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Introduction

Chip designers face a bewildering array of choices.

o What is the best circuit topology for a function?

o How large should the transistors be?

o How many stages of logic give least delay?

Logical Effort is a method of answering these questions:

o Uses a very simple model of delay

o Back of the envelope calculations and tractable optimiza

o Gives new names to old ideas to emphasize remarkable

Who cares about logical effort?

o Circuit designers waste too much time simulating and tw

o High speed logic designers need to know where time is 

o CAD engineers need to understand circuits to build bette
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Example

Ben Bitdiddle is the memory designer for the Motoroil 68W86
processor for automotive applications. Help Ben design 
register file:

Decoder specification:

o 16 word register file

o Each word is 32 bits wide

o Each bit presents a load of 3 unit-sized transistors

o True and complementary inputs of address bits a<3:0> a

o Each input may drive 10 unit-sized transistors

Ben needs to decide:

o How many stages to use?

o How large should each gate be?

o How fast can the decoder operate?

Re

4:
16
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od
er

a<3:0> a<3:0>

16
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Delay in a Logic Gate

Let us express delays in a process-independent unit:

Delay of logic gate has two components:

Effort delay again has two components:

o Logical effort describes relative ability of gate topology t
(defined to be 1 for an inverter)

o Electrical effort is the ratio of output to input capacitance

d
dabs

τ
-----------=

d f p+=

effort delay, a.k.a. stage effo

parasitic delay

f gh=

logical effort
electrical effort = Cout/Cin
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Delay Plots

o
o Delay increases with electrical effort

o More complex gates have greater logical effort and para

inv
er
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r
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D

54321

5

4

3

2

6

1
parasitic delay

effort
delay

Electrical effort: h = Cout / Cin

N
or
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 d
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: d

g =
p =
d =g =

p =
d =

d f p+ gh p+= =
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NOR2:
Cin = 5
g = 5/3
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Computing Logical Effort

DEF: Logical effort is the ratio of the input capacitance of a 
capacitance of an inverter delivering the same output 

o Measured from delay vs. fanout plots of simulated or me

o Or estimated, counting capacitance in units of transistor

2

1a

x

2

2

2

2

x

a

b

a
bInverter:

Cin = 3
g = 1 (def)

NAND2:
Cin = 4
g = 4/3
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A Catalog of Gates

Table 1: Logical effort of static CMOS ga

Gate type
Number of inputs

1 2 3 4 5

inverter 1

NAND 4/3 5/3 6/3 7/3

NOR 5/3 7/3 9/3 11/3

multiplexer 2 2 2 2

XOR, XNOR 4 12 32

Table 2: Parasitic delay of static CMOS g

Gate type Parasitic delay

inverter pinv 

n-input NAND npinv

n-input NOR npinv

n-way multiplexer 2npinv

2-input XOR, XNOR 4npinv
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Example

Estimate the frequency of an N-stage ring oscillator:

Logical Effort:

Electrical Effort:

Parasitic Delay:

Stage Delay:

Oscillator Frequency:

g =

h =

p =

d =

F =
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Example

Estimate the delay of a fanout-of-4 (FO4) inverter:

Logical Effort:

Electrical Effort:

Parasitic Delay:

Stage Delay:

d

g =

h =

p =

d =
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Multi-stage Logic Networks

Logical effort extends to multi-stage networks:

o Path Logical Effort:

o Path Electrical Effort:

o Path Effort:

Can we write ?

x y
z

10

g1 = 1
h1 = x/10

g2 = 5/3
h2 = y/x

g3 = 4/3
h3 = z/y

g4 = 1
h4 = 2

G gi∏=

H
Cout (path)

Cin (path)
----------------------=

F fi∏ gihi∏= =

F GH=
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Branching Effort

No! Consider circuits that branch:

G    
H    
GH 
h1
h2
F

=
=
=
=
=
=       = GH?

5

15

15

90

90
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Delay in Multi-stage Network

We can now compute the delay of a multi-stage network:

o Path Effort Delay:

o Path Parasitic Delay:

o Path Delay:

We can prove that delay is minimized when each stage bear

Therefore, the minimum delay of an N-stage path is:

o This is a key result of logical effort. Lowest possible path
without even calculating the sizes of each gate in the pa

DF fi∑=

PF pi∑=

DF di∑ DF P+= =

f̂ gihi F1 N⁄
= =

NF1 N⁄ P+
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Determining Gate Sizes

Gate sizes can be found by starting at the end of the path an

o At each gate, apply the capacitance transformation:

o Check your work by verifying that the input capacitance 
fied at the beginning of the path.

