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Clocking Schemes for High-Speed Digital Systems

STEPHEN H. UNGER, reLLow, 1EEE, AND CHUNG-JEN TAN, MEMBER, IEEE

Abstract—A key element (one is tempted to say the heart) of
most digital systems is the clock. Its period determines the rate at
which data are processed, and so should be made as small as
possible, consistent with reliable operation.

Based on a worst case analysis, clocking schemes for high-
performance systems are analyzed. These are 1- and 2-phase
systems using simple clocked latches, and 1-phase systems using
edge-triggered D-flip-flops. Within these categories (any of which
may be preferable in a given situation), it is shown how optimal
tradeoffs can be made by appropriately choosing the parameters
of the clocking system as a function of the technology parame-
ters. The tradeoffs involve the clock period (which of course
determines the data rate) and the tolerances that must be enforced
on the propagation delays through the logic. Clock-pulse edge
tolerances are shown to be an important factor. It is shown that,
for systems using latches, their detrimental effects on the clock
period can be converted to tighter bounds on the short-path
delays by allowing D changes to lag behind the leading edges of
the clock pulses and by using wider clock pulses or, in the case of
2-phase systems, by overlapping the clock pulses.

Index Terms—Clocking, clock pulses, delays, digital systems,
edge-triggered flip-flops, edge tolerances, latches, one-phase
clocking, skew, synchronous circuits, timing.

I. INTRODUCTION

IRTUALLY all contemporary computers and other

digital systems rely on clock pulses to control the
execution of sequential functions. A number of different
general schemes are used, along with several different types of
flip-flops or similar storage elements. Despite the deceptively
simple outward appearance of the clocking system, it is often a
source of considerable trouble in actual systems. The number
of parameters involved, particularly in 2-phase systems, is
large, and a close analysis reveals a surprising degree of
conceptual complexity.

If one is not particularly interested in maximizing perform-
ance, then a 2-phase system with nonoverlapping clocks, or a
1-phase system with edge-triggered FF’s is not difficult to
design. However, if minimizing the clock period is a prime
issue, then the problem becomes far more complex. However,
significant performance gains are possible by carefully choos-
ing the clocking parameters (period, pulse-widths, overlap),
and further gains may be achieved by using well-designed
latches.

In this study we develop sets of relations for three basic
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types of systems that make possible intelligent tradeoffs
between speed maximization (period minimization) and the
difficulty of satisfying constraints on the logic path delays. We
begin with discussions of the state devices considered, the
nature of imprecision in clock-pulse generation and distribu-
tion systems, logic block delays, and the design goals. We
then analyze the simple case of the 1-phase system using edge-
triggered FF’s. After this warm-up, we proceed to treat the 1-
phase system using latches, a considerably more complicated
case. An extension of the methodology used in that section is
then applied to the case of 2-phase systems using latches.
Some overall conclusions are then presented in the final
section.

A. State Devices and Their Parameters

The state devices (or storage elements) treated here are:

The latch [2], [6], [1} (sometimes referred to as the polarity
hold latch. This is a device with inputs C and D, and output Q
(often Q’, the complement of Q is also generated), such that,
ideally, while C = 0, Q remains constant (regardless of the
value of D), and while C = 1, Q = D, changing whenever D
changes (see Fig. 1). (For real latches, as is explained below,
there are nonzero delays in the response times, and there must
be constraints on the behavior of the inputs.) The C and D
inputs are usually referred to as the clock and data inputs,
respectively. Although it is not, in general, necessary to do so,
in the applications treated here, the system clock signals are
indeed fed to the C inputs of the latches. A variety of
implementations of latches are known, differing in such
factors as suitability for various technologies, load driving
ability, and relative values of the parameters to be discussed
subsequently. Latches with logic hazards have been used in
some systems. In order to eliminate the possibility of
malfunction due to those hazards, the complement of the C
signal is distributed independently to the latches with its edges
carefully controlled relative to the corresponding edges of the
C signals. We do not discuss such systems here, where it is
assumed that the latches are free of hazards.

The edge-triggered D-flip-flop (ETDFF) [2], {6] has the
same inputs and outputs as the latch, but Q responds to
changes in D only on one edge of the C pulse (see Fig. 2).
That is, Q can change only at the time that C changes from O to
1 (the rising edge of the C signal), and then only if necessary
to assume the same value that D has at that time. (There are
also ETDFF’s that change state on the negative-going edge of
the C signal. Furthermore, it is possible to build a double-
edge-triggered D-FF [9] that will respond on both edges of the
C pulse.)

1) Latch Parameters: The significant parameters for a latch
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Fig. 2. Behavior of ideal positive triggered ETDFF.

are listed below, with rough definitions (illustrated in Fig. 3).
These definitions are then refined to take into account
dependencies that exist among the parameters.

Cwm: Minimum clock-pulse width, the minimum width
of the clock pulse such that the latch will operate properly even
under worst case conditions, and such that widening the C
pulse further by making its leading edge occur earlier will not
affect the values of Dpg, U, or H, as defined below.

Dco: Propagation delay from the C terminal to the Q
terminal, assuming that the D signal has been set early enough
relative to the leading edge of the C pulse.

Dpy: Propagation delay from the D terminal to the Q
terminal, assuming that the C signal has been turned on early
enough relative to the D change.

U: The setup time, the minimum time between a D
change and the trailing edge of the C pulse such that, even
under worst case conditions, the Q output will be guaranteed
to change so as to become equal to the new D value, assuming
that the C pulse is sufficiently wide.

H: The hold time, the minimum time that the D signal
must be held constant after the trailing edge of the C signal so
that, even under worst case conditions, and assuming that the
most recent D change occurred no later than U prior to the
trailing edge of C, the Q output will remain stable after the end
of the clock pulse. (It is not unusual for the value of this
parameter to be negative.)

Note that Dpy, for example, may vary significantly
depending on whether the latch output is being changed from 0
to 1 or vice versa. A similar situation exists for Dcg. Where
appropriate it is useful to add subscripts R or F to these
parameters to distinguish between the rising and falling output
cases. This will not be done here. Instead, we shall confine
ourselves to using overall maximum and minimum values, as
indicated below.

The addition to the subscripts of Dpg or Dcg of an M or m
make these parameters the maximum or minimum values,
respectively. These are the extremes with respect to variations
in the parameters of the components from which the latches
are constructed, the directions of signal changes, and the
destinations (Q or Q') of the signals.

In the definition of D¢y, it is assumed that D has assumed its
proper value early enough. We can make this concept more
precise by requiring that the change in D occurs sufficiently
early so that making it appear any earlier would have no effect
on when Q changes. For any real latch it is always possible to
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Fig. 3. Latch parameters.

define such an interval. Similarly, when defining Dpy, it is
assumed that the leading edge of C appears sufficiently early
so that turning C on any earlier would not make Q change any
sooner. Again this is possible for any real latch.

Now we state an important postulate regarding propagation
delays:

Suppose that C goes on at time /¢, and that D changes,
making D different from Q, at time #,. Then we postulate that
the time fy at which Q changes is, at the latest:

tQ=max [tC+DCQM: tD+DDQM]' (1)

Although for some latches there are higher order effects,
depending on the technology, that may cause fg to be larger
when the difference between the arguments of the max is
small, the error is small enough to justify our postulate for
most practical purposes. Refining the model to take such
effects into account is left for further research.

A related assumption about latch behavior is that, provided
that the setup, hold-time, and minimum pulse-width con-
straints are observed, the propagation delay will not be
affected by the clock-pulse going off before the output changes
in response to a D change. An examination of a variety of
latch designs appears to justify this assumption.

There are other possibilities for refining our results, by
using more complex definitions of latch parameters. If we
define the actual interval between the occurrence of a D
change and the trailing edge of C as u (note that proper
operation requires that u = U), then, for many latch designs it
will be found that the hold time H is, over some range of
values of u, a decreasing function of u. There are also
possibilities for reducing the clock-pulse width below Cy,,
(within limits), usually at a cost of increasing propagation
delays and/or setup and hold times. For the sake of making the
analysis more tractable, we shall not consider these alterna-
tives, but instead shall assume that there is a fixed, consistent,
set of latch parameters, as described above.

