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Abstract—This paper describes a 32-bit address generation unit
designed for 4-GHz operation in 1.2-V 130-nm technology. The
AGU utilizes a 152-ps sparse-tree adder core to achieve 20% delay
reduction, 80% lower interconnect complexity, and a low (1%)
active energy leakage component. The dual-T semidynamic
implementation of the adder core provides the performance of a
dynamic CMOS design with an average energy profile similar to
static CMOS, enabling 71% savings in average energy with a good
sub-130-nm scaling trend.

Index Terms—Address generation unit (AGU), high-perfor-
mance adders, semidynamic design, sparse-tree adder.

I. INTRODUCTION

H IGH-PERFORMANCE microprocessors use a variety of
memory management techniques to map a logical address

to a physical address space [1]. These techniques include fea-
tures such as segmentation and paging, which allow memory to
be managed efficiently and reliably. The address generation unit
(AGU) is a key component of the memory management block
and is used to compute the effective address of the location being
addressed in memory. This operation is defined as

E�ective Address

Of the five operands involved in effective address computa-
tion, two operands,Segmentand Displacement, are available
ahead of time. Therefore, their sum may be precomputed in the
previous cycle, reducing the AGU operation to a three-operand
32-bit addition.BaseandIndexaddresses are register operands
that are available at the start of the cycle andScaleis a value of
1, 2, 4, or 8 that is multiplied to theIndexaddress. A variety of
addressing modes can be implemented by choosing appropriate
values for each of the five address components [1].

Effective address computation is a performance-critical
single-cycle operation that requires a high-performance AGU.
However, the high activity of the AGU creates thermal hotspots
and sharp temperature gradients [2] in the execution core
(Fig. 1) that can severely affect circuit reliability and increase
cooling costs. The presence of multiple execution engines
in current processors [3] further aggravates the problem.
Therefore, there is a strong motivation for designing high-per-
formance energy-efficient AGUs which satisfy the single-cycle
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Fig. 1. Thermal map of a typical superscalar processor showing hot-spots over
the AGU.

performance requirement while reducing peak and average
power dissipation.

The remainder of this paper is organized as follows. Section II
describes the major blocks in the AGU. In Section III, we look at
an existing high-performance adder architecture and highlight
its limitations for use in the AGU. We present our sparse-tree
adder core design in Section IV and describe unique features of
this design that enabled an energy-efficient AGU implementa-
tion. The semidynamic design of the adder core is described in
Section V. Section VI presents the simulation results and scaling
trends of this design. Finally, we conclude the paper in Sec-
tion VII.

II. AGU A RCHITECTURE

There are three main blocks in the AGU: a programmable
3-bit Indexshifter, an array of 3 : 2 compressors and a high-per-
formance 32-bit adder (Fig. 2). In addition, a precompute block
is used to calculate the sum ofSegmentandDisplacementad-
dresses. Effective address computation occurs in two phases,
with the negative-level latches at the input and the output of the
AGU representing the cycle boundaries. The clock period is di-
vided into two phases by the positive-level latch that is incorpo-
rated into the first dynamic stage of the adder core. (A clocked
footer transistor added to the pulldown evaluation stack of a dy-
namic gate converts it to a dynamic latch).

In the first phase (clk ), the input latches are transparent.
The three inputs (Base, Scaled-Index, and the precomputed sum
of Segmentand Displacementaddresses) propagate through
the input latches and are added using a static 3 : 2 compressor.
The scaling of theIndex address is performed by a left-shift
of 0, 1, 2, or 3 bits using a programmable transmission-gate
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Fig. 2. AGU architecture.

Fig. 3. AGU timing diagram.

multiplexer-based shifter circuit. The 3 : 2 compressor is imple-
mented using a static transmission-gateXOR-based full-adder
circuit that adds three input bits, generating a sum and carry
output. Thus, the output of the compressor array is a pair of
32-bit numbers that represent the carry–save format of the
effective address. This phase of address computation includes
the latch data-to- delay, shifter delay, 3 : 2 compressor delay
and setup time at the adder core inputs and takes 98 ps in a
1.2-V 130-nm technology [4]. During this phase, the adder core
will be in the precharge state.

In the next phase, the rising edge of the clock disables the
input and output latches and puts the adder in evaluation mode.
The 32-bit adder core converts the carry–save output of the
compressor into two’s-complement format, delivering the final
effective address at the end of the clock cycle. Staggered clocks
(clk2 and clk3) are used to avoid precharge contention and
present seamless time-borrowable boundaries (Fig. 3) within
the core. These clocks are locally generated in the adder core
by delaying the main clockclk using a pair of double-inverter
buffers. A target frequency of 4 GHz leaves the designer with
152 ps for the second phase of address computation, requiring
a high-performance 6.6-GHz adder core. Next, we will explore
design choices for building a 32-bit adder core.

III. H IGH-PERFORMANCE32-BIT ADDERS

A well-known high-performance adder architecture is the
Kogge-Stone (KS) adder [5], [6]. This adder uses parallel prefix
logic that employs a logarithmic binary carry–merge tree to
generate carries for every adder bit. As shown in Fig. 4, even and
odd bitslices of the KS adder core are identical and include the
PG block followed by five stages of carry–merge (two dynamic
gates [CM2 and CM4] interspersed between three static gates

Fig. 4. Critical paths of a 32-bit Kogge–Stone adder.

[CM1, CM3, CM5]) that perform radix-2 carry–merge oper-
ation in both the static and dynamic stages. The first stage of
the adder is the Propagate–Generate (PG) block that generates
propagate( ) andgenerate( ) signals
from the adder inputs and . This block, implemented
in single-rail dynamic logic, has a worst-case evaluation stack
of 3-nMOS (including the clocked footer transistor) and is
followed by the static carry–merge block CM1 that generates
the two-way group generate ( ) and
group-propagate ( ) signals. The output of CM1
will predischarge low (since its inputs are precharged high) and
has a worst-case 2-pMOS pullup evaluation path. Thus, the KS
adder has a worst-case evaluation path of 3N-2P-2N-2P-2N-2P
to generate the carry. Finally, anXOR operation of the partial
sum with the generated carry delivers the final sum. Thus,
a 32-bit KS adder generates all 32 carries in parallel using
a full-blown carry–merge tree, resulting in a critical path of
seven gate stages with generate and propagate fanouts of 2
and 3, respectively, and a maximum interconnect that spans 16
bitslices. The high fanout, combined with the high interconnect
complexity (Fig. 5) makes the KS design an energy-inefficient
implementation. We will now propose a sparse-tree adder core
[7] that improves on this design.

IV. SPARSE-TREE ADDER ARCHITECTURE

A. Critical Sparse-Tree Circuit

Contrary to the dense carry–merge tree approach of the KS
adder (Fig. 5), we propose a sparse-tree adder that divides the
carry–merge tree into critical and noncritical sections. The pur-
pose is to speed up the critical path by moving a portion of the
carry–merge logic to a noncritical sidepath. Instead of gener-
ating the carry for each bit ( ), as in the KS
approach, the sparse-tree adder (Fig. 6) generates every fourth
carry ( and ). Consequently, the critical path
reduces to a pruned-down carry–merge tree that consists of a
PG generator followed by five stages of carry–merge logic, re-
sulting in a worst-case evaluation path of 3N-2P-2N-2P-2N-2P
(same as KS). Note that the carry–merge tree has been pruned
down to the maximum extent possible while keeping the total
number of logic stages the same as in a KS tree (five stages),
resulting ingenerateandpropagatefanouts of 1 and 2, respec-
tively. Thus, the sparse-tree approach leads to 33%/50% re-
duction in PG fanouts per stage and a 25% reduction in max-
imum inter-stage interconnect length (spans 12 bits versus 16
bits in the KS design). Further, the 80% reduction in wiring
complexity permits the use of wider/shielded wires on the few
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Fig. 5. 32-bit KS adder. High gate density and wiring complexity.

Fig. 6. Critical sparse carry–merge tree.

performance-critical inter-stage group generate/propagate sig-
nals. Thus, we have sped up the critical path of the adder by
retaining the same number of gate stages as the KS architec-
ture with reduced fanouts/stage and reduced interconnectRC
between stages.

Sparse trees have been used to design silicon-on-insulator
(SOI)-optimal adder architectures using taller transistor stacks
to reduce the logic depth without increasing stage fanouts [8].
However, this being a bulk CMOS design, the stack height was
limited to 2P in the static stages to minimize the stack penalty,
due to body effect in series-connected devices. Different con-
figurations of the sparse tree are possible by trading off gate
fanouts, interconnect complexity, and number of logic stages.
For instance, the Ladner–Fischer adder [9] reduces interconnect
complexity at the cost of exponentially increasing fanouts of 1,
2, 4, 8, and 16 in the critical sections of the carry-chain. In our
proposed design, we opt for an irregular sparse tree where the
fanout on two carry–merge gates ( in and in

) is increased while keeping fanouts on the remaining 121
generate/propagate gates to 1 and 2, respectively. This allows
us to achieve the same logic depth of a KS adder and simultane-
ously retain the low-power advantages of a sparse-tree design.

Fig. 7. Non-critical 4-bit conditional sum-generator.

B. Noncritical Conditional Sum Generator

The noncritical section of the adder consists of a 4-bit condi-
tional sum generator that generates two sets of sums, assuming
an input carry of 0 and 1, respectively (Fig. 7). The noncriticality
of the sum generator permits the use of the ripple carry–merge
scheme to generate the conditional carries. Thus, as shown in
Fig. 7, the carryin at the first level of each conditional carry rail
is tied off to 0 and 1, respectively, generating two rails of con-
ditional carries. AnXOR of the partial sum with the conditional
carries generates the conditional sums.
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Fig. 8. Optimizing conditional-carry0 rail.

Fig. 9. Optimizing conditional-carry1 rail.

The critical and noncritical sections converge at the 2 : 1
multiplexer where the 1-in-4 carries generated by the sparse
tree choose the appropriate conditional sum to deliver the final
sum. Thus energy-inefficient parallel carry–lookahead logic
removed from the main carry–merge tree is implemented in a
sidepath using the energy-efficient ripple-carry design, without
negatively impacting performance. Such an approach results in
smaller area, reduced energy consumption and lower leakage.
In the next section, we will further optimize the conditional
sum generator to increase its noncriticality and convert the
slack thereby obtained into a savings in energy.

C. Optimized 4-bit Conditional Sum Generator

The conditional carry rail corresponding to is gener-
ated by tying off the input carry to the first-level carry–merge
gate ( ) to 0. Thus, the conditional carry

for bit is logically equivalent to for that bit, re-
ducing this gate to an inverter (Fig. 8). Similarly, the first-level
carry–merge gate for the conditional-carry rail corresponding to

reduces to aNOR function of the propagate and gen-
erate signals for that bit (Fig. 9). Since and are gener-
ated from the same inputs and , there exists a correlation
between these signals that can be exploited to further reduce
this NOR function to an inverter ( ). This op-
timization eliminates the first stage of carry–merge logic in the
conditional-sum generators and pushes the inverters required to
generate CC_0#[0] and CC_1#[0] to the next level, reducing the
number of logic stages in the conditional-sum generators from
five stages (Fig. 7) to four stages (Fig. 10). In the next section,
we will show how the additional slack obtained as a result of
this optimization may be used to reduce power consumption.

Fig. 10. Optimized 4-bit conditional-sum generator.

Fig. 11. Critical and noncritical paths in sparse-tree adder.

V. SEMIDYNAMIC DESIGN

The performance criticality of the AGU demands a dynamic
adder implementation. Partitioning the carry–merge tree into
critical and noncritical sections enables an energy-efficient im-
plementation by leveraging dynamic, static, and dual-tech-
niques. Fig. 11 shows the critical and noncritical paths in the
adder core. The critical path, implemented in single-rail dy-
namic logic begins with the PG block generating theand
signals from the inputs and . This is followed by the
sparse tree implemented in five stages (CM1–CM5) with the
final 1-in-4 carry ( ) selecting between the two conditional
sums (Sum31_0 and Sum31_1) using a 2 : 1 transmission-gate
multiplexer. Thus, we have six stages (PG, CM1–CM5) in the
critical path in contrast to the five stages (PG, CC0, CC1,XOR,
and inverter) in the noncritical path.

To meet the performance requirement of 152 ps, the critical
path is implemented in single-rail dynamic logic. Compared to
other dual-rail domino implementations [10], this provides
50 reduction in transistor count and interconnect complexity
resulting in reduced leakage power consumption and higher per-
formance. The critical sparse-tree path includes the PG block
implemented in dynamic logic and controlled by the main clock
clk, followed by the carry–merge logic gates. These include the
three static gates (CM1, CM3, CM5) interspersed with the dy-
namic carry–merge gates CM2 and CM4, which are controlled
by staggered clocksclk2 andclk3, respectively. We exploit the
noncriticality of the sum generator to reduce average power con-
sumption by implementing it completely in static CMOS logic.
The objective is to leverage the low switching activity of static
gates to reduce overall activity in the AGU, thereby lowering the
average power consumption. This helps to alleviate the hotspots
shown in Fig. 1.

Note that the inputs ( , , and ) to the static sum
generator are dynamic signals that go high during precharge.



MATHEW et al.: ADDRESS GENERATION UNIT WITH SPARSE-TREE ADDER CORE 693

Fig. 12. Stage 1 of sum generator: Set-domino latch.

Fig. 13. Interfacing static and domino signals.

To prevent this precharge activity from propagating through the
sum generators when the clock goes low, the first gate in the
sum generator is converted to a set-domino latch (Fig. 12) by
the addition of the clocked footer nMOS device to the static
carry–merge gate. This transistor cuts off the discharge path for
the output during the precharge phase. A full keeper is added
to the output node to hold state during this phase. Thus, we
use a static carry–merge latch to hold state during the precharge
phase, thereby reducing switching activity in the static blocks,
resulting in a semidynamic design that reduces average power
consumption.

A. Domino-Static Interface

Potential false evaluations and race conditions that may
occur at a static-domino interface are avoided by positioning
this boundary at a transmission-gate multiplexer. Fig. 13 shows
the state of the final carry–merge gates (CM4 and CM5) and the
static-domino interface during both phases of the clock. Note
that the 1-in-4 carry ( ) is a predischarged dynamic
signal and the two conditional sums ( and ) are
static signals from the conditional sum generator. These signals
meet at the transmission gate multiplexer.

During the precharge phase ( ), the output of CM4
will be precharged high, which turnsON the pulldown stack of
CM5. Therefore, during the precharge phase, .
This turnsON the lower transmission gate and sets the output
sum ( ) to be equal to . During evaluation (
), either remains low or goes high in response to

switching activity in the carry–merge gates CM4 and CM5. Ac-
cordingly, the multiplexer will select the appropriate conditional

Fig. 14. Energy-delay curve: Kogge-Stone vs. sparse-tree adders.

sum ( or ) to deliver the final sum. Thus, the use
of a static transmission gate multiplexer avoids the possibility
of any false evaluations or race conditions from occurring at the
static-domino interface.

VI. ENERGY-DELAY COMPARISONS ANDDISCUSSION

The energy-delay space (Fig. 14) comparing this design with
the KS adder shows the benefits of the sparse-tree adder archi-
tecture in a 1.2-V 130-nm technology. The 33%–50% reduc-
tion in generate/propagate fanouts and the 30% reduction in
maximum interconnect span results in 20% speedup in adder
performance. The 80% reduction in wiring complexity has an
indirect effect on performance by facilitating a dense layout
(Fig. 15) and enabling the widening and shielding of the few
performance-critical interconnects in the adder core. Comparing
the power consumption of both adders at the design target of
152 ps, we see a 56% reduction in worst-case energy. This was
obtained by the elimination of 73% of the carry–merge gates
from the main tree and implementing this logic in a sidepath
where the energy-efficient ripple carry–merge scheme is used,
resulting in 60% smaller transistor sizes. This confirms the en-
ergy-efficiency of the sparse-tree design, while meeting the per-
formance target of 152 ps.

The impact of the semidynamic design is seen when we con-
sider the effect of switching activity on average energy (Fig. 16).
For a single-rail dynamic design, we assume a constant activity
factor of 0.5, which corresponds to the probability that the input
data will be high (in which case, the dynamic gate will precharge
and evaluate every cycle). Thus, the dynamic KS adder will
have an average energy consumption of 41 pJ with a flat energy
profile versus input data switching activity. Note that dual-rail
domino designs [10] have a switching activity of 100%, since
either of the two complementary paths is bound to switch every
cycle. Hence, the average energy consumption of a dual-rail
domino design is equal to its worst-case switching energy. In
contrast, the switching activity of a semidynamic design scales
with data activity. This is due to the presence of static sum gener-
ator blocks, which do not have any precharge activity and switch
only when the input data changes. (Note that the activity factor
of a static gate depends on the probability that the input data
changes. It does not depend on the probability of the data being
at a particular logic value). Thus, for an adder input data ac-
tivity of 10% (typical in datapath circuits), the single-rail dy-
namic sparse-tree section of the adder core will have a constant
activity of 0.5, whereas the static sum generators will have an
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Fig. 15. Adder core layout.

Fig. 16. Scaling of average energy with activity factor.

TABLE I
130-nm CMOS 1.2-V 110C ADDER SIMULATION RESULTS

activity factor of 0.1, leading to 71% reduction in average energy
consumption compared with a dynamic KS implementation.

A. Dual- Design

The delay spread between the critical and noncritical sec-
tions of the adder can be further exploited to achieve savings
in leakage energy. This is achieved by using low devices
in the critical sparse-tree and high devices on the noncrit-
ical sum-generator paths. The 10differential in leakage cur-
rents between high and low devices [4] results in an
overall 56% reduction in leakage energy consumption without
impacting performance (Table I). Note that high-allocation
was performed on an initial all-low- design without transistor
resizing. Conversion of the sum-generator devices to high-
utilizes the remaining slack between the sparse-tree path and
the sidepaths. At this point, the main path and sidepath delays
are balanced.

B. Scaling Performance

The sparse-tree adder design results in a low average tran-
sistor size of 3.5 m. This property, combined with the dual-
design described above, results in a low active leakage energy
component of 1 and minimizes the impact of higher leakage
in future technologies. Furthermore, the decrease in interstage
interconnect and the reduced wiring complexity reduces the ef-
fect of increased wire delay in future technologies [11]. In a
100-nm technology, where device leakage is expected to in-
crease by 3–5 [12], we project 33% delay improvement and
50% energy reduction (Table II), with a low (4%) leakage en-
ergy component, thereby demonstrating the scalability of the
semidynamic sparse-tree adder design to future technologies.

TABLE II
SCALING TO 100-nm TECHNOLOGY: SIMULATION RESULTS

VII. SUMMARY AND CONCLUSIONS

The design of an energy-efficient AGU operating at 4 GHz
in a 1.2-V 130-nm CMOS technology has been described. We
have shown that moving to a sparse-tree adder core design offers
20% delay reduction and 56% energy reduction compared to a
KS adder. This relaxes the thermal density issues within the ex-
ecution core, increasing reliability and reducing cooling costs.
The semidynamic design of the adder core provides the perfor-
mance of a dynamic CMOS design with an energy profile sim-
ilar to static CMOS, resulting in 71% savings in average energy.
The sparse-tree design was also shown to have a low 1% ac-
tive leakage component with good scaling trends to sub-130-nm
technologies.
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