204

IEEE TRANSACTIONS ON COMPUTERS, VOL. 45, NO. 3, MARCH 1996

3

A Method for Speed Optimized Partial Product
Reduction and Generation of Fast Parallel
Multipliers Using an Algorithmic Approach
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Abstract—This paper presents a method and an algorithm for generation of a parallel multiplier, which is optimized for speed. This
method is applicable to any muiltiplier size and adaptable to any technology for which speed parameters are known. Most
importantly, it is easy to incorporate this method in silicon compitation or logic synthesis tools. The paraliel multiplier produced by
thé proposed method outperforms other schemes used for comparison in our experiment. It uses the minimal number of cells in the
partial product reduction tree. These findings are tested on design examples simulated in 1 CMOS ASIC technology.

Index Terms—Parallel multiplier, partial product reduction, Wallace tree, Dadda's counter, VLS| arithmetic, Booth encoding,

3:2 counter, 4:2 adder, array multiplier.

1 INTRODUCTION

HE ' increased level of integration brought by medern

VLSI and ULSI technology has rendered possible the
integration of many components that were considered
complex and were implemented only partially or not at all
in the past. The multiplication operation is certainly present
in many parts of a digital system or digital computer, most
notably in signal processing, graphics and scientific compu-
tation. Therefore, it became quite common to see a multi-
plier implemented in full in many parts where it was not
found before. Examples of such are floating-point proces-
sors and recently graphics processor, various kinds of digi-
tal signal processors used for user interfaces, communica-
tion or code compression. Parallel multipliers have even
migrated into the fixed-point processor of digital computers
for the purpose of speeding up and facilitating address cal-
culation needed for fast and efficient indexing through ar-
rays of data. The speed of the parallel multiplier has always
been a critical issue and, therefore, the subject of many re-
search projects and papers [1], [2].

Several popular and well-known schemes, with the ob-
jective of improving the speed of the parallel multiplier,
have been developed in the past. The first departure from
the iterative array structure [3] has been described in a pa-
per by Wallace [7]. Wallace has introduced a notion of a
carry-save tree constructed from one-bit Full Adders as a
way of reducing the number of partial product bits in a fast
and efficient way. The notion of counters and a generaliza-

o V.G. Oklobdzija is with Integration, Berkeley, California, and with the
Department of Electrical and Computer Engineering, University of
California, Davis, CA 95616. E-mail: vojin@ece.ucdavis.edu.

e D. Villeger is with Ecole Superieure d’Ingenieurs en Electrotechnique et
Electronique, 93162 Noisy le Grand Cedex, France

e S.S. Liu is with Advanced Micro Devices, Sunnyvale, CA 94088-3453.

Manuscript received Oct. 21, 1993; revised May 19,v 1994.
For information on obtaining reprints of this article, please send e-mail to:
transactions@computer.org, and reference IEEECS Log Number C96005.

tion of the Wallace scheme have been described in the pa-
per by Dadda [8] who also proposed a method that mini-
mized the number of counters in a compression tree. A
good survey of several possible schemes based on Dadda’s
method can be found in the paper by Stenzel [9].

In 1981, Weinberger [10] introduced a 4:2 compressor as
a way of reducing the bits in the parallel multiplier array.
His compressor was used by Santoro [12], Nagamatsu et al.”
[13], and Mori et al. [14]. The introduction of the 4:2 com-
pressor (as an alternative to counters) was a departure from
the traditional path which resulted in an improvement over
the traditionally used Wallace and Dadda’s scheme.

The use of larger compressors and families of compres-
sors was explored by Song and DeMichelli [15]. They have
also developed a 9:2 compressor and made a comparison
with respect to their implementation and layout. ;

Use of higher order compressors yielded mixed results in
some cases, however, it showed a general trend toward
building compressors of larger sizes as.a way of making
incremental improvements in multiplier speed. In our re-
search we took the approach of generating the compressors
of maximal possible size, (ie., the size of the multiplier)
which yielded better results than the use of any previous
compressor or counter family. Therefore, we gradually
abandoned the notion of levels and undertook a design of -
an optimized one-level compressor which evolved into an
optimization process involving the entire array.

Our method is based on the fact that not all inputs and
outputs from a device used'as a compressor (or counter)
contribute equally to the delay. Therefore, we sort them in a
way which favors the use of fast inputs and outputs in the
paths that are critical to the speed while we assign slow
inputs to the signal paths which belong to the domain
where an increase in the delay is tolerable. In the creation
process we examine the entire multiplier array and-all the
signals that are entering the compressor which lead to a
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global rather than local optimization. This is characterized
by the use of a particular compressor optimized for a
minimal delay with respect to its inputs and outputs only.
Our method also leads to a general solution for any chosen
device (compressor or counter). By being used interactively
in conjunction with improvement of a basic compressor
device, this leads to an array which is optimized for speed
down to the device level.

Although Booth recoding [4], [5] is widely used in par-

. allel multipliers, it does not change the structure of the re-
duction tree. Moreover, its efficiency has been denied by
several authors which was consistent with our findings [6],
[11, [15]. As it has been shown in [6], one row of 4:2 com-
pressors has the same effect as Booth encoding, which is
achieved in less time. Given that the method presented here
achieves this compression in even less time than the one
using 4:2 compressors, the use of Booth encoding in parallel
multipliers ceases to be advantageous for the range of tech-
nologies discussed in this paper.