In summary, we assume that the minimum clock-pulse
width is large enough so that further increases cannot reduce
any of the other latch parameters, that U is minimal, that H is
minimal given U, and that the postulate stated above regarding
propagation delays is valid.

2) Edge-Triggered-D-FF Parameters: The significant pa-
rameters for an ETDFF are defined below (see also Fig. 4).

U: The setup time, the minimum time that the D signal
must be stable prior to the triggering edge of the C pulse.

H: The hold time, the minimum time that the D signal
must be held constant gfter the triggering edge of the C pulse.
(The value of H may be 0 or even negative for some
ETDFF’s.)

Cwm: Minimum clock-pulse width, the minimum width
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of the clock pulse such that the ETDFF will operate properly
even under worst case conditions.

Dcg: Propagation delay from the C terminal to the Q
terminal, assuming that the D signal has been set up

sufficiently far in advance as specified by the setup time
constraint.

B. Clock-Pulse Edge Deviation

In any real-world system there are limits to the precision
with which events can be timed. Our concern here is with
synchronous systems with clock-pulses distributed to a multi-
tude of devices for the purpose of coordinating events. The
intent is to have certain clock-pulse edges occur simultane-
ously at all devices (in some cases fixed displacements may be
specified for corresponding signals at different devices). In
designing clocking schemes, it is necessary to take into
account the extent to which this goal cannot be fully attained.

The approach taken here is to assume that, at each
significant clock-pulse edge, there is a specified tolerance
range, within which we can assume the errors will be
confined. This is, essentially, a ‘‘worst case’’ approach. No
attempt will be made to exploit statistical information that
could make possible more precise estimates of errors, nor will
any effort be made to consider the effects of correlations
between errors or between delays.

The most elaborate situation that we deal with is that of 2-
phase systems using latches as storage elements. Here both the
leading and trailing edges of both clock-pulses are of interest
(although the analysis makes it clear that certain edges are
more significant than others). We define tolerances for all 4
edges, designating them as Ty,, Tr, T, and Ty, corres-
ponding to the leading and trailing edges of C1 and C2,
respectively. Assume that, for example (see Fig. 13), the
leading edge of the C1 pulse for some period would have
arrived at every latch at time ¢ (which we refer to as its
nominal arrival time) if there were no inaccuracies in timing.
Then, in the actual system, this edge is received at every latch
somewhere in the time interval, (¢! — Ty, t + Ty;).
Corresponding assumptions of course apply for the other three
edges. Our goal is to design our systems so that if this
assumption, and corresponding assumptions about the preci-
sion of the components used, are valid, then there will be no
failures due to timing, even if some malicious demon is, in
each case, permitted to choose the extreme deviations most
likely to cause trouble. Of course in 1-phase systems we need
only define two edge tolerances, 7; and T7.

We are lumping together in these edge tolerances all sources
of imprecision in clock timing and distribution. These are
principally in the circuits used to determine the clock-pulse
widths, often called ‘‘shapers,’’ and in the networks used to
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distribute the pulses to the individual latches (or other similar
devices). This latter factor is generally referred to as clock-
pulse skew. In the case of 2-phase systems, it is also necessary
to consider the circuits that determine the phase relationship
between the C1- and C2-clocks.

Relative to other sources of error, the precision with which
the clock frequency can be maintained, at least in high-
performance systems, is so great (due to the use of crystal
controlled oscillators) that we can safely neglect this factor. (If
this assumption is not justified in any particular case, it is not
difficult to introduce a tolerance factor on the clock period,
which can be superposed on our basic results.)

By representing all of the timing deviations in terms of the
edge tolerances, we simplify our analysis, making it easier to
treat, as a separate issue, the mechanisms whereby precision is
lost.

The precision with which clock-pulse widths can be
controlled is generally a function of how precisely delay
elements can be specified. The same factor usually is involved
in controlling the phase between the C1 and C2 pulses of a 2-
phase system. The ratio of 2 delays on the same chip can be
specified with much greater precision than is the case for
delays on different chips. Usually one edge of the output of a
shaper can be controlled more precisely than the other. In the
2-phase case, there are techniques for minimizing the edge
tolerances for particular pairs of edges. As is shown in the
sequel, T7; and T7 are usually more significant. They should
therefore be kept smaller, relative to the other two-edge
tolerances.

Several factors contribute to clock-pulse skew. Despite all
efforts to equalize conduction path lengths between the clock
source and each clock-pulse ‘‘consumer,’’ differences inevita-
bly occur in both off-chip wiring and in paths on chips. Since it
is usually necessary to provide amplifiers in the distribution
paths, variations in the delays encountered in such devices
along different paths produce significant amounts of skew.

Another contribution to skew resuits from the fact that pulse
edges are never vertical as shown in our idealized diagrams,
and that there is variability among individual latches, even on
the same chip, with respect to the voltage thresholds that
effectively distinguish 1’s from 0’s. Thus even if a pulse edge
should arrive simultaneously at the inputs to two different
latches, its effect might be felt at different times due to a
difference in thresholds. The result is the same as if the delays
in the paths leading to the two latches differed. Hence, such
effects are considered as part of the skew. Note that, unlike the
factor due to varying length conduction paths, this effect could
result in the delayed sensing of a positive-going edge at a latch
that is relatively quick in sensing a negative-going edge. (This
would occur if the device involved had a relatively high
threshold.)

C. Logic Block Delays

In addition to the various parameters associated with the
clocking system and with the latches or FF’s, a very important
pair of parameters is that associated with the logic circuitry:
the maximum and minimum delays in any path through the
logic block, designated as D, and D,,,, respectively. As is
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made evident in our analysis, large variations among logic
path delays are clearly detrimental. That is, for a given value
of Dy 4, it is desirable to keep the smallest path delay as close
to Dy as possible.

It is frequently the case, when choosing the clocking
parameters, that the value of D, the long-path delay is
given; it is a function of the maximum number of stages of
logic, the amount of fan-in and fan-out associated with gates in
the longest paths, and of the technology, which determines
propagation delay through individual gates. The lower bound
on the short-path delay D;,,, on the other hand, can often be
dictated, within limits, by the clock system designer, using
such means as adding delay pads to increase the delays in the
shortest paths, or adjusting the power levels of certain key
gates.

The ultimate limits on how tightly the short-path delays can
be controlled, that is, on how high a lower bound D,z on
them is feasible, depends on the tolerances with which gate
delays can be specified, as well as on how well wire lengths,
both on and off chip can be predicted at design time. It is these
factors that determine, for a given value of D;,,, what the
largest feasible value of Dy, is.

D. Goals for Design of Clocking Schemes

It is assumed here that a principal goal in the specification of
a clocking scheme is to make the period as small as possible,
which is tantamount to maximizing the speed of the system.
But of course this must be done within the confines of a design
that results in a system that can be made to operate reliably.

It is obvious that minimizing Dy, is basic to minimizing the
clock period. But, as pointed out above, it is also important to
keep the smallest path delay as large as possible. But it is by
no means easy to make the logic path delays uniform in value.
For this reason, we have developed procedures for finding the
minimum possible value of P given the maximum achievable
lower bound D; .z on the short-path delays.

II. OpTiMuM PARAMETERS FOR 1-PHASE CLOCKING WITH
ETDFF’s

For 1-phase systems using ETDFF’s, the clocking parame-
ters to be determined, (see Fig. 4) are the period P and the
clock-pulse width W. A block diagram of the systems under
consideration is shown as Fig. 5.

We develop a set of constraints, such that if all are satisfied,
and if the D signals arrive on time for the first cycle, then they
will also arrive on time for the next cycle and will remain
stable long enough to ensure that the FF’s react properly. By
induction, it follows that, for all succeeding cycles, the FF
inputs are also stable over the appropriate intervals, so that the
system will behave according to specifications.

