Pass-transistor networks
optimize n-MOS logic

Formal methods for transfer-gate logic design achieve
minimum area, delay, and power for complex circuits

by Sterling Whitaker, American Microsystems Inc., Santa Clara, Calif.

U Conventional methods of designing logic chips employ
blocks of discrete and small-scale integrated circuits—an
approach that is now crumbling under the impact of very
large-scale integration. Designers who set out to create
high-performance cost-effective visi chips must mini-
mize the power, delay, and area of mos i1cs. But tradi-
tional logic design, with its black-box representation of
Boolean functions, does not shrink them.

However, these three parameters can be minimized
by experimenting with the many combinatorial logic cir-
cuits, transfer gates, and Mos pass transistors that affect
an 1C’s power consumption, speed, and size. Systemati-
cally designed pass-transistor networks can reduce com-
plex functions to highly regular structures that operate
more quickly than conventional n-channel Mos logic, fill
only one third as much space, and consume only one
eighth as much power.

Designing pass-transistor networks has been more a
craft than a science. Early masters—Carver Mead and
Lynn Conway among them—popularized pass transis-

CONTROL

INPUT I L ouTPUT

(a}

tors in latches, flip-flops, multiplexers, and some combi-
natorial logic structures [Electronics, Oct. 20, 1981, p.
102]. The more formal design techniques presented here
extend the benefits of pass transistors to networks too
complex to be realized intuitively, and they also permit
informally designed pass networks to be verified in a
systematic way.

The basics

Figure 1 shows the pass gate and its logical function.
When control inputs are high the transistor conducts,
passing the logic level at its input to its output. When
the control input is low the transistor is off, leaving the
output in a high-impedance (or undefined) state. Design-
ers form pass-gate networks (see Fig. 1c) by joining to-
gether the outputs of pass transistors to feed the inputs
of succeeding transistors.

A high signal level at a pass transistor’s input is re-
duced by a threshold voltage at the output. This reduced
level is passed, without further degradation, through ad-
ditional pass transistors. As a result of this reduced sig-
nal, conventional buffers, not pass-gate outputs, drive
control inputs.

Consider an example of formal pass-network design:
an exclusive-NOR gate (Fig. 2). Added to an ordinary
truth table is a column that indicates, for each input

+ state, which input variables (or complements) can be
1 passed to the output to get a desired function. When

PASS-GATE TRUTH TABLE

INPUT CONTROL OUTPUT
0 0 UNDEFINED
1 0 UNDEFINED
0 1 0
1 | 1 1

(b}

CONTROL VARIABLES

PASS

VARIABLES OUTPUTS

{c)

1. Pass gaté. When an MOS transistor is operated as a pass gate, as shown in (a), the device passes the signal at its drain to its source.
As the truth table given in (b) demonstrates, the output is in a high-impedance, or undefined, state when the transistor is shut off. Networks
of pass gates make pass and contro! variables flow at right angles (c).

Reprinted with permission from Electronics - S..Whitaker, "Pass-transistor networks optimize ﬁ-MOS logic,"
Vol. 56, No. 19, pp. 144-148, September 1983. © 1983 Penton Publishing.



EXCLUSIVE NOR TRUTH TABLE

A B OUTPUT PASS FUNCTION
0 0 1
0 1 0
1 0 0
1 1 1

(a)

>
>|

B
=)

(b}

2, Straightforward logic. With the aid of a truth table (a) that in-
cludes pass functions, it is possible to modify conventional logic
design for pass transistors. The pass functions are entered in a
Karnaugh map (b) with pass variables looped together. The resulting
exclusive-NOR gate needs just two devices (c).

both A and B equal 0 the output should be 1. Either
A or B can be passed to the output. A + B is called the
pass function.

For each state of the input variables, pass functions are
then entered into corresponding cells of a conventional
Karnaugh map (Fig. 2b). To steer the pass variables to
the output, they are grouped to produce the control
functions that drive the pass-gate control inputs.The left
loop in Fig. 2b groups B under the control of A; the
other one groups B under the control of A.

Figure 2c shows the resulting pass-transistor network,
which has one pass-transistor delay and comprises two
devices. The network’s steady-state power dissipation—
consisting only of leakage currents between the substrate
and the transistors’ source and drain regions—is negligi-
ble. Figure 3 shows the other basic logic functions—AND,
NAND, OR, NOR, and exclusive-or—that can be derived
in the manner of exclusive-NOR.

Contrast this simplicity with the traditional n-Mos ver-
sion, which comprises five transistors, is plagued by pull-
down or pull-up delays, and has one node that dissipates
steady-state power. Complementary-mos gates do not
dissipate steady-state power, but they do comprise eight
transistors and have a pull-up or -down delay.

Synthesizing pass networks

Logic functions that are more complex can be ap-
proached as the simple gates are: with a truth table that
includes the pass functions and with a modified Kar-
naugh map to derive control functions. The control-func-
tion groupings in the Karnaugh map for a pass network
can be reduced with techniques that resemble minterm
reduction in classical logic design. But the reduction rules
differ in three ways from those of conventional Kar-
naugh maps.

3. Fundamentals. Like the exclusive-NOR gate of Fig. 2, the five
other basic logic functions can be implemented with the assistance
of just two transistors. The X and Y inputs in (a) take the values shown
in the table (b) to produce the logic functions.

OUTPUT

(c)

For one thing, a pass transistor’s output is not defined
when its control gate is not asserted, so a variable must
be passed in every map state for which the output has
been defined. (In a conventional map, only those states
with true outputs must be looped.) Then, too, more than
one variable may be passed in one state because the pass

A A
X J I OUTPUT
Y I l
(a)
OUTPUT X Y
0 B
1 B
8 1
B 0
B B8
{b)




P

¢+——F (A, B)

. M

4. Function generator. Each state of the input word AB connects
just one of the four pass lines, P, through P,, to the output. Any
function of A and B can therefore be implemented with the proper
choice of logic values for the pass lines.

functions in the map ensure that the passed variables
are all at the same logic level. Finally, once a “don’t
care” state has been included in a loop, it acquires a
pass function determined by the variable being looped.

The input variables must be divided between two
sets—pass variables and control variables—for modified
Karnaugh maps to be used in pass-network design. Maps
do not always make it clear whether or not such a division

is worth making, especially with more than a few vari-
ables. One thing can help: understanding the connection
between pass networks and the canonical sum-of-prod-
ucts form of Boolean equations.

All possible functions of variables can be synthesized
in a single pass-transistor network. Mead and Conway
discussed such a function generator for an arithmetic
and logic unit. Consider Fig. 4, for example. In each of
four possible states of control variables A and B, one of
pass lines P, through P, is connected to the output. To
implement the function “A exclusive-or B,” for exam-
ple, input 0110 is applied to the pass lines.

Input determines function

This circuit is useful because different functions can
be implemented just by placing the proper input on the
pass lines. In fact, the scheme can be extended to imple-
ment all the functions of N variables, which require 2V
pass lines and N2V transistors. Many random-logic de-
signs do not need this flexibility. But they do need to
implement the function with the least possible area,
power, delay—and effort.

In the network shown in Fig. 4, properly assigning a
third variable—C—or its complement, or the constants
1 or O to the pass lines achieves any particular function
of three variables. (This claim can readily be verified
with the canonical sum-of-products form for Boolean
logic functions.) Of the eight minterms that can be
formed from three variables, four at most enter any
particular function. A fifth minterm can always be re-
duced in combination with one of the others. Each pass
line of the network implements a three-term product.
(The first is ABP;.) Since every possible state of inputs

=A>B

= A<B

5. Comparator in operation. Bit by bit, an iterative array compares two digital words A and B. The comparison of the most significant bits
(left) provides an intermediate result that passes to the right and is used in comparing the next bits. Each cell performs the same operations,

and the final result is available from the least significant cell.



6. Map. For cell j of the comparator shown
in Fig. 5, output C; is mapped as a function
of the corresponding bits of A and B and of
outputs C;,; and D, from the previous cell.

09 01

The loops (color) show that A+B, passes
Cy.1, while AB; passes D,,.

00
A and B leads to the selection of

| o
o

{ )

Cin Ciﬂ

Di-o‘l

Ci” CM

Djsy Di+1 Dj+1

some pass line, the output is always
defined.

Moreover, a particular function of
N variables can always be imple-
mented with 2(N—1) control lines,

o1

[==]]
@)

Ci+1
Dj&]

Ci+1 Cier Cist

Dj41 Djsq D1

28! pass lines, and N2V™! transistors.
This, however, is a worst case. Fewer
than the maximum number of min-
terms may be present, and some can

1

be reduced in combination.

When written in what might be
called the ‘“pass canonical form,”
Boolean equations can generally be
translated straight into pass-transis-

>

Lcjﬂ ci&U cin

Dinl

Djss Dj4q Dj+1

tor networks. Pass networks, as their
structures show, directly implement

a Boolean equation of the form:

F=PF(C,...,C,)

+ ...+ PFJ(C,...,Cpn
where the F; are the control func-
tions formed with series and parallel combinations of
pass transistors, the C; are the control variables that
drive the gates of those transistors, and the P; are the
pass variables.

The F, are a complete and disjoint set: their logical
sum is 1, and the logical product of any two is 0. These
conditions guarantee that every state of the control vari-
ables selects one and only one pass variable. They are
easy to meet, for on a Karnaugh map of the C; the F;
are nonintersecting loops that cover the whole map. Of
course, when a high-impedance output state is desired,
the corresponding control function can deliberately be
left out of the network.

As the above equation shows, no pass variable enters
any control function, so an equation does not of necessity
allow more than one pass variable. Several pass vari-
ables, however, usually produce a denser and faster net-
work. A simple algorithm can be used to calculate the
maximum number of pass variables for a Boolean equa-
tion written in reduced minterm form.