Cini

Couti
gi•

f̂
-----------------------=
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Example

Select gate sizes y and z to minimize delay 

from A to B

Logical Effort:

Electrical Effort:

Branching Effort:

Path Effort:

Best Stage Effort:  

Delay:

A
C

G =

H =

B =

F =

f̂ =

z =
Work backward for sizes:

y =

D =
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Choosing the Best Number of St

How many stages should a path use?

o Delay is not always minimized by using as few stages a

o Example: How to drive 64 bit datapath with unit-sized in

 assuming polarity

1

8 4

16

1 1

64 64 64

Initial driver

Datapath load

N:
f:

D:

1
64
65

2
8

18

3
4

15

F

D NF
1 N⁄

P+ N 64( )1 N⁄
N+= =
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Derivation of the Best Number of S

Suppose we can add inverters to the end of a path without c

o How many stages should we use? Let  be the value o

o Define  to be the best stage effort. Substitute a

Logic Block:
n1 stages
Path effort F

N-n1 extra inverters

N̂

D NF1 N⁄ pi

1

n1

∑+= N n1–( )pinv+

D∂
N∂

------- F1 N⁄ F1 N⁄( )ln–= F1 N⁄ pinv+ + =

ρ F1 N̂⁄≡

pinv ρ 1 ρln–( )+ 0=
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Best Number of Stages (continu

 has no closed form solution.

o Neglecting parasitics (i.e. pinv = 0), we get the familiar re

o For pinv = 1, we can solve numerically to obtain ρ = 3.59
How sensitive is the delay to using exactly the best number o

o 2.4 < ρ < 6 gives delays within 15% of optimal -> we can

pinv ρ 1 ρln–( )+ 0=

1 .0
1 .2
1 .4

1 .6

1 .0 2 .00 .5 1 .40 .7

N  / N

1.15
1 .26

1 .51

(ρ=2 .4 ) (ρ=6)

D
(N

) 
/ D

(N
)

0 .0
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Example

Let’s revisit Ben Bitdiddle’s decoder problem using logical eff

Decoder specification:

o 16 word register file

o Each word is 32 bits wide

o Each bit presents a load of 3 unit-sized transistors

o True and complementary inputs of address bits a<3:0> a

o Each input may drive 10 unit-sized transistors

Ben needs to decide:

o How many stages to use?

o How large should each gate be?

o How fast can the decoder operate?

Reg

4:
16

 D
ec

od
er

3a<3:0> a<3:0>

16
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Example: Number of Stages

How many stages should Ben use?

o Effort of decoders is dominated by electrical and branch

o Electrical Effort:

o Branching Effort:  

If we neglect logical effort (assume G = 1),

o Path Effort:

Remember that the best stage effort is about ρ = 4

o Hence, the best number of stages is: 

H =

B =

F =

N =
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Example: Gate Sizes & Delay

Lets try a 3-stage design using 16 4-input NAND gates with 

o Actual path effort is:

o Therefore, stage effort should be:

o Gate sizes:

o Path delay:

a0a0 a1 a2 a3a1 a2 a3

out0

out15

y
z

y
z

10 unit input capacit

96 unit w
capacita

F =

f =

z = y =

D =
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6 22.1
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6 19.7

7 20.4

8 21.6

9 23.1

10 24.8
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Example: Alternative Decode

We underestimated the best number of stages by neglecting

o Logical effort facilitates comparing different designs befo

o Using more stages also reduces G and P by using multi

o Our design was about 10% slower than the best

Table 3: Comparison of Decoder Desig

Design Stages G

NAND4; INV 2 2

INV; NAND4; INV 3 2

INV; NAND4; INV; INV 4 2

NAND2; INV; NAND2; INV 4 16/9

INV; NAND2; INV; NAND2; INV 5 16/9

NAND2; INV; NAND2; INV; INV; INV 6 16/9

INV; NAND2; INV; NAND2; INV; INV; INV 7 16/9

NAND2; INV; NAND2; INV; INV; INV; INV; INV 8 16/9
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Asymmetric Gates

Asymmetric logic gates favor one input over another.

Example: suppose input A of a NAND gate is most critical.

o Select sizes so pullup and pulldown still match unit inver

o Place critical input closest to output

o Logical Effort on input A:

o Logical Effort on input B:  

o Total Logical Effort:

a

b

x

4

4/3

2 2

gA =

gB =

gtot gA gB+=
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Symmetry Factor

In general, consider gates with arbitrary symmetry factor s:

o s = 1/2 in symmetric gate with equal sizes

o s = 1/4 in previous example

Logical effort of inputs:

o Critical input approaches logical effort of inverter = 1 for

o But total logical effort is higher for asymmetric gates

a

gA

1
1 s–
------------ 2+

3
----------------------= gB

1
s
--- 2+

3
-------------= gtot

1
s 1 s–( )
-------------------- +

3
---------------------------=
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Skewed Gates

Skewed gates favor one edge over the other.

Example: suppose rising output of inverter is most critical.

o Downsize noncritical NMOS transistor to reduce total inp

Compare with unskewed inverter of the same rise/fall time to

o Logical Effort for rising (up) output:

o Logical Effort for falling (down) output:  

o Average Logical Effort:

a

x

1/2

2

HI-Skewed inverter

a

x

1

2

Unskewed w/

a

Unsk
equal rise equa

gu =

gd =

gavg gu +(=
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HI- and LO-Skewed Gates

DEF: Logical effort of a skewed gate for a particular transitio
input capacitance of that gate to the input capacitance
inverter delivering the same output current for the sam

Skew gates by reducing size of noncritical transistors.

o HI-Skewed gates favor rising outputs by downsizing NM

o LO-Skewed gates favor falling outputs by downsizing PM

o Logical effort is smaller for the favored input due to lowe

o Logical effort is larger for the other input
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2

2

1

1

g    = 2
g    = 1
g  = 3/2

u

d
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Catalog of Skewed Gates

2

½ 1

1

2

2

Inverter NAND2 N

HI-Skew

LO-Skew

g    = 5/6
g    = 5/3
g  = 5/4

u

d

avg

g    = 1
g    = 2
g  = 3/2

u

d

avg

1

1 2

2

1

1

g    = 4/3
g    = 2/3
g  = 1

u

d

avg

g    = 2
g    = 1
g  = 3/2

u

d

avg
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Pseudo-NMOS

Pseudo-NMOS gates replace fat PMOS pullups on inputs wi

o Resistive pullup must be much weaker than pulldown st

o Reduces logical effort because inputs must only drive th

o However, NMOS current reduced by contention with pul

o Unequal rising and falling efforts

o Quiescent power dissipation when output is low

Example: Pseudo-NMOS inverter

o Logical Effort for falling (down) output:

o Logical Effort for rising (up) output:  

o Average Logical Effort:

gd =

gu =

gavg gu +(=



Page 35 of 56

.

x
3 b

2

/9
/3
/9
Logical Effort David Harris

Pseudo-NMOS Gates

Tradeoffs exist between power and effort by varying P/N ratio

a

x

4/3

2/3

a

x

8/3

2/3

a 4/3

2/3

8/3b

4/

Inverter NAND2 NOR

gd    = 4/9
gu    = 4/3
gavg = 8/9

gd    = 8/9
gu    = 8/3
gavg = 16/9

gd    = 4
gu    = 4
gavg = 8
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Dynamic Logic

Dynamic logic replace fat PMOS pullups on inputs with a clo

o Reduces logical effort because inputs must only drive th

o Eliminates pseudo-NMOS contention current and power

o Only the falling (“evaluation”) delay is critical

o Downsize noncritical precharge transistors to reduce clo

Example: Footless dynamic inverter

o Logical Effort for falling (down) output:

Robust gates may require keepers and clocked pulldown tra

o Feet prevent contention during precharge but increase l

o Weak keepers prevent floating output at cost of slight co

gd =
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gd = 2/3
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Dynamic Gates

a

x

1

1

a

x

2

1

a

2b

Inverter NAND2

gd = 1/3 gd = 2/3

φ φ φ

a

x

2

1

a

x

3

1

a

3bgd = 2/3 gd = 1

φ φ φ

Footless

Footed

φ φ
φ

2

3
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Domino Gates

Dynamic gates require monotonically rising inputs.

o However, they generate monotonically falling outputs

o Alternate dynamic gates with HI-skew inverting static ga

o Dynamic / static pair is called a domino gate

Example: Domino Buffer

o Constraints: maximum input capacitance = 3, load = 54

o Logical Effort: G =

o Branching Effort: B =

o Electrical Effort: H =

o Path Effort: F =

o Stage Effort: f =

o HI-Skew Inverter: size =

o Transistor Sizes: n =   p =

a 3

3φ

g1
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Comparison of Circuit Familie

Assumptions:

o PMOS transistors have half the drive of NMOS transisto

o Skewed gates downsize noncritical transistors by factor 

o Pseudo-NMOS gates have 1/4 strength pullups

Adjust these numbers as you change your assumptions.

Table 4: Summary of Logical Efforts

Circuit Style
Inverter g n-input NAND g

gu gd gu gd

Static CMOS 1 (n+2)/3

HI-Skew 5/6 5/3 (n/2+2)/3 (n+4)/3 (2

LO-Skew 4/3 2/3 2(n+1)/3 (n+1)/3 2(

Pseudo-NMOS 4/3 4/9 4n/3 4n/9

Footed Dynamic 2/3 (n+1)/3

Footless Dynamic 1/3 n/3
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Summary

Table 5: Key Definitions of Logical Effo

Term Stage expression Path expressi

Logical effort  (seeTable 1)

Electrical effort

Branching effort n/a

Effort

Effort delay

Number of stages

Parasitic delay  (seeTable 2)

Delay

g G gi∏=

h
Cout

Cin
---------= H

Cout (pa

Cin (pa
----------------=

B bi∏=

f gh= F GBH=

f DF fi∑=

1 N
p P pi∑=

d f p+= D DF P+=
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Method of Logical Effort

Logical effort helps you find the best number of stages, the be
and the minimum delay of a circuit with the following pro

o Compute the path effort:

o Estimate the best number of stages:

o Estimate the minimum delay:

o Sketch your path using the number of stages computed 

o Compute the stage effort:

o Starting at the end, work backward to find transistor size

F GBH=

N̂ F4log≈

D N̂F1 N̂⁄
+=

f̂ F1 N⁄
=

Cini

Couti
•

f̂
----------------=
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Limitations of Logical Effort

Logical effort is not a panacea. Some limitations include:

o Chicken & egg problem
how to estimate G and best number of stages before the

o Simplistic delay model
neglects effects of input slopes

o Interconnect
iteration required in designs with branching and non-neg

same convergence difficulties as in synthesis / placeme

o Maximum speed only
optimizes circuits for speed, not area or power under a f
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Conclusion

Logical effort is a useful concept for thinking about delay in c

o Facilitates comparison of different circuit topologies

o Easily select gate sizes for minimum delay

o Circuits are fastest when effort delays of each stage are

o Path delay is insensitive to modest deviations from optim

o Logic gates can be skewed to favor one input or edge a

o Logical effort can be applied to domino, pseudo-NMOS, a

Logical effort provides a language for engineers to discuss w

o Like any language, requires practice to master

A book on Logical Effort is available from Morgan Kaufmann

o http://www.mkp.com/Logical_Effo
o Discusses P/N ratios, gate characterization, pass gate lo
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Delay Plots

o
o Delay increases with electrical effort

o More complex gates have greater logical effort and para
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g = 4/3
p = 2
d = (4/3g = 1

p = 1
d = h + 1

d f p+ gh p+= =
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A 31 stage ring
oscillator in a
0.18 µm process
oscillates at about
670 MHz.
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Example

Estimate the frequency of an N-stage ring oscillator:

Logical Effort:

Electrical Effort:  

Parasitic Delay:

Stage Delay:

Oscillator Frequency:

g 1≡

h
Cout

Cin
--------- 1= =

p pinv 1≈=

d gh p+ 2= =

F 1
2Ndabs
------------------- 1

4Nτ
-----------= =
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Example

Estimate the delay of a fanout-of-4 (FO4) inverter:

Logical Effort:

Electrical Effort:

Parasitic Delay:

Stage Delay:

d

g 1≡

h
Cout

Cin
--------- 4= =

p pinv 1≈=

d gh p+ 5= =

T
d
m
p

1

T
in
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 circuits that branch
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Branching Effort

No! Consider circuits that branch:

Introduce new kind of effort to account for branching within a

o Branching Effort:

o Path Branching Effort:

Now we can compute the path effort:

o Path Effort:

G    
H    
GH 
h1
h2
F

= 1
= 90 / 5 = 18
= 18
= (15+15) / 5 = 6
= 90 / 15 = 6
= 36, not 18!

5

15

15

90

90

b
Con path C+ off path

Con path
----------------------------------------------=

B bi∏=

in
F GBH=
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----------------------------- 2.4C=
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Logical Effort David Harris

Example

Select gate sizes y and z to minimize delay 

from A to B

Logical Effort:

Electrical Effort:

Branching Effort:

Path Effort:

Best Stage Effort:

 

Delay:

A
C

G 4 3⁄( )3
=

H
Cout

Cin
--------- 9= =

B 2 3• 6= =

F GHB 128= =

f̂ F1 3⁄ 5≈=

z =

Work

y =
D 3 5 3 2•+• 21= =
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Example: Number of Stages

How many stages should Ben use?

o Effort of decoders is dominated by electrical and branch

o Electrical Effort:

o Branching Effort:  because each 
controls half the

If we neglect logical effort,

o Path Effort:

Remember that the best stage effort is about ρ = 4

o Hence, the best number of stages is: 

o Let’s try a 3-stage design

H 32 3•
10

--------------- 9.6= =

B 8=

F GBH 8 9.6• 76.8= = =

N 76.84log= =
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Example: Gate Sizes & Delay

Lets try a 3-stage design using 16 4-input NAND gates with 

o Actual path effort is:

o Therefore, stage effort should be:

o
o

a0a0 a1 a2 a3a1 a2 a3

out0

out15

y
z

y
z

10 unit input capacit

96 unit w
capacita

F 2 8 9.6••= =

f 154( )1 3⁄ 5= =

z 96 1 5.36⁄• 18= = y 18 2 5.36⁄• 6.= =

D 3f P+ 3 5.36 1 4 1+ + +• 22.1= = =
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Asymmetric Gates

Asymmetric logic gates favor one input over another.

Example: Suppose input A of a NAND gate is most critical:

o Select sizes so pullup and pulldown still match unit inver

o Place critical input closest to output

o Logical Effort on input A:

o Logical Effort on input B:  

o Total Logical Effort:

a

b

x

4

4/3

2 2

gA 10 9⁄=

gB 2=

gtot gA gB+ 28 ⁄= =
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gd) 2⁄ 5 4⁄=
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Skewed Gates

Skewed gates favor one edge over the other.

Example: suppose rising output of inverter is most important

o Downsize noncritical NMOS transistor to reduce total inp

Compare with unskewed inverter of the same rise/fall time

o Logical Effort for rising (up) output:

o Logical Effort for falling (down) output:  

o Average Logical Effort:

a

x

1/2

2

Skewed inverter

a

x

1

2

Unskewed w/

a

Unsk
equal rise equa

gu 5 6⁄=

gd 5 3⁄=

gavg gu +(=
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Pseudo-NMOS

Pseudo-NMOS gates replace fat PMOS pullups on inputs wi

o Resistive pullup must be much weaker than pulldown st

o Reduces logical effort because inputs must only drive th

o However, NMOS current reduced by contention with pul

o Unequal rising and falling efforts

o Logical effort can be applied to domino, pseudo-NMOS, a

Example: Pseudo-NMOS inverter

o Logical Effort for falling (down) output:

o Logical Effort for rising (up) output:  

o Average Logical Effort:

gd 4 9⁄=

gu 4 3⁄=

gavg gu +(=
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Dynamic Logic

Dynamic logic replace fat PMOS pullups on inputs with a clo

o Reduces logical effort because inputs must only drive th

o Eliminates pseudo-NMOS contention current and power

o Critical pulldown (“evaluation”) delay independent of pre

Example: Footless dynamic inverter

o Logical Effort for falling (down) output:

Robust gates may require keepers and clocked pulldown tra

o Feet prevent contention during precharge but increase l

o Weak keepers prevent floating output at cost of slight co

gd 1 3⁄=
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Domino Gates

Dynamic gates require monotonically rising inputs.

o However, they generate monotonically falling outputs

o Alternate dynamic gates with HI-skew inverting static ga

o Dynamic / static pair is called a domino gate

Example: Domino Buffer

o Constraints: maximum input capacitance = 3, load = 54

o Logical Effort: G = (1/3) * (5/6) = 5/18

o Branching Effort: B = 1

o Electrical Effort: H = 54/3 = 18

o Path Effort: F = (5/18) * 1 * 18 = 5

o Stage Effort: f = 

o HI-Skew Inverter: size =54 * (5/6) / 2.2 = 20

o Transistor Sizes: n = 4  p = 16

5 2.2=
a 3

3φ

g1 = 1
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	Introduction
	Chip designers face a bewildering array of choices.
	What is the best circuit topology for a function?
	How large should the transistors be?
	How many stages of logic give least delay?
	Logical Effort is a method of answering these questions:
	Uses a very simple model of delay
	Back of the envelope calculations and tractable optimization
	Gives new names to old ideas to emphasize remarkable symmetries
	Who cares about logical effort?
	Circuit designers waste too much time simulating and tweaking circuits
	High speed logic designers need to know where time is going in their logic
	CAD engineers need to understand circuits to build better tools

	Example
	Ben Bitdiddle is the memory designer for the Motoroil 68W86, an embedded processor for automotive...
	Decoder specification:
	16 word register file
	Each word is 32 bits wide
	Each bit presents a load of 3 unit-sized transistors
	True and complementary inputs of address bits a<3:0> are available
	Each input may drive 10 unit-sized transistors
	Ben needs to decide:
	How many stages to use?
	How large should each gate be?
	How fast can the decoder operate?
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	Delay in a Logic Gate
	Let us express delays in a process-independent unit:
	Delay of logic gate has two components:
	Effort delay again has two components:
	Logical effort describes relative ability of gate topology to deliver current
	(defined to be 1 for an inverter)
	Electrical effort is the ratio of output to input capacitance

	Delay Plots
	Delay increases with electrical effort
	More complex gates have greater logical effort and parasitic delay

	Delay Plots
	Delay increases with electrical effort
	More complex gates have greater logical effort and parasitic delay

	Computing Logical Effort
	DEF: Logical effort is the ratio of the input capacitance of a gate to the input capacitance of a...
	Measured from delay vs. fanout plots of simulated or measured gates
	Or estimated, counting capacitance in units of transistor width:

	A Catalog of Gates
	Table 1: Logical effort of static CMOS gates
	inverter
	1
	NAND
	4/3
	5/3
	6/3
	7/3
	(n+2)/3
	NOR
	5/3
	7/3
	9/3
	11/3
	(2n+1)/3
	multiplexer
	2
	2
	2
	2
	2
	XOR, XNOR
	4
	12
	32

	Table 2: Parasitic delay of static CMOS gates
	inverter
	pinv
	n-input NAND
	npinv
	n-input NOR
	npinv
	n-way multiplexer
	2npinv
	2-input XOR, XNOR
	4npinv
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	Multi-stage Logic Networks
	Logical effort extends to multi-stage networks:
	Path Logical Effort:
	Path Electrical Effort:
	Path Effort:
	Can we write ?

	Branching Effort
	No! Consider circuits that branch:

	Branching Effort
	No! Consider circuits that branch:
	Introduce new kind of effort to account for branching within a network:
	Branching Effort:
	Path Branching Effort:
	Now we can compute the path effort:
	Path Effort:

	Delay in Multi-stage Networks
	We can now compute the delay of a multi-stage network:
	Path Effort Delay:
	Path Parasitic Delay:
	Path Delay:
	We can prove that delay is minimized when each stage bears the same effort:
	Therefore, the minimum delay of an N-stage path is:
	This is a key result of logical effort. Lowest possible path delay can be found without even calc...

	Determining Gate Sizes
	Gate sizes can be found by starting at the end of the path and working backward.
	At each gate, apply the capacitance transformation:
	Check your work by verifying that the input capacitance specification is satisfied at the beginni...

	Example
	Select gate sizes y and z to minimize delay
	from A to B
	Logical Effort:
	Electrical Effort:
	Branching Effort:
	Path Effort:
	Best Stage Effort:
	Delay:

	Example
	Select gate sizes y and z to minimize delay
	from A to B
	Logical Effort:
	Electrical Effort:
	Branching Effort:
	Path Effort:
	Best Stage Effort:
	Delay:

	Outline
	Introduction
	Delay in a Logic Gate
	Multi-stage Logic Networks
	Choosing the Best Number of Stages
	Example
	Asymmetric & Skewed Logic Gates
	Circuit Families
	Summary


	Choosing the Best Number of Stages
	How many stages should a path use?
	Delay is not always minimized by using as few stages as possible
	Example: How to drive 64 bit datapath with unit-sized inverter
	assuming polarity doesn’t matter

	Derivation of the Best Number of Stages
	Suppose we can add inverters to the end of a path without changing its function.
	How many stages should we use? Let be the value of N for least delay.
	Define to be the best stage effort. Substitute and simplify:

	Best Number of Stages (continued)
	has no closed form solution.
	Neglecting parasitics (i.e. pinv = 0), we get the familiar result that r = 2.718 (e)
	For pinv = 1, we can solve numerically to obtain r = 3.59
	How sensitive is the delay to using exactly the best number of stages?
	2.4 < r < 6 gives delays within 15% of optimal -> we can be sloppy
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	Example
	Let’s revisit Ben Bitdiddle’s decoder problem using logical effort:
	Decoder specification:
	16 word register file
	Each word is 32 bits wide
	Each bit presents a load of 3 unit-sized transistors
	True and complementary inputs of address bits a<3:0> are available
	Each input may drive 10 unit-sized transistors
	Ben needs to decide:
	How many stages to use?
	How large should each gate be?
	How fast can the decoder operate?

	Example: Number of Stages
	How many stages should Ben use?
	Effort of decoders is dominated by electrical and branching portions
	Electrical Effort:
	Branching Effort:
	If we neglect logical effort (assume G = 1),
	Path Effort:
	Remember that the best stage effort is about r = 4
	Hence, the best number of stages is:

	Example: Number of Stages
	How many stages should Ben use?
	Effort of decoders is dominated by electrical and branching portions
	Electrical Effort:
	Branching Effort: because each address input
	controls half the outputs
	If we neglect logical effort,
	Path Effort:
	Remember that the best stage effort is about r = 4
	Hence, the best number of stages is:
	Let’s try a 3-stage design

	Example: Gate Sizes & Delay
	Lets try a 3-stage design using 16 4-input NAND gates with
	Actual path effort is:
	Therefore, stage effort should be:
	Gate sizes:
	Path delay:

	Example: Gate Sizes & Delay
	Lets try a 3-stage design using 16 4-input NAND gates with
	Actual path effort is:
	Therefore, stage effort should be:

	Example: Alternative Decoders
	Table 3: Comparison of Decoder Designs
	NAND4; INV
	2
	2
	5
	29.8
	INV; NAND4; INV
	3
	2
	6
	22.1
	INV; NAND4; INV; INV
	4
	2
	7
	21.1
	NAND2; INV; NAND2; INV
	4
	16/9
	6
	19.7
	INV; NAND2; INV; NAND2; INV
	5
	16/9
	7
	20.4
	NAND2; INV; NAND2; INV; INV; INV
	6
	16/9
	8
	21.6
	INV; NAND2; INV; NAND2; INV; INV; INV
	7
	16/9
	9
	23.1
	NAND2; INV; NAND2; INV; INV; INV; INV; INV
	8
	16/9
	10
	24.8
	We underestimated the best number of stages by neglecting the logical effort.
	Logical effort facilitates comparing different designs before selecting sizes
	Using more stages also reduces G and P by using multiple 2-input gates
	Our design was about 10% slower than the best
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	Asymmetric Gates
	Asymmetric logic gates favor one input over another.
	Example: suppose input A of a NAND gate is most critical.
	Select sizes so pullup and pulldown still match unit inverter
	Place critical input closest to output
	Logical Effort on input A :
	Logical Effort on input B :
	Total Logical Effort:

	Asymmetric Gates
	Asymmetric logic gates favor one input over another.
	Example: Suppose input A of a NAND gate is most critical:
	Select sizes so pullup and pulldown still match unit inverter
	Place critical input closest to output
	Logical Effort on input A :
	Logical Effort on input B :
	Total Logical Effort:

	Symmetry Factor
	In general, consider gates with arbitrary symmetry factor s:
	s = 1/2 in symmetric gate with equal sizes
	s = 1/4 in previous example
	Logical effort of inputs:
	Critical input approaches logical effort of inverter = 1 for small s
	But total logical effort is higher for asymmetric gates

	Skewed Gates
	Skewed gates favor one edge over the other.
	Example: suppose rising output of inverter is most critical.
	Downsize noncritical NMOS transistor to reduce total input capacitance
	Compare with unskewed inverter of the same rise/fall time to compute effort.
	Logical Effort for rising (up) output:
	Logical Effort for falling (down) output:
	Average Logical Effort:

	Skewed Gates
	Skewed gates favor one edge over the other.
	Example: suppose rising output of inverter is most important.
	Downsize noncritical NMOS transistor to reduce total input capacitance
	Compare with unskewed inverter of the same rise/fall time
	Logical Effort for rising (up) output:
	Logical Effort for falling (down) output:
	Average Logical Effort:

	HI- and LO-Skewed Gates
	DEF: Logical effort of a skewed gate for a particular transition is the ratio of the input capaci...
	Skew gates by reducing size of noncritical transistors.
	HI-Skewed gates favor rising outputs by downsizing NMOS transistors
	LO-Skewed gates favor falling outputs by downsizing PMOS transistors
	Logical effort is smaller for the favored input due to lower input capacitance
	Logical effort is larger for the other input

	Catalog of Skewed Gates
	Outline
	Introduction
	Delay in a Logic Gate
	Multi-stage Logic Networks
	Choosing the Best Number of Stages
	Example
	Asymmetric & Skewed Logic Gates
	Circuit Families
	Summary


	Pseudo-NMOS
	Pseudo-NMOS gates replace fat PMOS pullups on inputs with a resistive pullup.
	Resistive pullup must be much weaker than pulldown stack (e.g. 4x)
	Reduces logical effort because inputs must only drive the NMOS transistors
	However, NMOS current reduced by contention with pullup
	Unequal rising and falling efforts
	Logical effort can be applied to domino, pseudo-NMOS, and other logic families
	Example: Pseudo-NMOS inverter
	Logical Effort for falling (down) output:
	Logical Effort for rising (up) output:
	Average Logical Effort:

	Pseudo-NMOS
	Pseudo-NMOS gates replace fat PMOS pullups on inputs with a resistive pullup.
	Resistive pullup must be much weaker than pulldown stack (e.g. 4x)
	Reduces logical effort because inputs must only drive the NMOS transistors
	However, NMOS current reduced by contention with pullup
	Unequal rising and falling efforts
	Quiescent power dissipation when output is low
	Example: Pseudo-NMOS inverter
	Logical Effort for falling (down) output:
	Logical Effort for rising (up) output:
	Average Logical Effort:

	Pseudo-NMOS Gates
	Tradeoffs exist between power and effort by varying P/N ratio.

	Dynamic Logic
	Dynamic logic replace fat PMOS pullups on inputs with a clocked precharge.
	Reduces logical effort because inputs must only drive the NMOS transistors
	Eliminates pseudo-NMOS contention current and power dissipation
	Only the falling (“evaluation”) delay is critical
	Downsize noncritical precharge transistors to reduce clock load and power
	Example: Footless dynamic inverter
	Logical Effort for falling (down) output:
	Robust gates may require keepers and clocked pulldown transistors (“feet”).
	Feet prevent contention during precharge but increase logical effort
	Weak keepers prevent floating output at cost of slight contention during eval

	Dynamic Logic
	Dynamic logic replace fat PMOS pullups on inputs with a clocked precharge.
	Reduces logical effort because inputs must only drive the NMOS transistors
	Eliminates pseudo-NMOS contention current and power dissipation
	Critical pulldown (“evaluation”) delay independent of precharge size
	Example: Footless dynamic inverter
	Logical Effort for falling (down) output:
	Robust gates may require keepers and clocked pulldown transistors (“feet”).
	Feet prevent contention during precharge but increase logical effort
	Weak keepers prevent floating output at cost of slight contention during eval

	Dynamic Gates
	Domino Gates
	Dynamic gates require monotonically rising inputs.
	However, they generate monotonically falling outputs
	Alternate dynamic gates with HI-skew inverting static gates
	Dynamic / static pair is called a domino gate
	Example: Domino Buffer
	Constraints: maximum input capacitance = 3, load = 54
	Logical Effort: G =
	Branching Effort: B =
	Electrical Effort: H =
	Path Effort: F =
	Stage Effort: f =
	HI-Skew Inverter: size =
	Transistor Sizes: n = p =

	Domino Gates
	Dynamic gates require monotonically rising inputs.
	However, they generate monotonically falling outputs
	Alternate dynamic gates with HI-skew inverting static gates
	Dynamic / static pair is called a domino gate
	Example: Domino Buffer
	Constraints: maximum input capacitance = 3, load = 54
	Logical Effort: G = (1/3) * (5/6) = 5/18
	Branching Effort: B = 1
	Electrical Effort: H = 54/3 = 18
	Path Effort: F = (5/18) * 1 * 18 = 5
	Stage Effort: f =
	HI-Skew Inverter: size =54 * (5/6) / 2.2 = 20
	Transistor Sizes: n = 4 p = 16

	Comparison of Circuit Families
	Assumptions:
	PMOS transistors have half the drive of NMOS transistors
	Skewed gates downsize noncritical transistors by factor of two
	Pseudo-NMOS gates have 1/4 strength pullups
	Table 4: Summary of Logical Efforts
	Static CMOS
	1
	(n+2)/3
	(2n+1)/3
	HI-Skew
	5/6
	5/3
	(n/2+2)/3
	(n+4)/3
	(2n+.5)/3
	(4n+1)/3
	LO-Skew
	4/3
	2/3
	2(n+1)/3
	(n+1)/3
	2(n+1)/3
	(n+1)/3
	Pseudo-NMOS
	4/3
	4/9
	4n/3
	4n/9
	4/3
	4/9
	Footed Dynamic
	2/3
	(n+1)/3
	2/3
	Footless Dynamic
	1/3
	n/3
	1/3
	Adjust these numbers as you change your assumptions.
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	Summary
	Table 5: Key Definitions of Logical Effort
	Logical effort
	(seeTable�1)
	Electrical effort
	Branching effort
	n/a
	Effort
	Effort delay
	Number of stages
	Parasitic delay
	(seeTable�2)
	Delay


	Method of Logical Effort
	Logical effort helps you find the best number of stages, the best size of each gate, and the mini...
	Compute the path effort:
	Estimate the best number of stages:
	Estimate the minimum delay:
	Sketch your path using the number of stages computed above
	Compute the stage effort:
	Starting at the end, work backward to find transistor sizes:

	Limitations of Logical Effort
	Logical effort is not a panacea. Some limitations include:
	Chicken & egg problem
	how to estimate G and best number of stages before the path is designed
	Simplistic delay model
	neglects effects of input slopes
	Interconnect
	iteration required in designs with branching and non-negligible wire C or RC
	same convergence difficulties as in synthesis / placement problem
	Maximum speed only
	optimizes circuits for speed, not area or power under a fixed speed constraint

	Conclusion
	Logical effort is a useful concept for thinking about delay in circuits:
	Facilitates comparison of different circuit topologies
	Easily select gate sizes for minimum delay
	Circuits are fastest when effort delays of each stage are equal and about 4
	Path delay is insensitive to modest deviations from optimal sizes
	Logic gates can be skewed to favor one input or edge at the cost of another
	Logical effort can be applied to domino, pseudo-NMOS, and other logic families
	Logical effort provides a language for engineers to discuss why circuits are fast.
	Like any language, requires practice to master
	A book on Logical Effort is available from Morgan Kaufmann Publishers
	http://www.mkp.com/Logical_Effort
	Discusses P/N ratios, gate characterization, pass gate logic, forks, wires, etc.