We very recently became aware of an effort to build
multipliers automatically via a program which attempts to
compensate for the different speed of different paths in the
multiplier by by-passing some stages [16]. While the ap-
proach taken is correct, which basically abandons the idea
of counters or compressors, it does not take into account
that different inputs (not only outputs) have different con-
tribution to speed, as does our method. Unlike our method,
half adders are used extensively in [16] which leads to
worse results in terms of speed and cell number. Moreover,
that method is less general and does not allow extension to
device optimization. Similar approaches have also been
applied in the process of “timing optimization” used in
“logic synthesis,” most notably in [28] and [29].

In the last section of this paper, we consider the final
carry-propagate adder used to sum the partial products

" which have been reduced to two rows. The Final Adder de-
lay is an addendum to the multiplier delay and, therefore; is
critical. The approaches taken in designing the Final Adder
were mainly concentrated on the raw speed of the adder and
did not consider the specifics related to the uneven signal
arrival profile of its inputs. Our selection of the Final Adder is
based on these specifics. The structure of the Final Adder is
tuned into the signal arrival profile so that the delay of the
adder is minimized under these conditions which are specific
to its application. We conclude that funing of the Final Adder
is more important than the its raw speed and that any appli-
cation of a complex and hardware consuming scheme which
is not optimized with respect to the signal arrival, would only
constitute a waste of resources.

Finally, in the examples of various multipliers designed
in 1.0p CMOS ASIC technology, we show the advantages of
our method and how it compares to the others.

2 CoMPARISON OF DIFFERENT PARTIAL PRODUCT
REDUCTION SCHEMES

2.1 Wallace and Dadda Schemes

A major departure from iterative array realization of paral-
lel multipliers has been introduced in papers by Wallace [7]

and Dadda [8]. Common to both is the use of Carry-Save
form in a compression tree in order to reduce the number of
partial product bits to two rows. The advantage of trees is
that their speed increases with the log of the operand
length, while this increase is linear in the case of iterative
arrays. Dadda introduced the notion of counters and a
methodology of designing trees that are optimized in terms
of cell number. Thus, Dadda has treated the bit reduction
process as a number of levels (steps), the application of
which results in the reduction of the number of rows of
partial products. At every level the partial product bits are
passed through devices designated as counters, the purpose
of which has been the reduction of the number of rows after
a pass through a level. A (p, g) counter is defined as a com-
binatorial network that determines the number of ones
(active signals) among its p inputs producing a result on its
g bit output in the form of a binary number (count). Essen-
tial to the counter is a process of summation of the input
bits. The number of output bits must be sufficient to repre-
sent all the possible sums of n bits: 2' - 1 > p. A Full Adder
can be treated as a (3, 2) counter, leading to a representation
of the Wallace tree as a special case of Dadda. It would be
ideal if it were possible to develop a higher order counter
such as (7, 3) or (15, 4) with a speed that surpasses the
speed of the same counters built by using Full Adders.
There were several studies undertaken in the past, most
notably by Stenzel [9], however, the use of a Full Adder as a
(3; 2) counter is still the most prevailing.

The process applied by Wallace and Dadda can be sum-
marized as follows: after generating the partial products, a
set of counters reduces the partial product matrix but does
not propagate the carries. The resulting matrix is composed
of the sums and the carries of the counters. Another set of
counters then reduces this new matrix and so on, until a
two-row matrix is generated. Those two rows are summed
up with a Final Adder to which we will refer to as a Carry
Propagate Adder (CPA). This method takes advantage of
the carry save form to avoid the carry propagation until the
Final Adder. In this scheme the number of levéls is crucial
and will determine the speed of the multiplier.

2.2 Use of 4:2 and Higher Order Compressor

A major departure from the Wallace-Dadda scheme has
been the introduction of a 4:2 compressor by Weinberger of
IBM [10]. His idea was made visible by Santoro who used it
in his PhD thesis [11] and by Mori et al. [14] who later im-
plemented it. The 4:2 compressor, as shown in Fig. 3, made
a major difference in the way cells are interconnected by
introducing a horizontal path and, therefore, a limited
propagation of the carry signal in the multiplier. Indeed 4:2
structure is not a counter, since two output bits cannot rep-
resent five possible sums of 4 bits. Thus, a carry out is nec-
essary and subsequently a carry in. However, since the
carry out is not dependent on the carry in, only a limited
carry propagation occurs. There were several benefits from
using a 4:2 compressor, such as simpler and more regular
wiring of the multiplier tree. More notable is the introduc-
tion of the notion of a horizontal and a vertical signal path.
Naturally application of 4:2 compressors led to faster reali-
zation of a multiplier. The existence of a horizontal path has



296

led to the idea of moving the critical path of the multiplier
tree away from the center toward the most significant end
where the depth of the column of partial product bits is
smaller than in the middle [18]. The exploration of this idea
has brought some mixed results, mainly because a major
redesign of the compressors was necessary. However, it has
shed enough light on the real problem of the reduction of
the partial product bits.

Naturally, researchers tried to explore the idea of 4:2
compressors further and research in this direction, most
notably by Song and DeMichelli [15] led to the introduction
of the 6:2 and 9:2 family. The term family is being used be-
cause the new compressors introduced were simply built
on 4:2 compressors and (3, 2) counters. For example, the 9:2
compressor consists of one 6:2 compressor and three (3, 2)
counters, where in turn, the 6:2 compressor contains one 4:2
compressor and two (3, 2) counters. Nevertheless, a multi-

_plier built using 9:2 compressors showed a speed advan-
tage over one built using 4:2 compressors.

The speed comparison for three different multipliers
using, respectively, (3, 2) counters, 4:2 and 9:2 compressors
for the multiplier sizes ranging from 0 to 100 bits in
equivalent XOR delays in the critical path is shown in Fig. 1.
We redesigned the 4:2 and 9:2 compressors at the gate level
in order to obtain the best possible performance. The differ-
ence in speed favors 9:2 over 4:2 and (3, 2). These results are
in agreement with findings in [11], [13], and [15]. We use a
normalized XOR delay as a measure of speed for a particu-
lar implementation of an algorithm or a method. There are
several reasons for doing this:

1) the critical path in the multiplier consists of a path
through a series of XOR gates independent the algo-
rithm is used. k

2) the speed comparison is made independent on the
technology, which is characterized by its ability to re-
alize a fast XOR function.

Critical Path: (Equivalent XOR Gate delays}

30 - N
——4:2 Compressor {Redesigned)
| “ :2 Compressor {Redsesigned)
:2 Counter
20 —

S I A B B B B
50 60 70 80 90 100 110
Multiplisr Width (bits)

Fig. 1. Speed comparison for three different compressors (counters)
used for partial product reduction: 9:2 is the best, followed by 4:2,
and (3, 2).
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In our early work, we followed this idea and came to the
conclusion that the most efficient way to build a compres-
sor is to start with the size of the multiplier (N), in other
words to use the largest applicable size [18], [20]. The mul-
tipliers built in such a way resulted in better speed than .
those for which compressors of a smaller size  were used
[17], [18]. Though we could not claim that compressors
built in such a way were optimal and would lead to the
fastest realization, we identified. the path to the solution.
This path led us to the point where we were able to realize
that the real problem is not in application or existence of a
different counter or a compressor, but in the way the com-
pressor tree has been interconnected. As we will see in the
next section, any compressor can be designed with Full
Adders with the speed of one designed at the gate level.
Simply speaking, inside of each applied compressor, there
is a Full Adder used as a building block. If that is the case,
then a question arises to what is the difference? The answer
is that the difference in using 4:2.and higher order compres-
sors is not in the structure of the compressor but in the way
they were interconnected.

2.3 Unequal Delays in a Full Adder: Existence of
Fast Inputs and Fast Outputs

It is known that the delay from an input to an output in a

Full Adder is not the same. This delay is even dependent on

a particular transition (0-to-1, 1-to-0). It is also possible to

come up with different realizations of a Full Adder where a

specific signal path is favored with respect to the others and

is designed in such a way that a signal propagation of this

path takes a minimal amount of time. This is sometimes

done even at the expense of other possible signal paths. For’
example, a ripple carry adder is designed so that the carry-

in to carry-out delay is minimized. In that respect let us

analyze a particular implementation of a (3, 2) counter as
shown in Fig. 2. This particular case is taken from LSI 100K

1 CMOS-ASIC cell [30]. It is used only for the illustration

of the algorithm. In the case of a parallel multiplier, our

design objective would be to minimize the delay from the

Input s to the Sum, of the Full Adder which has direct effect

on the critical path.

A
B

Cin
+ Fast Inpui]

\ ¢ Fast Output

Carry

Fig.2. Signal delays in a Full Adder ((3, 2) counter).

In this example, the delay from input A or B to the Sum
is equal to two equivalent XOR delays. The delay for the
path from Cin to the output Sum is equal to one XOR
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Fig. 3. Modified 4:2 compressor obtained by optimally interconnecting two Full Adders with fast input and output.

equivalent delay. We define Cin as a fast input. For this case,
the propagation delay from A or B to the output Sum is
twice as long as the propagation delay from input Cin to
the Sum output. Considering the delay at the output Sum,
in this particular technology delay from input A or B to
Sum output is equivalent to two XOR delays. However,
delay from inputs (A, B, or Cin) to the output Carry is
equivalent to one XOR delay. We define Carry as a fast out-
put. The value of those delays varies with technology and
particular circuit implementation. In general we can use
any (noninteger) values in our algorithm.

If we were to construct a 4:2 compressor by simply stack-
ing two Full Adders together, as done by Santoro [11] the
critical path of such a counter would be equal to four equiva-
lent XOR delays. The researchers from Toshiba have simply
redesigned the entire 4:2 compressor and treated it as a single
cell. Their design resulted in three equivalent XOR gate de-
lays and, therefore, they claimed 25% speed improvement
over a conventional Full Adder Wallace tree realization.

In the next section, we will show how with proper inter-
connection the same speed can be achieved by using two
regular Full Adders.

2.4 Improved 4:2 Compressor with Optimized
Interconnections

The advantage of proper interconnection of fast inputs and
fast outputs can be illustrated in the example of a 4:2 com-
pressor. Fig. 3. shows an optimized 4:2 cell which is a result
of applying our delay model and properly interconnecting
fast inputs and fast outputs with the objective of minimizing
the critical path of the 4:2 compressor. In our case, the delay
through a 4:2 compressor level is equivalent to three XOR
gate delays regardless of the path. If used to reduce the par-
tial product bits in an 24 x 24-bit multiplier, the application
of this modified 4:2 compressor would result in a delay of
12 equivalent XOR gates versus 16 if a regular 4:2 compres-
sor, as used by Santoro, were applied (this numbers become
11 and 14, respectively, if a level of Full Adders is used
every time the column size is three).

The use of the 4:2 compressor permits the reduction of
the vertical critical path while the path involving the carry
propagation, that we call horizontal path, is not changed.
However, the horizontal propagation is fast and limited to 1
bit per level.

3 THREE DIMENSIONAL REDUCTION METHOD

3.1 A New Approach

Instead of developing an efficient compressor structure and
then using it in the process of partial product reduction, we
took a global approach. In our method, we treat the entire
multiplier array as a whole. The compressor consists of a
vertical slice where the partial product bit array is repre-
sented in space and time (reduction steps). The vertical
cross section in our representation (Fig. 4.), represents the
partial product compressor of the multiplier array. The ver-
tical slice in this representation is further interleaved with
the compressors that are used in the reduction process and,
therefore, represents a compressor structure corresponding
to the appropriate bit position. We will refer to it as a Verti-
cal Compressor Slice or VCS. It should be noted that there
are a number of input signals into the vertical slice and a
number of output signals originating from the particular
vertical slice which are then being passed to the next VCS
corresponding to the first higher order bit position.

Considering just one VCS we can see how the matrix of
partial products is reduced by a tree of counters (Full Add-
ers shown in the Fig. 4). However, every Full Adder pro-
duces a carry out which affects the slice of superior weight.
Thus, the critical path is not only a vertical path through a
given slice, but is also a horizontal path through the slices.
As previously shown, the 4:2 compressor shortens the ver-
tical path while including the horizontal path. The goal of
the following scheme is to minimize both paths by building
vertical slices that are optimized for a minimal delay. A
method of designing VCS by considering both vertical and
horizontal critical paths will be discussed.



298

Final Adder

Fig. 4. A three-dimensional view of partial product reduction.
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Vertical Compressor Slice - VCS .

Example of a12 X 12 Multiplication
(Partial Product for X*Y =B54 * B1B)

Vertical Slices

o
Y

¢ “& Horizontal Propagation

Carry and Sum
Connection

der

Fig. 5. The partial products matrix is divided into vertical compression slices.

The reduction of partial product bits in this new
scheme is performed by creating a bit slice compressor
VCS whose size is equal to the size of a given vertical
cross-section of the partial product matrix, and then by
assembling those compressors into an integral structure,
as illustrated in Fig. 5. Since VCS are optimized by taking
the neighboring VCS and their signals into account, as a
contiguous process, the optimization is truly a three dimen-
sional optimization process. We will refer to it as a Three
Dimensional Minimization (TDM).

This approach is very different from Dadda’s since all
the partial products are compressed into a single step.
This means that no intermediate partial products are con-
sidered in our case. However, TDM still produces a carry
save number to be translated to a conventional form with
a fast carry propagate adder (CPA). Indeed, each VCS
reduces the partial products to a Sum and a Carry. Since it
does not use the carry save form for the intermediate par-
tial products, this scheme involves a carry propagation
through the VCS. Therefore, it is necessary to design the

J

VCS such that this propagation does not introduce a long
delay. The main concern becomes the minimization of the
vertical and horizontal critical paths rather than the num-
ber of Full Adder levels. i

In addition, this scheme simplifies the design of the mul-
tiplier and its description in a hardware description lan-
guage (VHDL). It also leads to an automatic generation of
the partial product array by producing a net list of its sig-
nals and components. However, its efficiency will depend
on the features of the VCS. The next section introduces a
method of designing the VCS and subsequently the whole
tree with Full Adders and half adders. This method, which
automatically generates a net-list of the partial product ar-
ray has been implemented in C language.

3.2 Method

The basic idea of this method is to make proper connections
globally so that the delay throughout each path is approxi-
mately the same. The long delay path originating from the
previous compressor should be connected to the short
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‘Example of Delay Optimization

Example of Optimized Interconnection

bit (n) position | bit (n-1) position
L1
a b cin ab cn
0 xor
2 xor
1 orl__l
a b cin a b cin
- G
] I
3 xor 3 xor

I
1
|
|
|
]
1
!
1
I
1
|
|
|

&

Example of Not Optimized Interconnection

bit (n) position bit (n-1) position

L1
a b cin|

0 xo

I 1 |
a b cin a b cin
P
Il

3 xor4 xor

—0
—h

Fig. 6. Example of delay minimization by proper ordering of the input signals.

delay path of the next one, and so on. In general, this is not
always possible since each output function has its unique
characteristics and requires specific logic cells in its path. It
is feasible to apply this idea to the partial product array
using Full Adders (FA) since all of the partial product bits
in the same bit position are logically the same and, there-
fore, interchangeable. In other words, all of the signals in
any bit position can be interchanged no matter where they
are originally coming from (as inputs in the same bit posi-
tion, or as carries from a lower bit position). An example of
how speed improvement can be achieved by application of
this principle is shown in Fig. 6. The picture represents a
small section of a multiplier tree. The application of this
same principle resulted in the optimized 4:2 compressor
shown in Fig. 3.

The presented method first creates a data structure con-
sisting of 2N - 1 lists L; containing names and delays of
partial products. Each VCS is represented by a list of pairs
<dj, nj>; containing delay and name information of a node.
Initially, L; represents the inputs (names and delays) of the
corresponding VCS. Consequently, its length is the number
of partial products from the corresponding slice and the
delays are the delays produced by the partial product gen-
erator. Initially, we assume that all of the partial product
bits are generated at the same time and we chose this to be
a reference point by initializing all dj to 0. If the partial
products do not arrive at the same time, dj will be assigned
corresponding delay values. Some partial products do not
need to be summed in the tree, and they are directly con-
nected to the CPA.

After sorting the elements of L, in ascending order by the
values of the delays contained in the records of the list, a
FA is connected to the first three nodes of L, The third
node, that is the slowest one, is connected to the fast input

(Carry-In) of the FA. The delays of the Sum and Carry are

calculated and two new pairs <dj, nj>; are created contain-
ing information about those signals. The pair concerning

the Sum signal is inserted in L, while the one concerning the

Carry signal is inserted in L, ;. The size of L, and L,,, are
then adjusted. This same procedure can be applied for any
general type of (p, q) compressor cell used. The use of such
a (p, q) compressor is advantageous only if such a cell
shows speed advantages over FA in the particular technol-
ogy of implementation.

The process stops when the size of L, reaches three. The
last three signals are then connected to a FA whose signals
feed the CPA. Fig. 7 illustrates the effect of this method on
different arrangements of signals that have different delays.

43 2 1' 12 3 4
6 6 1 4 4 4
Worst Case TDM Arrangement

Fig. 7. Delay improvement with a different signal arrangement.

The delays of the Sum and Carry signal of the FA are
calculated with the following equations:

Delay(S)
= MAX {Delay(A) + D,_g, Delay(B) + Dg_¢, Delay(C,,) + D¢, s}

Delay(C)
= MAX {Delay(A) + D,_¢, Delay(B) + Dy_¢, Delay(C,)) + D¢, ¢}

where Delay(X) represents the delay attached to the sig-
nal X and the constants D, represent the delays of a
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signal crossing a FA from u to v. It should be noted that
delays Dy, can have any value. Those values are de-
termined by the technology of implementation and cir-
cuit techniques used.

It is not always possible to use only FA in our deSIgn In
some cases, the use of a HA is necessary. The following
demonstration shows that this use depends on the number
of inputs of a VCS.

Let I, be the number of signals resulting from the
application of CN counters. I, is the number of inputs of
a' VCS. Consequently, I, is the number of partial prod-
ucts at this particular bit position plus the number of
carry signals originating from the previous VCS. It is not
difficult to show that L, = I, - CNR where R is defined
as the difference between the number of inputs of the
compressor and the number of Sum signals. In our case
using FAs, R = 2 and I, = 1 (representing the Sum sig-
nal from the VCS). Then, CN = (I, — 1)/2. Since CN must
be an integer, this expression is true if I, is odd. If I is
even, the number of Full Adders used to produce two
signals is CN = (I, - 2)/2 which is an integer where the
remaining two signals are reduced using a HA to pro-
duce a Sum and a Carry. Therefore, the number of cells
can be expressed as:

CN, =11,/2]

In other words, a HA will be used if the number of inputs
of a VCS is even. This HA is positioned near the partial
product generator because carries that are generated at this
position propagate through several slices. By taking advan-
tage of the small carry delay generated by a HA, this posi-
tioning results in the gain of one XOR delay in the critical
path of the multiplier.

The method, which generates the parallel multiplier bit
compression array structure, is presented below. This
method can be used as a basis for a program which gener-
ates a logic file containing the interconnection list as was
done in our case. Such a program can be easily integrated
into a silicon compiler or logic synthesis tool used for
automatic generation of fast and efficient multiplier struc-
ture of any size.

3.3 Algorithm for Automatic Generation of Partial
Product Array

Initialize:

Form 2N - 1 lists L; (i = 0, 2N - 2) each

consisting of p; elements where:

p; = I + 1 for i <N - 1 and p; =2N-1-1
for 1 2 N

An element of a list Ly (j = 0, - Pj_q) is
a pair: <dj, ny>y where:

nj : is a unigue node identifying name

dj : is a delay associated with that node
representing a delay of a signal arriving
to the node ny with respect to some
reference point.

For i = 0, 1 and 2N - 2: connect nodes from
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the corresponding lists L;y directly to ‘
the CPA;
For I = 2 £to I = 2N - 3 {Partial Product
Array Generation}
. Begin For
if length of Ly
Begin If

is even Then

sort the elements of L; in
ascending order by the values of
delay dy, A
connect an HA to the first 2
elements of Lj starting with the
slowest input;
Ds = max {dp+dy._g. dp+dp_g}
Dc = max (dA+dA_C, dB+dB_c}
remove 2 elements from Li;
insert the pair <Ds, NetName> into Ly.
insert the pair <Dc, NetName> into Li+1;
decrement the length of Li,
increment the length of Li+1;
End If;

while length of Ly > 3

Begin While
sort the elements of Lj in agcending
order by the values of delay dj;
connect an FA to the first 3 elements
of L; starting with the slowest
input of the FA:
Ds = max (ch}ch_S, ch+chMSp
degi+deay_gli
Dc = max {ch+ch o ch+ch o
degytdecyioli
remove 3 elements from Ly,
insert the pair <Ds, NetName> into Li;
ingert the pair <Dc, NetName> into Li+1;
subtract 2 from the length of L.
increment the length of Li+l; '
End While;
sort the elements of Li;
connect an FA to the last 3 nodes of Ly,
connect the S and C to the bit i and I + 1
of the CPA; ) C
’End Fox;

End Method;

The delay constants are technology dependent and are de-
fined by the user.

3.4 Discussion of the Algorithm

The presented algorithm takes into account any delay value
Ds and Dc as determined for the particular counter struc-
ture and technology of implementation. An average short
wire delay and the effect of loading is included into Ds and
Dc and calculated as a part of

Ds = max {dc, + dc,_,, dc, + dc,_, dcg, + deg, }
and o
D¢ = max {dc, + dc,_, dc; + dcg_, de, + deg, }

expressions. It would be easy to generalize the same algo-
rithm for use of higher order compressors (p, q). In such a |
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case, we calculate the delay D; (i = 1, ... ) as:
D; = max {d, + d,; forj = 1 to p}

Once the delays were calculated and list L; has been sorted,
we proceed by eliminating p elements from the list Lj and
adding g delays to it. The objective of the algorithm is to
minimize the delay of the signals that go to the next VCS.
The critical path in the multiplier is usually found to be
either in the largest VCS (in the middle of the multiplier
tree), or as a path that starts at the least significant VCS and
is being passed to the next until it ends up in the middle
VCS. Therefore, our objective is to minimize:

1) the direct vertical path in a VCS (signals that are
passed vertically to the FA),

2) the delay and the number of signals that are passed
from VCS, to VCS, ;.

The problem of finding the multiplier structure with the
minimal delay using arbitrary (p, q) counter is an NP hard
problem, as is for finding a minimum delay wire layout. In
the particular case presented in this paper, the problem is
currently not known to be NP hard or polynomially solv-
able. Resolving this question is an interesting problem, and
indeed we were able to prove that our algorithm produces
an optimal and the best achievable structure as far as the
speed of the multiplier is concerned [34].

The algorithm can easily be implemented to run in O(n’logn)
time using priority queues, and in O(n’) time if the delays are
small integers. We have not found a counter example which
would yield better results for the cases of N < 64.

3.5 Example

In our case, the delays are :
FAp_sg=FAg_,g =2 XOR delays

FAcin—s=FAp_c=FAp_,c=FAcin—c =1 XOR delay.
In the case of a HA, the delays become :

HA4_,g=HAp_,5=1XOR
delay while HA 4 _,c = HAg_,c = 0.5 XOR delay.

This is because our examples utilize LSI 100K: 1p CMOS
ASIC technology [30].

It is not difficult to generalize this method for the use of
a general p:q compressor rather than a FA. This assumes
that such a compressor can be built more efficiently than
the one built from the FAs and that delay dependencies are
known for the given technology of implementation.

An example representing the ninth VCS of a 12 x 12 mul-
tiplier is shown in Fig. 8. The numbers represent the delays
that are associated to the nodes. The zero delays are the
partial products and the nonzero delays at the top are carry
signals originating from the previous slice. Since the num-
ber of inputs is even, the first cell used by the program is a
HA. The reduction is achieved in five XOR delays.

In our example, we choose to normalize all the signal
delays with respect to XOR gate delay and express delays
as fractions of it. When different technology is used or the
circuits are designed differently than in our case, the ratio
of these delays can be quite different. For example, in [31]

the sum delay is 1.5 times longer than the delay of the carry
bit. However, even in such a case, re-connecting fast-inputs
and fast-outputs according to the method presented here
may result in the speed improvement of up to 18%.

051 1 23

A

2 25

Fig. 8. The ninth VCS of a multiplier.

Although no Full Adder arrangement was assumed, the
method produces a tree structure. This result was predict-
able since the tree structure is theoretically the fastest struc-
ture. As illustrated in the Fig. 8, the signals that have the
longest delays will actually skip the next level of Full Add-
ers. When it becomes impossible to skip more levels, they
are connected to C;;,, and when all C;;, are occupied, they
are connected to A or B. Since the delay of the carries are
also calculated and used, the scheme minimizes both verti-
cal and horizontal critical paths.

Table 1 compares the critical path in the partial
product array produced by TDM and of the other
schemes. The length of critical paths is estimated in the
number of XOR levels. The delay of the critical path is
dependent not only on the technology of implementa-
tion but also on the circuit family (dynamic or static)
as well as layout and wiring delays. Therefore, it is
difficult to give exact comparison, and the ones given
in Table 1 are only reasonable estimates of the relative
differences in delays with respect to other schemes [7],
[11], [16]. We have decided to normalize all the delays
to that of the XOR gate and use the XOR gate delay to
represent respective delays in the multiplier tree struc-
ture. This decision is justified by the observation that
the critical path in the multiplier tree indeed consists of
a path through a series of XOR gates and that the ulti-
mate speed of the multiplier (Final Adder included)
indeed depends on how fast XOR gate can be imple-
mented in a particular technology. A good example sup-
porting this decision can be found in the pass-transistor
multiplier implementation by Okhubo et al. [33].

This however, does not affect our method which is based
on the real delays as calculated for the particular counter
used in the multiplier under consideration.
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TABLE 1
COMPARISON BETWEEN TDM
AND OTHER REPRESENTATIVE SCHEMES,
IN XOR LEVELS USED IN THE PARTIAL PRODUCT ARRAY

Multiplier | Wallace 4:2 Tree Fadavi- TDM

Word- Tree [7] [11]* Ardekani

length [16] .
3 2 2 2 2
4 4 3 3 3
6 6 6 (5) 5 5
8 8 6 7 5
9 8 8 7 6
11 10 9 (8) 8 7
12 10 9(8) 8 7
16 12 9 10 8
19 12 12 (11) 11 9
24 14 12 (11) 12 10
32 16 12 13 11
42 16 15 (14) 14 12
53 18 15 15 13
64 20 15 16 14
95 20 18 (17} 17 15

* Number in parenthesis represent delays when a Full Adder is used (instead
of 4:2 compressor) every time the column size is found to be three.

Our algorithm and method can be extended further by go-
ing one level deeper into the hierarchy of design. We can
treat the multiplier tree as a collection of interconnected gates
or even transistors (as done in [33]) with designated fast and
slow inputs and outputs. We leave this problem for the fu-
ture extensions of this work suggesting this as a direction
for possible further speed optimizations. However, assum-
ing that we have optimized the signal paths using all the
available circuit techniques in a particular counter, our
method should yield the same results. Wiring delays were
not given full consideration in our method.

The average wire delay is rather included into the gate
delay as a function of fan-out. If the method presented here
is to be fully integrated into the silicon compiler system,
wire delay can be included and delays recalculated in an
iterative process as each level of the bit reduction matrix is
produced. In such a case it might be necessary to re-run the
algorithm several time for possible corrections of the inter-
connection pattern and for fine-tuning of the delay list.

In the Wallace tree implementation, the number of XOR
levels is simply the number of Full Adder levels multiplied
by two. The improvement using TDM is up to 30%.

3.6 Hardware Complexity

In the fo’llowing section, we show that the number of
cells used is the same as the number produced by Dadda
optimization.

The number of inputs to VCS is the sum of the number
of partial products, called P, and the number of carries out
from VCS,; which is actually C;4— 1, since every cell of VCS,
produces a carry out except the one that is connected to the
CPA. We have already shown that: CN, =[1,/2

THEOREM 1. For i € [3, N — 1] the number of cells in VCS,, CN;
=CN,, +1.

PROOF.

The proof is by mathematical induction.
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1) Initial step: It is true for I = 3. In this case, CN; = 2
and CN, = 1. Therefore, the theorem is true for the
initial step

2) Induction hypothes1s CN;=CN;; +1.

3) Using the relation CNy,; = L(P,,; + CN, - 1/2] and
since the induction hypothesis is CNj = CNI_l + 1and
Py =P; +1 for i (B [3, N - 1], it follows that:

CN,y =L@+ ONL - 1)/2+ 1 =L@+ ONy = 1)/2) + 1.
Hence, CN,,; =CN; + 1 fori (E [3, N -1].
THEOREM 2. For i € [N, 2N ~ 2] the number of cells in VCS,
CN,=CN,, -
PROOF.

1) Initial step: CN,, = N — 2 (application of the Theorem 1).
Fori=N,
CNy =P, + CN,, - 1)/2] =L aN-5)/2]=N-2.
Then, fori=N+1 ‘
CNy; =Py + CNy - 1)/2] =L 2N - 6)/2] =N - 3.
Therefore, the theorem is verified for the initial step
2) Induction hypothesis: CN; = CN;; — 1.
3) Using the relation CN,; =[(P,, +CN, -1)/2] and,

since the induction hypothesis is CN; = CN;; — 1 and

P,1=P;—1ifie [N, 2N —2], we find:
CNyq = P+ CN; - 1)/2-1] = L(P;+ CN_, - 1)/2] - 1.

Hence, CN;,; =CN; -1 forie [N, 2N -2].

THEOREM 3. The total number of cells in the partial product ar-
ray is (N—1)(N -2) \

PROOE.

VCSy and VCS; have no cells. The mimbers of cells for
VCS, to VC5y_,; represent an arithmetic progressmn

1+2+3+..+N-2. Thatis:
& (N-DN-2)
T

1

i

The number of cells in VCSy to VCSy_, is similarly

shown to be (N — 1)(N - 2)/2 by using arithmetic pro-
gression N -2 + N -1+ ... +1.

Therefore, the total number of cells is:

2N--2 N-1 2N-2
=i+ Y
i=0 i=0 i=N
(N-D(N-2) (N-I}N-2) i
= 5 + > = (N-D(N -2).

The number of FA and HA produced by our program is
exactly (N - 1)(N - 2). Although Dadda did not give any
formula [8], the results of his optimization are 110 cells for
12-bit multiplication and 506 cells for 24-bit multiplication.
Those numbers correspond to our formula (N — 1)(N - 2).
Therefore, we claim that our method is also optimized in
terms of number of cells. Fadavi-Ardekani (F-A) scheme
produces 121 and 582 cells, respectively, for 12- and 24-bit
multiplier sizes.
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3.7 Comparison and Experimental Results

We have designed 4:2, 9:2, F-A, and TDM partial product
arrays in 1p CMOS-ASIC technology for a 24-bit multiplier.
The results that were obtained by simulation using timing
simulator from LSI Logic and LSI 100K [30] timing informa-
tion under nominal conditions [T = 25°C, Vi = 5V]. The
results for the critical path delay in the partial product ar-
ray are summarized in the Table 2. LSI Logic simulator
takes into account loading due to different fan-outs and
includes an estimated wire load. This estimation is based on
the fan-out of the particular output node. Our past experi-
ence with the simulator based on comparisons with actual
fabrications has been very good. However, our results are
limited to simulation and they do not represent actual
measurements. It is also appropriate to mention that our
results do not reflect the complexity of wiring. The wiring
required for a multiplier produced using the TDM method
is not substantially different from other schemes such as
Wallace or Dadda, knowing that the number of counters
used by our method is comparable to Dadda’s [8] and that
the main difference is in the way inputs and outputs of the
counters are connected locally, not in the additional connec-
tions. However, using an improved Dadda’s scheme a mul-
tiplier can be designed with only local interconnections as
done in [32]. TDM scheme uses more complex wiring than
[32] and an array multiplier such as [31]. The use of (4, 2)
compressors results in less complex wiring and layout.

TABLE 2
CRITICAL PATH DELAY [CMOS: LEFF = 1p, T=25°C, V; =5V]
N= 4:2 9:2 Fadavi- TDM
24 bits Design Design | Ardekani | Design
Delay [nS) 14.0 13.0 1.7 10.5

Fig. 9 depicts a comparison in terms of XOR levels be-
tween a regular Wallace/Dadda scheme, an optimized 4:2,
the Fadavi-Ardekani scheme and the TDM scheme. The
delay for the partial product array includes partial product
generator delay consisting of a simple row of AND gates. In
the next section, we consider the delay component of an
optimal CPA. ‘

30
Equivalent XOR Delays
. R
: 4:2
wwsss Fadavi-Ardekani
TDM

o
i
20 T —

10

o T T T T T ‘x T 7 L
O 10 20 30 40 50 60 70 80 90 100 110
Multiplier Width

Fig. 9. Comparison of (3, 2), 4:2, F-A, and TDM schemes.

For this particular 24-bit CMOS implementation, the
TDM Scheme is 33% faster than 4:2 and 25% and faster than
9:2. The improvement over F-A method is 11% in terms of
delay and 15% in terms of the number of cells used.