For any clock-pulse period, proper operation requires that
the D signals become stable at least U prior to the earliest
possible occurrence of the triggering edge. (It is assumed here
that this is the positive-going edge. Precisely the same
arguments apply where the triggering edge is negative going—
or even if the FF’s trigger on both edges.) If we assume that ¢
= 0 coincides with the nominal time of the leading edge of the
current clock pulse, then the earliest possible occurrence time
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of that edge is — 7. (See Fig. 6(a).) Hence, the latest possible
arrival time, under worst case conditions, of the D signals for
the current clock pulse fp; 4, must meet the constraint

tppar=-—T,—U.

Defining the latest possible arrival time, under worst case
conditions, of the D signals for the next clock-pulse as ?p; 4rrn»
it follows that ‘‘on time arrival’’ of D for the next cycle means

@)

Since the latest possible occurrence of the leading edge of
the current clock-pulse is at 7}, it follows that the latest arrival
time of the D signals for the next cycle is

tprarns=P—-T, - U.

tprarn=Ty +Dcoy+ Dy 3

(see Fig. 6(b)).
Replacing tp; 4,n in (2) by its value from (3), we have the
required constraint to ensure that .D signals are not late

P-T,-U= TL+DCQM+DLM-

Solving for P converts it to the following more meaningful
form:

P=2T, + U+DCQM+DLM- 4)

Next it is necessary to constrain the system so as to ensure
that the earliest arrival time of a D signal for the next cycle
does not arrive so early as to violate the hold-time constraint
for the current cycle. (See Fig. 7.)

Given that the latest occurrence time of the leading edge of a
clock pulse is T}, the hold-time constraint mandates that the
earliest occurrence time of a D signal for the next cycle,

tpearn, satisfy

tpgarn> Ty + H. &)

Since the earliest occurrence of a leading edge of a clock
pulse is at — T, we can express !pga,n in terms of the FF
propagation delay and the logic delay as

tpearrn= —T1+Dcgm+ Dy

Inserting the value of fpga,n from the above equation into
(5) gives us a relation, the satisfaction of which is a necessary
and sufficient condition for preventing, under worst case
assumptions, premature changes in D signals:

- TL+DCQm+DLm> T, +H.
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Fig. 6. Ensuring that D signals do not arrive too late in ETDFF systems. (a)
Specification of latest permissible arrival time of D signal for next cycle.
(b) Arrival time {wotst case) for D signal for next cycle.
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Fig. 7. Ensuring that D signals in ETDFF systems do not arrive too early.
(a) Specification of earliest permissible arrival time of D signal for next
cycle. (b) Computation of earliest possible arrival time of D signal for next
cycle.

Simplifying and rearranging terms yields the basic con-
straint that defines D; 5, the lower bound on the short-path
delays:

DLm>DLmB=2TL+H_DCQm- (6)

In addition to constraints (4) and (6) on the period and short-
path delays, it is necessary to add a third constraint to ensure
that the minimum pulse-width specification for the FF’s is
satisfied. Since, under wotst case assumptions skew might
make the leading edge late and the trailing edge early, the
minimum width specification for the clock pulses is

W=T,+ Tr+ Cuwp. @)

The procedure for choosing optimum clocking parameters
for 1-phase systems using ETDFF’s is usually very straight-
forward. We simply set W at any convenient value satisfying
constraint (7) and set P to satisfy constraint (4) with equality.
In most cases, it will be found that the constraint on the short-
path bound given by (6) is not difficult to meet. In the unlikely
event that this is not the case, it may be necessary to insert
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delay pads at the outputs of the FF’s. The procedure for doing
this is the same as that for the l-phase case with latches,
treated in Section HI-D.

III. OpTiIMUM PARAMETERS FOR 1-PHASE CLOCKING WITH
LATCHES

Fig. 5 is a block diagram of the 1-phase systems treated
here. Clock signals with parameters noted are shown in Fig. 8.
We shall develop a set of constraints, involving the various
parameters we have discussed, such that if and only if they are
all respected, the system will operate properly in the sense that
the D inputs to all the latches will arrive on time for each clock
cycle (as specified by the setup time parameter), and will
remain stable for a sufficient interval (as specified by the hold-
time parameter).

The argument is in the form of induction on the clock
periods. It is assumed at the outset that the D signals arrivé on
time for the first clock cycle. Constraints are developed to
ensure that, given this assurtiption, the D signals will arrive on
time for the next cycle. Additional constraints are then found
to ensure that thé D signals remain stable for an adequate
interval during the first cycle. It is then obvious by induction
that the same will be true for all subsequent clock cycles.

More specifically, our initial assumption is that, under
worst case conditions (of delay values, edge tolerances, etc.),
every D signal must arrive (at a latch input terminal) no later
than U prior to the trailing edge of the clock pulse. Taking ¢ =
0 as the nominal time of occurrence of the leading edge of the
clock pulse for the current cycle (i.e., the time this edge would
arrive if the toletance on this edge T, were 0), the earliest
possible occurrence time of the trailing edge would be W —
TT-

Sintce the D signal must arrive at least U prior to this edge,
we have for the latest permissible arrival time for D, tp; 4,

@®

Assume now that the above constraint is satisfied for the first
clock cycle.

ppamr< W—=Tr—U.

A. Preventing Late Arrivals of D Signals

The latest (under worst case conditions) arrival time of D
signals for the next cycle is designated as fp;4mn. The
maximum perntitted value of ¢p; 4, is found by simply adding
P to the right side of (8)

tpparn<W—Tr—=U+P &)

(see Fig. 9(a)).

The worst case value of 7p; 4, is the latest time at which the
output of a latch could respond to a D signal, plus the
maximum delay through the logic. Designating the latest
occurrence time of a leading edge of a clock pulse as #¢;;, and
using postulate (1) for determining the latest time at which
the output of a latch could change, we obtain

tpraprn=max [tcir +Degms torar+Dpoml+ Diss.

(The discussions pertaining to the left and right parts,
respectively, of the max expression are illustrated by Fig. 9(b)
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Fig. 9. Ensuring that D> arrives sufficiently early. (a) Deadline for arrival of
D signals. (b) Bound on D arrival due to leading edge of C. (¢) Bound on
next-cycle D arrival due to arrival time of D for current cycle.

and (c).) The value of ¢¢;; is clearly T, and the value of tp; 4,
is given by (8), so replacing those variables in the above
relation gives us

tprary=max [T, +Dcop, W—=Tr—U+ Dpom] + Dy
(10)
Combining (9) with (10) produces
max [T+ Deoys W—Tr— U+ Dpou]
+ Dy =sW—-Tr—U+P.
Solving for P yields
Pzmax [T+ Tr+ U+Deoy— W, Dpoul + Dy

This expression can be decomposed into 2 constraints that,
in combination, are equivalent to it:

PzDeoy+ Dy + U+ T+ Tr— W (11

and

P=Dpor+Dyy. (12)

The constraint (12) can be intuitively justified by noting that
it represents the total time for a signal to traverse a complete
loop, under worst case conditions. If the period were any less,
then, if the worst case conditions were actually realized, a
signal following a sequence of such maximum delay paths
would fall increasingly far behind the clock pulses until it
eventually violated a setup time constraint.

Constraint (11) can also be justified intuitively. (Transpos-
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ing the W term makes this clearer.) It can be interpreted as
stating that, starting at the leading edge of a clock pulse, there
must be time, under even worst case conditions, before the
trailing edge of the next clock pulse, for a signal to get through
a latch, and the logic block in time to meet the setup time
constraint at the input to some latch.

The D signals for the next cycle will arrive on time if, and
only if, both (11) and (12) are satisfied, and if (8) is satisfied
for the current cycle.

B. Preventing Premature Arrivals of D Signals

If the D signal for the next clock cycle is generated too
soon, then the hold-time constraint for a latch might be
violated. This is where the short-path delays become impor-
tant. In order to prevent the possibility of a hald-time
violation, it is necessary that, in the worst case, a D change for
the next cycle not occur until at least A after the latest possible
occurrence of the trailing edge of the clock-pulse defining the
current cycle. With £, as the latest occurrence of a clock-
pulse trailing edge, and fpg4,,~ as the earliest possible arrival
of a D signal for the next cycle, this constraint is expressed as

tpearn>torr+ H.

(This discussion is illustrated by Fig. 10(a).) Replacing ¢, 1
by its value, W + T, we obtain

tparn> W+ Tr+ H. (13)

Letting f~x, represent the earliest possible arrival time of a
clock-pulse leading edge, and fpg4, represent the earliest
arrival time of a D signal for the current cycle, we again
utilize (1) to obtain the following:

tpearn=max [lcgr + Degms tppar+ Dpom] + Doy .
(The discussion involving the left part of the max is
illustrated in Fig. 10(b).) Replacing fcg; by its value — T, and

bringing D, ,, inside the max, yields

IpEarrn = Max [_TL+DCQm+DLma tDEArr+DDQm+DLm]'

(14)
Inserting the above value of ¢pg4,,~ in (13) yields
max [— 7.+ Deom+Dim, toear+ Dpom~+ Dyl
>W+Tr+H. (15

Now we show that, for a system that operates properly even
under worst case conditions, (15) is satisfied if, and only if,
the left part of the max in (15) exceeds the right side of the
inequality. The “‘if*” part of this assertion is obviously true.

To prove necessity (the “‘only if”” part) let us assume that
(15) is valid but that the left part of the max does not exceed
the right part of the inequality. Then it follows that the right
part of the max must satisfy the inequality, and hence must
exceed the left part of the max. In that case, (14) is reduced to

IpEArN= tpEAN + Dpom+ D - (16)
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Fig. 10. Ensuring that D does not arrive too early. (a) Earliest permissible
arrival time of D. (b) Lower bound on D arrival for next cycle due to
leading edge of C.

But from (12) it is clear that
P>Dpom+Dim.
Adding ¢pg4. to both sides yields
tpearr+ P> tpgar+ Dpom+ Dim.
From the above and from (16) we then obtain

tpearr+ P> tpparn.

But this means that, for each cycle (in the worst case), D
arrives earlier and earlier relative to the trailing edge of C.
Therefore, even if fpg4,, is comfortably above the minimum
for the first cycle, it will eventually violate the hold-time
constraint, and hence the system would not operate properly
under worst case conditions. Hence, by contradiction, we have
completed the argument that (15) is equivalent to:

—T,+Deom+Dy>W+Tr+H
or, solving for Dy,
DLm>DLmB=TL+TT+H+ W_DCQm- (17)

The above expression gives us the lower bound D, 5 on the
short-path delay. Satisfying this bound is necessary and
sufficient to ensure against the premature arrival of a D signal.

C. Consequences of the Constraints

The basic constraints derived in the previous subsections are
reproduced below.

P->—DCQM+DLM+ U+T, +Tr— W an
P=Dpor+ D (12)
D;>Dipp=T+Tr+ H+ W"DCQm. 17

To these we must add one more to ensure that, even under
worst case conditions, the clock-pulse width at any latch input
meets the minimum clock pulse width specifications of the
latches. This is:

W=Cwn+ T+ Tr. (18)

W in (11) cannot usefully be increased beyond the point
where the right side of (11) would, if equality held, violate
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(12), which of course also represents a lower bound on P.
Note that it is undesirable to increase W gratuitously, since
this would, as indicated by (17), raise the lower bound on the
short-path delays. To find the maximum useful value of W,
treat (11) and (12) as equalities and solve them simultaneously
(eliminating P) to obtain

W=U-+ TL+ TT+DCQM_DDQM' (19)

When W is less than the above value, (11), with equality,
specifies the minimum value of P. When W equals that value,
the minimum value of P is given by (12). The maximum useful
value of D, ,,p is found by substituting into (17) the maximum
useful value of W. This gives us
D;p=H+U+2(T +T7)+Dcoyy—Degm—Dpom. (20)

If the value of the lower bound on the short-path delays
given by the above relation is attainable, then the minimum P
value of (12) is attainable. If not, then, to find the minimum P
value as a function of an achievable value of D; 5, solve (17)

and (11) (as equations) simultaneously for P, eliminating W.
This results in

P=H+U+2T.+ Tr)+ Dcopr— Deom+Diss—Dimp. (21)

Since W must also satisfy constraint (18), there is a
corresponding lower bound on Dy, which is found by
substituting into (17) the right side of (18) for W to obtain

Dyp=2T,+Tr)+ H—Dcom+ Cwp. (22)

The relations developed here are the basis for the optimiza-
tion procedure of the next subsection. First, however we must
consider a possible variation of the development thus far. ' The
initial assumption in the discussion of 1-phase systems was
that the D signals must appear at latch inputs no later than U
prior to the trailing edges of the clock pulses. In what
followed, this constraint was consistently observed. But what
if we had made a stronger assumption, i.e., that the D changes
must appear even earlier, say at U + r (r > 0) prior to the
trailing edges of the clock pulses? Is it possible that there
might be some advantages to this?

The key to analyzing this question is to observe that the
proposal is exactly equivalent to assuming a larger value of the
setup time U. The effect of this can be determined by looking
at those constraints and derived relations that involve U,
namely (11), (19), (20), and (21). The value of D,z
necessary to achieve the minimum P increases with U. So
does the minimum value of P for any value of D;,; in the
range for which (21) is valid. Thus there are clear disadvan-
tages to this alternative of effectively increasing U, and no
apparent advantages to compensate for them. It follows then
that any 1-phase clocking scheme that violates any of our
constraints will, under the worst case assumption, either be
vulnerable to failure, or will be suboptimum in that either P or
D, .5 would be reducible without increasing the other.

' The necessity for considering this possibility was pointed out by V.
Pitchimani and G. Smith.
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D. When the Short-Path Bounds Cannot be Met

Now observe that neither the basic constraint (17) on Dy .5,
nor either of the derived extremes of Dy,,z given by (20) and
(22) involve D, . Thus, there is no inherent reason why the
range found for D;,,; (in terms of the afore-noted extremes)
should be much below or indeed not above D, ,,. If, despite all
efforts, including the use of delay pads in critical paths, it is
still not possible to satisfy the lower bound on the short-path
delays represented by (22), then (assuming that the relevant
latch or other parameters cannot be favorably altered so as to
remedy this situation), it is necessary to resort to more drastic
measures.

The most practical technique appears to be to introduce
uniform delay elements into a// logic paths so as to increase the
minimum path delays by an amount sufficient to get us into the
desired range. Suppose, for example that the largest value of
Dy, that can be reliably guaranteed, is less than the bound of
(22) by the amount d,. Then we could add delay pads with
minimum values d, to the outputs of all latches. The effect
would be to increase the attainable D, to the desired
minimum, and to increase D;,, by the amount corresponding
to the maximum value of delay elements with minimum
values d,. If we define 7, as the delay element tolerance ratio
dy/d,, then the addition to Dy, is T,d,. Note that P increases
by T,d, over the value obtained for it if the D,z from (22) is
used in (21). The graph of Fig. 11 illustrates how P varies
with the maximum attainable value of Dj 5. It is piece-wise
linear, with the left part corresponding to the region where
uniform pads must be added as just indicated, and with the
right part generated directly from (21). The value P, corres-
ponds to the value given by (12).

E. Procedure for Optimizing the Clocking Parameters

We are now in position to describe a procedure for finding
the minimum clock period, given Dyy; 5, the maximum lower
bound we can enforce on the short-path delays. The corres-
ponding value of W is also determined.

A complicating factor is the possibility that the lower bound
on W given by (18), might exceed what we have called the
“‘maximum useful value of W,”’ given by (19). In that event,
the W value is given by (18), and D, 5 is given by (22). Note
that, when Dy, g is less than the required value of Dy g, it is
necessary to pad the outputs of all latches with delay elements
whose minimum values make up the difference. This adds to
the period an amount T, times this minimum value.

The procedure is as follows.

IF the right side of (18) <the right side of (19)
THEN
IF DMLmBZ right side of (20)
THEN
D, 3 = right side of (20)
W « right side of (19)
P « right side of (12)
ELSE
Dymp = Drsimas
IF Dy mp=right side of (22)

887

4

Lmd

VALUE OF D g MAXIMUM
CORRESPONDING USEFUL VALUE
TO W=Cy OF D g

Fig. 11.  Pas a function of the largest achievable lower bound on short-path
delay.

THEN
P = right side of (21)
Solve (17) to determine W
ELSE
d «= right side of (22) — Du s
In all latch outputs put delay pads with minimum value d
W « right side of (18)
P < right side of (11)+ T,d
ELSE
W < right side of (18)
Dy ,p = right side of (22)
IF D,y ,np = right side of (22)
THEN
P < right side of (12)
ELSE
d = right side of (22) — Dy mn
In all latch outputs put delay pads with minimum value d
P = right side of (12) + T,d.

Other procedures based on the constraints developed here
may be useful under special circumstances.

IV. OpTiMUM PARAMETERS FOR 2-PHASE CLOCKING WITH
LATCHES

Fig. 12 is a general block diagram of the 2-phase clocked
systems treated here. Clock signals (shown in Fig. 13) go
directly to the C inputs of the latches. Facilities for scan-in and
scan-out are not included as they do not affect the basic
arguments.

The strategy to be followed is based on the assumption that
if the D inputs to all of the latches are valid in the intervals
specified by the U and H parameters, then the system will
operate as specified. A set of constraints will be derived, such
that if the D inputs to all of the L1 latches arrive early enough
for the first clock cycle, then if, and only if, all of the
constraints are satisfied, the inputs to the L2 latches will arrive
on time for the first C2 clock interval, and the D inputs to the
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Fig. 13. Parameters for 2-phase systems.
L1-latches will arrive early enough for the next Cl-clock
interval. Also, the D inputs to the L1 latches will remain valid
long enough during the first C1 interval, and the D inputs to
the L2 latches will remain valid sufficiently long during the
first C2 interval. By induction, it then follows that, for all
subsequent clock periods, the latches will all have valid inputs
during the prescribed intervals.

Throughout the following discussion it is assumed that ¢ =
0 at the nominal time (by ‘‘nominal time’’ we mean what the
time would be if the edge tolerances were 0) of the leading
edge of the C2 clock. (The actual arrival time of this edge at
any L2 latch may be anywhere between — T3; and + 7). It
follows then that the earliest arrival time of the trailing edge of
the C1 pulse is ¥ — Tir. To ensure that the L1 latch setup
time constraints are met, even under worst case conditions,
tpizan, the latest arrival time for D1 signals during the current
clock cycle, must satisfy

tpipan<V-Tir—U,. (23)

In all that follows, it is assumed that, for the first clock
period, ail D1 signal arrival times satisfy (23).

The argument that the constraints developed here are
necessary as well as sufficient is dependent on the assumption
that, in the worst case, (23) is satisfied with equality. Since
this is not actually necessary, it follows that the constraints are
not strictly necessary. However, enforcing a more stringent
constraint on arrival times of D1 signals, namely that they be
required to be earlier by some additional amount, is equivalent
to assuming that U; has increased by this same amount. The
effect of this is considered at the end of this section, where it is
shown that, as compared to the disadvantages, there is very
little to be gained by increasing U, (or U,, which is equivalent
to insisting that the D2 signals arrive at a time earlier than
required by the setup time requirements).

A. Latest Arrival Times of D2-Signals for First Clock
Interval

First we develop constraints to ensure that, if the D1 signals
arrive on time, the D2 signals will also arrive on time. (Refer
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Fig. 14. D2 arrival time. (a) Deadline for arrival of D2 signals. (b) Lower
bound on D2 arrival due to C1 leading edge. (c) Lower bound on D2
arrival due to arrival of D1 signal.

here to Fig. 14(a).) In this case, ‘‘on time’” means that in order
to respect the setup time constraint for the L2 latches, the D2
signals must arrive no later than U, prior to the trailing edge of
the C2 pulses. At the earliest, the trailing edge of a C2 pulse
might occur at W, — Toy.

So, the latest arrival time ?py; 4, Of the D2 signals must
satisfy

tporar< Wo— Tor— U (24)

Let 741, be the latest arrival time of the leading edge of a
C1 pulse. Then, recalling (1) about latch propagation delays,
the latest time when the output of an L1 latch changes (an
alternate description of p,; 4,,) is as follows (the left side of
the max is illustrated by Fig. 14(c) and the right side by part
Fig. 14(b)):

tparar=max [fpirar+Dipom, ternr +Dicoml

Replacing t¢yp; by its value V — W, + Ty, and tpi 4. by
the value given in (23) (assuming that (23) is satisfied with
equality) gives us

tpsrar=max [V—U;—Tir+ Dipom,

V—W+ T +Dicoml. (25)
Combining (24) with (25) we obtain
max [V—U;—Tir+Dipoy, V— Wi+ Ty +Dicoml
=W,—Tour—U,.
This can be expressed as two separate constraints:
V—U,—Tir+Dipgys Wo—Trr— U,
and
V—Wi+ Ty +Dicous Wo—Tor— U,
which can be rewritten, respectively, as
Wo=V+U,— U +Dipoy+ Tor—Tir (26)
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and

If (23) is satisfied, then (26) and (27) are sufficient
conditions for ensuring that even under worst case conditions,
the D2 signals arrive on time. If (23) is satisfied with equality,
then they are also sufficient for this purpose.

A. Latest Arrival Times of DI Signals During the Next
Cycle

Now consider what is required to ensure that the D1 signals
arrive on time for the next clock cycle, assuming that the D1
and D2 signals are on time for the present cycle. (Refer here to
Fig. 15(a).) The upper bound on the latest arrival time ¢p;; 4~
of a D1 signal during the next cycle is obtained from (23),
which gives the latest permissible arrival time for the first
cycle by simply adding the period P to the right side. This
gives us

pitamn=<P+V-U;—-Tr. (28)

Now consider how long it might take a signal to get through
an L1 latch, through the following L2 latch, and through the
logic to reach an L1 latch input in time for the next C1 pulse.
(See Fig. 12). In terms of the latest arrival time at an L2 input
!p21.4r and the latest possible occurrence of a C2 leading edge
tcarr, (1) gives us for the latest arrival time L0214, fOr a signal
at an L2 output

lo2earr=max [tpararr+ Dapous tearr + Dacoul.

Adding the maximum delay through the logic D, gives us
the latest arrival time, fpj; 4.~ for a signal at an L1 input
during the next cycle

prLarn=max [porar+ Dipom, oo+ Dicoml + Dy

Equation (25) gives us ?py 4., and teyy; is simply Ty,
Substituting in the above relation yields

Ipiarv=max [max [V—U,~Tr+ Dpoy,
V—=Wi+ T+ Dicoul + Dapous
Top + Dycoml + Dy
Expanding the inner max yields
Iizarn=max [V—U; =T r+ Dpoy+ Dapopr,
V—Wi+ T+ Dicoy+ Dipou,
Ty, + Dycor] + Dy (29)

There are three factors restricting the propagation of signals
thru the two latches: propagation thru the D inputs of both L1
and L2 latches, propagation from the C inputs of the L1
latches (involving the location of the C1 leading edge) through
the D inputs of L2 latches, and propagation from the C inputs
of the L2 latches (involving the location of the C2 leading
edge). These are all accounted for in the above expression.
They are illustrated in Fig. 15(b), (c¢), and (d), respectively.
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Fig. 15. Dt arrival time. (a) Deadline for D1 arrival during next cycle. (b)
Lower bound on next-cycle D1 arrival due to propagation delays through D
inputs of latches. (c) Lower bound on next cycle D1 arrival due to C1
leading edge. (d) Lower bound on D1 arrival for next cycle due to C2
leading edge.

Replacing #p1; 4,,v in (28) by the value found in (29) gives
us

max [V —U,—Tr+ Dipom+ Dirpoum,
V—Wi+ T+ Dicom+ Dipom,
Ty +Dscoul + Diys P+ V—-U, - Tyr.
Solving for P and simplifying yields
Pz=max [Dipom+ Dipgm,s
— Wi+ Dicom+ Dopoy+ Uy + Ty + Ty
Tir+ Ty — V+ Diycou+ Uyl + Dpyy. 30)

Relation (30) can be decomposed into the following three
equivalent constraints which, taken together, are equivalent to
it.

P=D\pory+ Dapors+ Dry 3D
Pz — Wi+ Dicos+Dopoy+ Ui+ Dype+ Ty + T p

or, solving for W,
W= — P+ Dicom+ Dapor+ Ui+ D+ Ty + Ty (32)

P=—-V+ DZCQM+ U+Dy+ T+ Ty . 33
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Each of the above constraints can be justified intuitively.

® Constraint (31) indicates that the period cannot be less
than the total time it would take a signal, under worst case
conditions, to propagate around a loop (i.e., thruan L1 — L2
latch pair and the logic).

e Constraint (33) (when the — V' is transposed) states that,
starting at the leading edge of a C2 pulse, there must be time,
prior to the end of the next C1 pulse, for signals to get through
L2 latches and the logic to the inputs of L1 latches prior to the
setup times for those latches, under worst case conditions of
logic delay, latch delay and edge tolerances.

e Similarly, (32) states (transposing the — P term helps
make this clearer) that a similar relation holds with respect to
starts made at the leading edge of C1 pulses and ending at the
trailing edges of C1 pulses during the next cycle.

Note that if (26) is satisfied with equality, and if (27) is
satisfied, then, it is not difficult to show, with the aid of (31),
that (32) is implied. Alternatively, satisfying both (32) with
equality and (27) ensures that (26) is satisfied.

C. Premature Changes of DI Signals

Next we ensure that changes in D1 signals do not propagate
through the L1 and L2 latches and the logic so fast that they
cause some D1 inputs to change to their values for the next
cycle prematurely, i.e., before the hold times for the current
cycle have expired. (Refer here to Fig. 16(a).) The earliest
arrival time tpg4.~ Of such ‘‘short-path’’ signals for the next
cycle must be later than H, after the latest possible occurrence
of a C1 trailing-edge; that is

Ip1garn>V+ Tir+ H,. (34)

The earliest time that a D1 signal can change as a result of
signal changes generated during the same clock period getting
around the loop is arrived at analogously to the way (29) was
produced; the same three categories of constraints must be
considered. Now, however, since we seek the minimum
delays, we use minimum values for the delays within the max
expressions, and the earliest times for the critical clock-pulse
edges.

With 7cg; as the earliest occurrence time of a C2 pulse
leading edge, and with ?pyg4,, as the earliest arrival time of a
D2 input change, postulate (1) indicates that the earliest output
from an L2 latch can occur at {g)p, given by

torp=max [tcxer + Dacoms tpaearm~+ Dapom]

Adding D, ,,, to each component of the max of the right side
of the above relation, and replacing fc,g; by its value — T
gives us Ipigarn, the earliest arrival time of a D1-change for
the next clock cycle

tp1earrn=max [ — Ty + Dacom~+Dim,

tp2earr+ Dapom+Dim].  (35)

To find #pyg4,, is the same as finding the earliest output of an
L1 latch. If we represent the earliest occurrence time of a C1
pulse leading edge by fcg., and the earliest arrival of a D1
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Fig. 16. Premature D1 changes. (a) Lower bound for occurrence time of
D1 for next cycle. (b) Lower bound on next cycle D1 arrival due to leading

edge of C2. (c) Lower bound on D1 arrival for next cycle due to leading
edge of C1.

input for the current cycle as ?p;g4,, then we have

tp2earr=max [tcier +Dicoms tpiear+Dipoml. (36)

Replacing g in the above equation by V' — W, — Ty,
and inserting the resulting expression for fpyg4, in (35), yields

tp1garnv=max [ — Ty +Dycom+ Dy, max [V-W,—Ty,
+Dicom, tpiearn+ Dipom] + Dapom+ Dim]-

Expanding the inside max in the above equation gives us

tpigarv=max [— Ty + Dircom+ Dpm,
V—W,— T+ Dicom+ Dapom+ Drm,

tp1ear + Dipom + Dapom+ Diml. 37)
(The first 2 parts of the max are illustrated in Fig. 16(b) and
(c), respectively.)

Now we show that, for a system that operates properly even
under worst case conditions, (34) is valid if, and only if, it is
valid when the value used for ¢ g4,» is that of (37) with the
third part of the max deleted. The ““if”’ part of this assertion is
obviously true.

To prove necessity (the “‘only if’’ part), let us assume the
contrary, namely that (34) is valid and that neither of the first 2
parts of the max of (37) exceeds the right side of (34).

Then, since tpipan Mmust satisfy (34), it follows that the
third part of the max must do so. Therefore, it must exceed
each of the first two parts, both of which can therefore be
deleted from (37), reducing it to

tp1EArn=tp1£ar + Dipom + Dapom+ Dim- (38)
But, from (31) it is clear that

P>DlDQm +D2DQm +DLm-
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Adding #p;ga,, to both sides gives us
tp1£arr+ P> 1p1ear+ Dipom + Dapom~+ Dim.

From the above and from (38) we have

1p1EArN<Ip1EAr + P.

But this means that, for each cycle (in the worst case), D1
arrives earlier and earlier relative to the trailing edge of CI1.
Therefore, even if fpg4, is comfortably above the minimum
for the first cycle it will eventually violate the hold-time
constraint, so that the system would not operate properly.
Hence, by contradiction, we have completed our argument.

Thus, we can replace #pg4,,n in (34) with the right side of
(37), omitting the third part of the max (and factoring out
D,,,), which gives us

max [~ Ty + Docom, V—-W,—-Ty; + Dycom+ Dapgm]
+D,>V+ T+ H,.

Solving for D, ,, produces
Dy>Dymp=min [V+H,+ Tir+ Ty~ Dacom,
Wi+H,+ T\ + Tyt~ Dicom— Drpom].

The above expression can be partitioned into two relations,
at least one of which must be satisfied.

Din>Dimp=V+H + Tir+ Ty — Dacom (39

Dym>Dymp= Wi+ Hy+ Tir+ Ty, — Dicom— Dapom. (40)

While it is conceivable that a system might exist for which
the right side of (40) is less than the right side of (39), an
examination of the 2 expressions suggests that this is very
unlikely. Hence, in most cases it is constraint (39) that should
be relied upon.

D. Premature Changes of D2 Signals

Now consider how to ensure that the D2 signals, once on,
remain stable long enough for proper operation, i.e., that the
hold-time constraints for the L2 latches are satisfied. It is
necessary to ensure that #5,.4,,~ the time of the earliest change
in a D2 signal resulting from a signal passed by the next C1
pulse satisfies the following relation where ¢, 7 is the latest
occurrence time of the trailing edge of C2.

Ipagann>toar+ Ho. (41)

The latest appearance of the trailing edge of C2, Cy; 7,
occurs at W, + T,7. (Refer now to Fig. 17(a).) Replacing
fearr Iin (41) by this value, we obtain

Ip2£4rn> Wo+ Tor+ H,. (42)

Noting that the earliest time that any D1 signal is permitted
to change as a result of a previous D1 change during the same
cycleis V + Hy + Tir[see (34)], and that the leading edge of
the next C1 pulse occurs no earlier than P + V — W, — Ty,,
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Fig. 17. Premature D2 changes. (a) Earliest permissible arrival time of D2.

(b) Lower bound on D2 arrival time for next cycle due to D1 arrival time.
(¢) Lower bound on D2 arrival for next cycle due to the leading edge of C 1
for the next cycle.

we can compute fpygq,n as follows:
tprearv=max {V+H,+ Tyr+ Dipom,
P+V-W,-T +Dicon]. (43)
Combining (42) and (43) yields
max [V+H+ Tir+Dipgm, P+V—W;~=Ti + Dicoml
>Wo+Hy+ Thr. (44)

The left and right parts of the max of (44) are illustrated in
Fig. 17(b) and (c), respectively.

Relation (44) can be expressed as the following pair of
relations, at least one of which must be satisfied:

V+H + T1T+DIDQm> Wr+ Hy+ Tsr
P+V-W,- T1L+DICQm> W,+ H, + Tsr.

These may be more conveniently expressed, respectively,
as

and

W+ W2<D1CQm+ V+P—-H,— T, - T,r. (46)

They constitute necessary and (along with the other con-
straints developed above) sufficient conditions for ensuring
that the inputs to the L2 latches will remain on for a
sufficiently long time relative to the trailing edges of the C2
pulses. Under most circumstances, it would appear that (46) is
much more likely to be satisfied than is (45).
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E. Intervals During Which Output Signals are Valid

(Since the material in this subsection is not essential to what
follows, it may be skipped at first reading.)

If outputs are taken from the logic block, and are thereafter
sent to external receivers instead of to L1 latches, then it is
clear that those signals will be stable and valid at least over the
interval during which we have ensured that the D1 signals are
valid, namely

V~-U—-Ty, V+H +T\7).

If the outputs are taken directly from L2 latches, then we
can compute the stable output interval as follows.

The unstable interval begins at the earliest time at which a
02 signal can change (i.e., the earliest time an L2 latch output
can change). This time #g,y, can be found in terms of the time
of occurrence of the earliest leading edge of a C2 pulse, which
is — T, and tpapar, the earliest time at which a D2 input can
change.

tgun=max [— o +Docom, tprearr+ Dapoml-

We have already found an expression for ¢pyga, in (36),
which we can insert in the above expression. Let us do so, also
replacing the ¢¢yg; term by its value as indicated by V' — W,
— T,;. This gives us

tsun=max [— Ty + Dacom,
max [V—W;—Ti.+Dicoms tp1earr Dipom] + Dapom].
Expanding the inner max yields
tswn=max [ — Ty + Dacgm,
V—W,—Ti.+Dicom+ Dapom,
tp1earr+ Dipom + Dapom]. 47

As was shown earlier [see (34)] the earliest change of D1
permitted for the next cycle is at time

H| +V+ Tzr.

Therefore, the earliest time we can expect D1 to change for
the current cycle, i.e., the value of fpig4. is P less than that
amount, or

toipam= — P+ Hy+ V+ Tir.
Substituting this value into (47) gives us
tsiun=max [ = Top + Dacom,
V—W,—= T +Dicom+ Dapom,
~P+H+V+Tir+Dipom+ Dapom]- (48)

The Q, signals become stable again after the latest D2
change prior to the setup time propagates to the latch outputs.
Using the value for the latest D2 change given in (24) we get
for tgaq un, the latest time that the unstable period can end

tend un=max [ Wy — Tor— Uy + Dapors Tar + Dacoml.

(49)
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At all other times, the Q, signals are guaranteed to be stable
and valid.

F. Consequences of the Constraints

The necessary and sufficient constraints derived above are
reproduced below.

W2 V+U,~ U+ Dipgy+ Tor—Tir (26)

Wi+ Wy2zV+ U+ Dicoy+ T+ Tor 27
P=Dipoy~+ Dapom+ D 31

Wiz — P+ Dcom+ Dwpoy+ Ut + Dy + Ty + Tir (32)
Pz —V+Dycou+ Ui+ D+ Tir+ Ty . (33)

At least one of the following 2 constraints on D, ,, must be
satisfied. In most cases, (39) is less stringent (its right side is
smaller) and so determines D, 5, the lower bound on D, ,.

(39)
(40)

Diw>Dypp=V+H + Tir+ Ty — Dycom
Dyy>Dpmp= Wi+ Hi+ Tir+ Ty, — Dicom— Dapom.-

At least one of the following 2 constraints must be satisfied.
In most cases, this will be (46).

W,<H;—Hy+Dipom+ V+Tir—Tor (45)

W+ W2<D1CQm+ V+P—-H,— T, —T,r. (46)

In addition to the above constraints, two more are necessary
to ensure that the clock-pulse widths satisfy the minimum
requirements of the latches themselves. These are:

WizCwim+ Ty +Tir (50)

and

W,z CWZm + T+ Tor. (51)

Our objective is to choose the clock parameters (widths,
period, and overlap) so as to maximize the speed of the system
(clearly this is achieved when the period P is minimized),
while making it as insensitive as possible to parameter
variations. That is, we would like to make the tolerances as
large as possible. We often start out with a desired value for
the maximum logic delay D;,s in a logic path (the long-path
delay) as this is largely determined by the given technology
and the desired maximum number of stages of logic. The
crucial factor determining feasibility with known tolerances
for delay per logic stage is then the minimum delay in a logic
path Dy, or short-path delay. If the required lower bound on
the short-path delay is too large compared to the long-path
delay, then the system may be difficult or impossible to realize
reliably.

We therefore define the problem as that of finding the
minimum value of P such that the lower bound on the short-
path delay (D, ) is acceptable (not too large). It is assumed
that we are given all of the latch parameters, the clock-pulse
edge tolerances, and the long-path delay Dj,.

The key constraint on Dy, is almost always (39). Hence, we
set Dy ,,p equal to the right side of that constraint and solve for
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V:

V=Dymp—H~Ti7— Top + Dycopm. (52)

Now substitute the above right side for ¥V in (33), which is
the key constraint on P, to obtain an expression for the
minimum value of P as a function of the short-path delay:

P=H+ U+ Dycoy— Drcom+ D= Dymp+ 2Ty 7+ Ty ).
(53)

This expression is valid provided that the value of P
obtained does not violate (31). Thus, to find the maximum
value of D,z beyond which no further reductions in P are
possible, we must first find the maximum value of V for which
(33) is valid (i.e., the value for which (31) is not violated). We
do this by substituting the right side of (31) for P in (33) and,
treating the resulting expression as an equality, solving for V:

V=Tir+ Tor+ Dycou+ Ui — Dipoyr— Dapors. (54)

There is clearly nothing to be gained by making the overlap
any larger than the value given in (54), since the effect would
be to increase the lower bound on the short-path delay without
reducing P beyond the absolute minimum given by (31).

Now we can compute the maximum useful value of D, 5 by
substituting into (39) the above value of V:

Dpmp=2T\7+ Ty )+ H+ U,

— Dipgm— Dapos+ Dacore— Dacom.  (55)

Now we are in position to discuss the question mentioned at
the beginning of this section as to the consequences of forcing
the D1 and/or the D2 signals to appear earlier than the
minimum bounds dictated by the setup times for the latches.
The effect of doing this is the same as if the values of the setup
times (the U;’s) were increased. Let us examine the relations
derived here to see what effects such increases would have.

First observe that U, appears in (26), (32), and (33), as well
as in (54) for the maximum useful overlap, in (55) for the
value of D; 5 corresponding to the absolute minimum bound
on P, and in (53) for the minimum value of P as a function of
the lower bound on the short-path delay. The direct effects of
increasing U are detrimental in all cases except that corres-
ponding to (26). That is, the period would have to be increased
and/or Dy, would have to be increased (various tradeoffs are
possible), both of which are bad, but the lower bound on the
width of the C2 pulse would be relaxed, a benefit, but seldom
one that is needed.

The U, term appears only in (26) and (27), and in (49) for
the end of the unstable period for the outputs of L2. In the first
two cases it tightens (by increasing) the lower bounds on the
pulse widths, which is mildly bad, and in the last case it
increases the interval during which the Q2 signals are stable,
which might conceivably be advantageous in some situation.

It therefore does not seem useful to consider requiring the D
inputs to the latches to arrive earlier than necessary, unless a
very special circumstance should make important one of the
factors discussed above. An interesting and perhaps useful
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added conclusion from the above discussion is that the setup
time for the L2 latches is of less importance with respect to
speed and tolerances than is the set-up time for the L1 latches.

G. Computing Optimum Clock Parameters

Let D, 1.5 be the largest lower bound that we can enforce ‘
on the short-path delays. To compute optimum clock parame-
ters, proceed as follows.

IF D« »g=right side of (55)
THEN
Dy 5 = right side of (55)
P < right side of (31)
V < right side of (54)
ELSE
DLmB = Dmax LmB
P < right side of (53)
Compute V from relation (39)
W, = max[right side of (26), right side of (51)]
Compute W, from (27) (use equality)
Increase W, if necessary to satisfy (50)
IF W)+ W, >right side of (46) (Not likely.)
THEN
IF W, violates (45) (It probably will.)
THEN increase P to satisfy (46)
IF D,z > right side of (40) (Not likely.)
THEN decrease D, until (40) is satisfied with equality.

The procedure given above is intended as a general guide to
the use of the constraints developed here. In particular cases
alternative procedures may be more appropriate.

V. CONCLUSIONS

As is evident from the length of the corresponding section,
the task of determining optimum clocking parameters for
systems using ETDFF’s is relatively simple. The clock-pulse
width is not critical, and the constraint on the short-path delays
is seldom stringent. The price paid for this is that the minimum
clock period is the sum, not only of the maximum delays
through the logic and the FF’s, but also of the setup time and
twice the edge tolerance. No tradeoffs are possible to reduce
this quantity.

For 1-phase systems using latches, it may be possible to
make the period as small as the sum of the maximum delays
through a latch (from the D input) and the logic. In order to do
this, the clock-pulse width must be made sufficiently wide
(usually past the point where the leading edge of the clock-
pulse precedes the appearance of the D signals). Wider clock
pulses imply increased values of D5, the lower bound on the
short-path delays. If this bound is not to become unreasonably
high, it is necessary to keep the edge tolerances small. It is also
helpful if the difference between the maximum and minimum
values of the propagation delays from the C inputs of the
latches are small.

The 2-phase system with latches is inherently more complex
in that more variables are involved. As in the previous case,
tradeoffs are possible between P and D;,p. Here the
intermediate variable is ¥, the amount of overlap between the
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C1 and C2 pulses. In very conservative designs there is a
negative overlap and D, is zero. If positive overlaps are
permitted, P can be decreased, but at the cost of making D, .5
nonzero. A continuum of tradeoffs exists to the point where P
is reduced to the sum of the maximum propagation delays
through the L1 and L2 latches (from the D inputs) and the
logic. Again it is possible to absorb the effect of edge
tolerances in terms of short-path rather than long-path prob-
lems..

An important advantage of 2-phase over 1-phase systems is
that, for every 2-phase system, simply by varying the overlap
(i.e., the phasing between the C1 and C2 clock pulses), D, 5
can be varied continuously from zero to the highest useful
value (with the minimum P of course changing in the opposite
direction). On the other hand, for 1-phase systems, the range
of variation of D, 5 possible by varying the clock-pulse width
is often much smaller, particularly at the low end. As
illustrated in the graph of Fig. 11, there may be a significant
range of values of Dy, that is attainable only by adding delay
pads at the outputs of all latches.

In 1-phase systems, if the designer is overly aggressive and
it becomes apparent during the test phase that the short-path
bound cannot be met, then it is usually necessary to add delay
pads at the latch outputs as well as to increase the clock period.
This usually means very extensive changes, affecting many
chips. Should the same situation arise in connection with a 2-
phase system, in addition to increasing the clock period, all
that need be done is to reduce the amount of overlap,
adjustments that affect only the clocking system, usually a
much simpler process affecting far fewer chips. Hence
designers of 2-phase systems can afford to be bolder in
choosing the clock period since the penalty for over-reaching
is less severe.

With only one latch in each feedback path, the lower limit
on the clock period is lower for 1-phase systems, although this
factor is somewhat attenuated by the fact that some latches in
1-phase systems will have both inputs from sources that fan
out to other latches, and outputs that fan-out to many gate
inputs. Both of these are factors that reduce speed. But in 2-
phase systems each L1 latch feeds only one other device (an
L2 latch), and each L2 latch receives its D input from a source
(an L1 latch) feeding no other device. Hence, all other things
being equal, we would expect the delays through the two
la.~hes in the feedback paths of 2-phase systems to have less
than twice the delays of the one latch in the feedback path of a
1-phase system.

An advantage of 2-phase systems over both of the other
types considered here is that they are somewhat more
compatible with the LSSD concept for system testing [1], [2].

It appears that all three types of systems have their places.
Where there is a willingness to exert great efforts to suppress
skew (e.g., by hand-tuning the delays in clock distribution
paths), and to control other related factors very precisely, the
1-phase system may be the best choice, as in the case of the
CRAY 1 machine. In other cases of high-performance ma-
chines, 2-phase clocking may be more suitable. Use of
ETDFF’s seems to have advantages for less aggressive designs.

The results presented here in such precise looking relations
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obviously depend heavily on the precision with which the
parameters of those relations can be determined. Realistic
figures must be obtained that take into account such matters as
power supply and temperature variations, as well as data
sensitive loading considerations.

The relations developed here may be useful in determining
what latches to use in certain situations and to determine how
to modify latch designs so as to improve system performance.
For example, an examination of the constraints developed in
Section III-C for 1-phase systems with latches suggests that the
minimum value of Dpp is of no importance, whereas the
minimum value of D is important in that the larger it is, the
less stringent is the constraint on short-path delays.

In the 2-phase case, minimizing (Dicopr — Dacom) is
clearly helpful. It relaxes the requirement on D, .5 imposed by
(55), which, if it can be satisfied, allows P to be set to the
minimum value given by (31). If (55) cannot be satisfied, then
P is given by (53), and will therefore vary directly with
(Dacom = Darcom).

On the other hand, neither Dicon, Dicoms Dipom, nor
D;pom seem to be of primary importance. As was pointed out
on page 893, the setup and hold-time requirements for the L1-
latches are much more important than are the corresponding
parameters for the L2 latches. It is clear that there are different
optimum requirements for L1 and L2 latches. Furthermore,
different choices may be appropriate depending upon whether
or not an effort is being made to attain the minimum period
corresponding to the maximum loop delay.

It is clear from the results developed here that minimizing
clock edge tolerances is of considerable importance in high-
performance digital systems. In 2-phase systems, a special
effort is warranted to minimize 77 and 7T>;, which appear in
key several constraints. Unfortunately, technology trends are
such as to emphasize factors that cause skew. For example, as
the dimensions of logic elements on chips shrink, the ratio of
wiring delays to gate delays grows. A high priority must
therefore be given in wiring algorithms to the clock distribu-
tion system. Off-chip wiring forming part of the clock
distribution network must be carefully controlled. In some
cases, the insertion of adjustable delays in these paths may be
warranted. It is quite likely that the continuation of the trends
that exacerbate the skew problem will soon make it worth-
while to consider systems that do not use clock pulses or that
use clock pulses only locally. Discussions of such asynchron-
ous, self-timed, or speed-independent systems are in [4] and
[8].

Logic designers and those developing computer aids for
logic design customarily pay a great deal of attention to
minimizing long-path delays. It is also important to consider
techniques for increasing short-path delays. In line with this
there is a need for circuit designers to develop techniques for
introducing precisely controlled delay elements where
needed. At present, in many technologies, logic designers are
forced to cascade inverters to produce delays. This is wasteful
in terms of both chip area and power. In general, the idea that
greater speed may result from better delay elements should be
conveyed to those developing digital technology.

Further developments along the lines developed here would
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include the use of statistical rather than worst-case analyses,
which would allow us to choose clocking parameters such that
the likelihood of a timing failure is very small, but not zero.
This usually implies shorter clocking periods. In using this
approach it is important to be able to take into account
correlations among delay values, skew etc., in various parts of
the system [5], [7].

It is also possible to speed up systems by exploiting detailed
knowledge of the logic paths. There may be, for example,
constraints on the sequencing of signals through certain
combinations of paths that allow us to consider consecutive
pairs, triples, etc., of cycles together and thereby realize that
shorter periods are feasible than would be the case if each
period were considered separately. Research along this line is
being conducted by K. Maling [3].

An earlier presentation of the work discussed here, in a
different form with different notation was issued by the
authors several years ago [10], [11]. The idea that clocked
systems could be speeded up by permitting the D-inputs to
latches to lag behing the leading edges of the clock-pulses and
by allowing the C1- and C2-clock pulses to overlap is not new.
These ideas are included in the very interesting book on digital
systems design by Langdon [2], and have been pointed out by
D. Chang of IBM’s Poughkeepsie Laboratories a number of
years ago in at least one dinternal memorandum. Other
pertinent work, in connection with pipelining, is by Kogge
[12] and Cotten [13].
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