Simple logic

For simple logic functions, pass networks do signifi-
cantly improve on the traditional implementation, but
performance requirements limit their size and use-
fulness. A signal passing to a network’s output travels
through several device channels, each with on-resistance
and capacitances to gate and substrate. Delay through
the network therefore increases with the square of the

number of pass transistors. Conventional logic gates
merely add delays in turn. The resistance-capacitor time

~ constant associated with the channel of a single pass

transistor is typically about 0.2 nanosecond. The delay
of a conventional logic stage is about 2 ns.

Conventional NAND oOr NOR gates can implement any
function in three levels of logic. Pass networks, however,
may require conventional buffer stages at the output to
restore logic levels and drive further stages. For a fair
comparison, one logic-gate delay should therefore be
added to the pass-network delay.

A

R

1
11

M .
T L

—

c

7. lteration. One cell of the comparator takes just eight pass transis-
tors. The layout occupies an area of 3,024 square micrometers, only
a third of the area of a conventional n-channel MOS implementation,
and the cell dissipates almost no standby power.



Ly

 NUMBER OF CELLS

A signal can pass through five pass transistors and a
conventional buffer stage in a time about equal to the
delay involved in passing through three conventional
logic stages. Those five transistors correspond to five
control variables, which can pass at least one and possibly
several pass variables. Functions of six or fewer variables
are thus generated more quickly in pass networks than
in conventional logic; more complex functions are not
always suited to them.

Like conventional NAND logic, programmable logic
arrays incur only three logic-stage delays, however many
variables may team up in the function that is imple-
mented. Unlike pass networks, which basically are wired-
OR functions, both pLAs and conventional NAND logic
independently form each minterm of a function, permit-
ting a single minterm to be used in more than one output
function. Several are often derived from one set of input
variables, so cutting the number of transistors in PLAS
and conventional NAND logic often offsets the additional
area both need for ground connections and load devices
and the larger number of transistors per function.

Pass-transistor networks are not the best solution for
all problems in combinatorial logic; their unique features
suit particular applications-—fairly simple random-logic
functions, for instance. They also implement a disabled
output’s high-impedance state naturally and thus make
great sense for bus drivers and multiplexers.

lterative arrays

Pass-transistor networks are usually the best choice
for another important class of logic functions: iterative
arrays. Iterative logic circuits, often used in magnitude
comparators and adders, form a series of intermediate
results along the way to the final output. Serial processing
is needed in all logic implementations, so pass-transistor
designs can always have lower delays than conven-
tional ones.

Consider the iterative magnitude comparator in Fig.
5. A 1-bit cell in it compares the most significant bit of
A and the most significant bit of B. Intermediate results
C and D are then passed to the next-most significant
cell, where they are used with the next bits of A and B
to complete the comparison. The process continues until
the final result is available from the least significant cell.

8. Delay comparison. The propagation de-
lay of a pass-transistor implementation of the
magnitude comparator increases with the
number of stages. For more than eight
stages, it turns out that conventional buffers
are required with pass gates.

For cell j, the output C; is 1 if A; is greater than B;
and Dy, is 0, or if Cj,; is 1. Output Dj is 1 if Dj,, is 1,
or if A, is less than B; and C;;, is 0. These conditions
make the final output, C, high if A is greater than B. D
is high if B is greater than A. If both C and D are low,
A and B are equal.

Truth tables are constructed for Cj and D; (with the
methods described earlier) and the pass functions are
entered in Karnaugh maps. The map for C; (Fig. 6) shows
how the pass variable C,;; is looped under the control
function Aj+B;;, while Dy, is looped under the function
AB,. The map for D; is completed in a similar manner.

The resulting pass-network implementation of one cell
of the magnitude comparator (Fig. 7) occupies 3,024
square micrometers—only 34% of the 8,840 mm’ conven-
tional logic designs need. Simulations of the two versions
using parameters extracted from the layout are employed
to compare circuit delays.

As mentioned previously, pass-transistor networks
form RC delay lines, and signals on them obey a diffusion
equation. The delay takes the form An’? + B, where n
is the number of cells in the comparator and A and
B are constants. Delays through the conventional logic
network take the form Cn. Constant C is larger than A,
in part because pass networks cut capacitance by cutting
the number of transistors needed to implement a func-
tion. This reduction increases the circuit’s regularity, cuts
the amount of wiring and gate capacitance, and com-
pletely eliminates depletion-load devices and their
gate capacitance.

Figure 8 compares the delay of a pass network with
that of a conventional circuit by plotting them as func-
tions of the number of bits in the comparator. For 8 or
fewer bits, pass networks are faster than conventional
ones. For more bits, they can still be faster if conventional
buffer stages are inserted when the delay from an addi-
tional pass-gate stage would exceed the delay through a
buffer followed by the pass stage.

With 8 or fewer bits, the pass-transistor network’s
power consumption is negligible. For more than 8 bits,
the conventional buffers added to the circuit contain two
power-dissipating nodes. The conventional logic design
has two power-consuming nodes in each cell, so its total
power consumption is eight times that of the pass
network. O