4 SPEED IMPROVEMENT IN THE FINAL ADDER

Finally, multiplier speed can be further improved via op-

' timization of the CPA to the nonuniform signal arrival
* profile of its inputs. It is well-known that the signals ap-

plied to the inputs of the CPA arrive first at the ends of
the CPA and the last ones are the signals fed to the bits in
the middle of the CPA [26]. The shapes of the signal arri-
val profile originating from the CPA and the multiplier tree
of an 13 x 13-bit ASIC multiplier [19] are shown in Fig. 10.

25.000
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'
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)
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.
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Fig. 10. Signal Arrival Profile and selection of the adder types in the
three regions of the muitiplier.

4.1 The Choice of Final Adder

All the known schemes for fast addition are developed
under the assumption of an uniform signal arrival profile.
The first problem is in selecting one of the CPA schemes
that are most adequate to be used in the multiplier. It is
obvious that we should use the fastest scheme since final
addition time is a significant addendum to the critical path
of the multiplier.

There are three regions to be considered with respect to
the worst case signal arrival profile from the multiplier tree

" as shown in Fig. 10. Region 1 has a positive slope with re-

spect to bit position. To use an adder which adds faster
than this slope would not make much sense and would be a
waste of hardware resources. The type of adder used in
Region 1 is determined by this slope. This slope is deter-
mined by the fact that the arrival of bits is incrementally
delayed by a path traversing a FA used in bit compression.
Therefore, using any of the more powerful and, therefore,
more complex, schemes for this part of the multiplier is not
justified. If ripple-carry adder speed can not match this
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slope, good choices are simple and VLSI efficient schemes
such as Variable Block Adder (VBA) [23]. A simple analysis
shows that CLA has worse performance in this region [27].
From the point of the maximal delay (M) which is usu-
ally in the middle bit position (or skewed a few bits toward
the most significant side) the addition has to be performed
in the fastest possible way. Therefore, in Regions 2 and 3,
addition has to be very fast because the addition time
A ppp, s a direct addendum to the multiplier delay. Analy-

sis shows that the best choices for the adder in this region
are: Conditional Sum Adder (CSA) and the Carry Select
Adder (CSLA) [21], [27]. Choice of CSLA scheme results in
less complex implementation simply because CSLA is a
subset of CSA. The difference in speed between CSA and
CSLA diminishes as the input arrival profile is changed
from uniform to nonuniform [21]. Though the CSLA adder
is still slower than the CSA adder, this difference is offset
by the relative simplicity of its implementation which is
preferred by most designers. Smaller size and simpler lay-
out of CSLA would further affect the relative speed differ-
ence, reducing the advantage of CSA. Given that fact, Carry
Select Addition (CSLA) is the best choice for Region 2 [22].

The adder constructed for this part (Regions 2 and 3) can
be further subdivided into two. Region 2 requires the fast-
est addition available, the choice of which is Carry-
Lookahead (CLA) adder, or optimized derivatives of CLA
[24] combined into a CSLA, all of which depend on the par-
ticular circuit and technology used. :

In the region of the negative slope (Region 3), where the
most significant bits arrive first, the most suitable choice is
again CSLA. However, CSLA adds time for selection multi-
plexers, AMUX, which is not negligible given that the adder
sections are already constructed to be in the same speed
range. It is also obvious that due to the steep negative slope
in this region, there is substantial time left to add the bits in
the most significant position before a selection process oc-

‘curs. Simple analysis shows that for this part, VBA is a
much better candidate than CLA or for that matter any
other scheme [27].

Determination of bit positions separating the Regions 1,
2, and 3 is based on intersecting the bit arrival time from
the adders used in the corresponding regions, so that the
selection in CSLA is done at the appropriate time. This is a
relatively complex iterative process which is illustrated in
Fig. 11. As can be inferred from Fig. 11, this is an iterative
technique which does not require a large number of itera-
tions, given that the bit positions S; and S, are integers. The
total delay of the multiplier is:

Apurr = Apgee + AADDZ + Ayux

The resulting CPA structure is shown in Fig. 12a.
The signal arrival profiles originating from the tree of
an 13 x 13-bit multiplier for two different input patterns
applied are shown in Fig. 12b. It is interesting to observe
that while the pattern B results in a faster signal arrival
from the multiplier array than pattern A, the product
originating from the CPA for the pattern B has a longer
delay than the pattern A. This example illustrates the
point that it is more important to fune the CPA into the
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signal arrival profile than to apply the fastest available
addition scheme. Further analysis of CPA optimization
can be found in [27]. ‘
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Fig. 11. Determination of bit positions. S, and S, determining the size
of the adders used: Left—Structure of the Final Adder; Right—Signal
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Fig. 12. Structure of the Final Adder (top); Signal Arrival Profile from
the column compression tree and the Final Adder (bottom).
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5 Conclusion

The presented algorithm and method for parallel multiplier
implementation takes advantage of the uneven delays
through a Full Adder in order to build a global compressor
that minimizes the critical path of the multiplier. The com-
pression free is divided into vertical slices that are opti-
mized globally to produce individual Vertical Compression
Slices (VCS). This minimization does not only involve the
vertical signal path, but also involves the horizontal signals
from the previous VCS. A method to implement a speed
optimized multiplier tree which includes an algorithm for
net-list generation has been presented. This method has
been implemented using C language, although it would not
be difficult to describe in a hardware description language
such as VHDL, or to implement the algorithm as a part of a
silicon compiler. A multiplier produced by this algorithm
has been implemented in 1p CMOS technology together
with several competing schemes. The resuits obtained using
our algorithm are better not only in terms of speed but sur-
prisingly also in terms of the number of cells used. The use
of a compressor optimized at the transistor level instead of
a Full Adder could result in further improvements of speed
and can be easily incorporated in the presented method.
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