
EE 313 Lecture 5MAH 1

Lecture 5

Logical Effort
Using LE on a Decoder

Mark Horowitz
Computer Systems Laboratory

Stanford University
horowitz@stanford.edu

Copyright © 2002 by Mark Horowitz

EE 313 Lecture 5MAH 2

Overview

• Reading
– Harris, Logical Effort talk slides

• Read book if you want more information

– For sizing, there is nothing that good in either book
• Chandrakasan 14.3 describes some issues

– Amrutur, Fast Low Power Decoders
• Section I, II cover this lecture, Section III covers Lecture 6

• Overview
Having setup the basic optimization problems, we will next develop a
formalism for doing sizing with real gates. This formalism is called
logical effort. To get some practice using this method we will apply it to
the memory decoder we talked about in Lecture 3. This lecture will use
logical effort to optimize the performance of a decoder, and in the
process motivate some ‘creative’ ways to build CMOS logic gates.

EE 313 Lecture 5MAH 3

Logical Effort Formalism

• Let us express delays in terms of τinv

– Delay* = Delay/ τinv

• Delay of logic gate has two components:

– Delay* = EffortDelay + ParasiticDelay

• Effort delay again has two components:

– EffortDelay = LogicalEffort * ElectricalEffort

• ElectricalEffort is just fanout

– ElectricalEffort = Cload/Cin

• LogicalEffort describes the relative ability of gate topology to
deliver current for a given input capacitance

– LogicalEffort = τgate / τinv

EE 313 Lecture 5MAH 4

Logical Effort’s View of Gate Delays

0 1 2 3 4 5 6
0

2

4

6

8

10

inv
NAND
NOR
parasitic

Effort Delay

• Graphical model
– Slope is logical effort
– Y intercept is parasitic

delay

• More complex gates
– Have larger LE
– Have larger parasitics

• Logical Effort
– Cingate *Rdrivegate

Cininv*Rdriveinv

fanout

Gate delay

EE 313 Lecture 5MAH 5

2

2

22

11

4

4

22

4

4

2

2

Calculating Logical Effort for a Gate

• LE = 4/3 LE=5/3 LE=2; 4/3
• Note that the logical effort of all inputs does not always match

• Build the gates to have the same drive strength as a 2x pMOS,
1x nMOS inverter. The numbers on each transistor is relative to
the 1x nMOS transistor in the inverter. The Cin of inverter is 3x.

EE 313 Lecture 5MAH 6

Warm-ups with Logical Effort

• Frequency of an N stage ring oscillator
– LE=1, FO=1, γ=1; delay = 2 per inverter
– Delay through N inverters is 2*N,
– Frequency is 1/(4N) since it takes 2N time to change from a

high to a low, and another 2N to change from a low to a high

• Delay of a inverter with a fanout of 4
– LE=1, FO=4, γ=1; delay = 5 per inverter

• Normally we will report delays in terms of FO4 inverter delays
– Roughly equal to normalized delay divided by 5

EE 313 Lecture 5MAH 7

Logical Effort for Transmission Gates

• Need to consider the stage
– TG and drive gates

• Rdrive
– Set by path to Vdd/Gnd
– Resistance of logic gate + TG
– In this example it is 2x a 2/1

inverter from all paths
• Cin

– Depends on input
– 3 for inv, 4 for NAND, 2 TG

• LE
– 2 for inv, 8/3 for NAND, 4/3 TG

2

2

1

2

22

11

11

stage

EE 313 Lecture 5MAH 8

Using Logical Effort to Size Gates

2
x

y z 10CIn

LE 1 4/3 5/3 1

Fanout x/2 y/x z/y 10/z

• Know the effort delay is the same per stage
– Call this the effective fanout, (EF) since it is the delay for an

inverter with this fanout
• Need to find the total effective fanout for the chain

– This is the product of LE * Fanout of every stage
– =Product of LEs *fanout of chain

• In example:
– Total LE = 2.2, Fanout = 5
– Effective Fanout = 11

j

LE j

C in
j 1

C in
j

.
C load

C in
1 j

LE j
.

EE 313 Lecture 5MAH 9

Sizing Gates

• Given we know the total EF
– EF for each stage must be EF1/N

– Makes the EF of each stage the same
– Matches the required total

• Given the EF of each stage
– Fanout is EF/LE of that stage

• In the example the EF of each stage is 1.8= 111/4

– This is too small. We have too many stages

2
x

y z 10CIn

LE 1 4/3 5/3 1

Fanout x/2 y/x z/y 10/z

EE 313 Lecture 5MAH 10

Reducing Number of Logic Stages

• Reformulate logic
– If you have too low EF,

use more complex
gates, with fewer stages

– Often need to use AND-
OR-Invert gates or OR-
AND-Invert gates

– EF = 8.33, with two
stages

– EF per stage is 2.9
which is quite
reasonable

• X = 2*2.9 = 5.8

2 10CIn

LE 1 5/3

Fanout x/2 10/x

x

Note: this was the wrong optimization
if the top input was critical. Since we
have slowed down this path. Make
sure you are sizing the critical path.

EE 313 Lecture 5MAH 11

Branching Factors

• In some circuits there is fan-out in the conventional sense
– One gate drives a number of gates

• If all gates are on the critical path
– EFstage = LE * (Cj+1/Cj) *B (Branching factor)

• Total EF for a chain is then the product of LE and B for all the
gates on the chain. In the example = 4/3*2*10
– Electrical fanout per stage = EFstage/(LE*B)
– So X in the example would be around 2.6 = ½ * √27

10CIn

1

X

X

10CIn

EE 313 Lecture 5MAH 12

Logical Effort Summary

• Estimate the path effort
– EF = Π LE * Π B *Cload/Cin

• Estimate the optimal number of stages
– N* = log4(EF)

• Estimate the minimum delay
– 4N* + