNOR are self-dual (dual to itself) 
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Proof of complementarity principle is trivial since the pass variables are directly 

passed from inputs to the outputs, so for obtaining complementary function an inversion 
of pass variables is needed. 

 
Proof of duality principle follows from De Morgan rules and it is illustrated on the 

example how OR gate can be obtained from AND gate, Fig. 17. 
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Fig. 18.  Two-input CPL logic: (a) AND function Karnaugh map, (b) AND/NAND circuit, (c) OR/NOR 
circuit 

The logic gate synthesis procedure is shown on two-input AND example, Fig. 
18.a, b. All the input vectors of Fig. 18.a are covered with cubes L1 and L2. The value of 
the function covered with cube L1 is equal to B, which becomes pass signal at the source 
of transistor branch, representing L1. Branch L1 is driven with B  on its gate. Therefore B 
is passed when B is high. Similarly for the cube L2 pass signal is input variable A, driven 
by gate signal B (A is passed when B is high). These two cubes are represented with two 
NMOS transistor branches, implementing the desired function. By applying 
complementarity principle on AND circuit we obtain NAND circuit, Fig. 18.b. 
Furthermore, by applying duality principle on AND we synthesize two-input OR 
function. NOR circuit is generated from OR (complementarity) or from NAND (duality), 
Fig. 18.c. 
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Fig. 19.  Synthesis of two-input CPL logic:  (a) XOR function Karnaugh map, (b) XOR/XNOR circuit 
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   Implementation of 2-input XOR/XNOR function is shown in Fig. 19. 
 
   The synthesis of three input AND function is shown in Fig. 20. The cubes L1 

and L3 are overlapped. It has a consequence that the corresponding branches are active 
for the input vectors at which the cubes are overlapped. That saves the circuit area. 
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Fig. 20.  Synthesis of three-input CPL logic:  (a) AND function Karnaugh map, (b) AND/NAND circuit 

Three-input OR/NOR circuit is shown in Fig. 21. Three-input XOR/XNOR circuit 
in CPL is implemented as cascade of two-input XOR/XNOR modules [7]. 
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Fig. 21.  Three-input CPL logic:  OR/NOR circuit 

B.  DPL 
   Random logic function in DPL can be synthesized from Karnaugh-map as 

follows: 
 

1. Two NMOS branches can not be overlapped covering logic 1s. Similarly, two 
PMOS branches can not be overlapped covering logic 0s. 

2. Pass signals are expressed in terms of input signals or supply. Every input vector 
has to be covered with exactly two branches. 
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   At any time, excluding transitions, exactly two transistor branches are active 
(any of the pairs NMOS/PMOS, NMOS/NMOS and PMOS/PMOS are possible), i.e. they 
both provide output current. 

 
   Complementarity Principle: Complementary logic function in DPL is generated 

after the following modifications: 
 
 Exchange PMOS and NMOS devices 
 Invert all pass and gate signals 

    
Duality Principle: Dual logic function in DPL is generated when PMOS and 

NMOS devices are exchanged, and signals VDD and GND are exchanged. 
 
In obtaining complementary function it is necessary to invert pass signals and gate 

signals also, since we exchanged PMOS and NMOS devices. Proof of duality principle is 
similar to that in CPL. 

 
   The synthesis method is illustrated on the example of two-input AND function, 

Fig. 22. Cube L1 of Fig. 22.a is represented with NMOS transistor, with the source 
connected to GND and the gate connected to A . PMOS branch of L2 passes B, when gate 
signal A is low etc. Complementary circuit (NAND), Fig. 22.b, is generated from AND, 
according to complementarity principle. 

 
   According to duality principle OR circuit is formed from AND circuit, its dual 

counterpart, Fig. 23. 
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Fig. 22.  Two-input DPL logic:  (a) AND function Karnaugh map, (b) AND/NAND circuit 
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Fig. 23.  Two-input DPL logic: OR/NOR circuit 

Different two-input XOR/XNOR circuit arrangements are shown in Fig. 24 and 
Fig. 25. Mapping from Fig. 24 results in balanced load on both true and complementary 
input signals. But, it is also possible to cover map as shown in Fig. 25. 

 
This mapping strategy results in different load on input signals A and B, which 

could be advantageous in case when switching probability of signals A and B is different. 
 
Three-input functions in DPL are implemented as cascaded combinations of two-

input DPL modules. 
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Fig. 24.  Two-input DPL logic:  (a) Mapping strategy I  (b) XOR/XNOR circuit I 
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Fig. 25.  Two-input DPL logic:  (a) Mapping strategy II  (b) XOR/XNOR circuit II 

C.  DVL 
    
Random logic function in DVL can be synthesized from Karnaugh-map according 

to the algorithm given below: 
 

1. Cover all input vectors, which produce 0 at the output, with largest possible cubes 
(overlapping allowed) and represent those cubes with NMOS devices, which sources 
are connected to GND 

2. Repeat step 1 for input vectors, which produce 1 at the output, and represent those 
cubes with PMOS devices, which sources are connected to VDD 

3. Finish with mapping input vectors, not mapped in steps 1 and 2 (overlapping with 
cubes from steps 1 and 2 allowed), which produce 0 or 1 at the output. Represent this 
cubes with parallel NMOS (good pull-down) and PMOS (good pull-up) branches, 
which sources are connected to one of the input signals 

Mapping strategy and circuit implementation in DVL is shown on three-input 
AND example, Fig. 26. 
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Fig. 26.  Three-input DVL logic: (a) AND function Karnaugh map, (b) AND circuit 
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From Fig. 26 we see that by overlapping cubes L1 and L2 we save the area, which 
would be otherwise wasted on additional transistor in L1 or L2. That allows wider 
transistors of cube L3. OR/NOR circuit, which is directly generated from AND circuit, is 
shown in Fig. 27. 
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A A
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C+VDD

 
 
Fig. 27.  Three-input DVL logic: OR/NOR circuit 

Complementarity and duality principles in DVL are the same as in DPL (both are 
CMOS structures). 

 
In this section general rules for synthesis of pass-transistor gates in three 

representative conventional pass-transistor techniques were established. From those rules 
an algorithmic way for generation of various circuit topologies (complementary and dual 
circuits), is possible. This lays the foundation for development of computer aided design 
(CAD) tools capable of generating fast and power-efficient pass-transistor logic. 

 

 

 

 

CVSL Pass-Gate  

Further enhancement of differential CMOS family was done by Lai and Hwang 
[ref]. They modified CVSL by using pass-variables instead of the ground connection at 
the opposite end of the pass-transistor block implementing the function f, while leaving 
the cross-coupled p-transistor latch at the opposite end as shown in Fig.28. 
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Fig.28. 3-input XOR Gate implementation in CVSL-PG 

They have solved the problem of current spikes in CVSL by having the CVSL-PG 
switching tree act as the pull-down (accelerating the shut down of the p-transistors). The 
cross-coupled pMOS is acting as a load to regenerate the output signal levels. Therefore 
the size of the pMOS transistors is not critical anymore. Those transistors can be of the 
minimal size, thus unlike DCVSL, DCVSL-PG is not a ratioed logic. Further, there are 
fewer transistors in DCVS-PG leading to smaller and faster circuits as compared to 
DCVS. The main difference between DCVSL and DVCSL-PG is in the logic trees 
implemented with nMOS pass-transistors. In DCVS-PG topology they are not always 
connected to ground but are, most of the time, connected to other pass variables, even, to 
the supply voltage. The switching network thus does not act as a path to ground but as a 
passing network. The cross-coupled pMOS pair is only used as a regenerative load to 
bring the outputs to full-swing level. 

 
DCVSL-PG logic showed better performance than DCVSL. This was 

demonstrated by an implementation of 2nS 64-bit adder in 0.5µ CMOS technology. 
 

 
 

 

Swing Restored Pass-Transistor Logic (SRPL) 

Toshiba Corp. developed their version of differential CMOS pass-transistor logic 
that does not suffer from degraded pull down performance [Iya ref]. They named it: 
Swing Restored Pass-Transistor Logic (SRPL). In SRPL the generic gate consists of a 
pass-transistor logic constructed of nMOS transistors (similar to CPL) and a latch type 
swing restoring circuit consisting of two cross-coupled CMOS inverters as shown in 
Fig.29. The nMOS transistor logic network implements any Boolean logic function while 
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the outputs of the pass-transistor logic are restored to full swing by the cross-coupled 
combination at the circuit output. In this way SRPL solves a major problem of the CPL 
logic. However, it is argued that the input variable can potentially be connected to a long 
chain through several gates, thus making the total output capacitance of the circuit quite 
large. Toshiba has built an experimental MAC (Multiply Accumulator) in a 0.4µ CMOS 
technology achieving a 150MHz speed at 3.3V supply voltage. 
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Fig.29. Generic Swing Restoring Pass-Transistor Logic (SRPL) Gate 

 

Logic Comparison 

Comparisons of full adder circuits implemented with CMOS, CPL, DPL, 
DCVSPG and SRPL showed CPL to be the fastest followed by SRPL and DCVSPG 
logic. However, SRPL had the best power-delay product, which amounted to 21% of that 
of CMOS. 
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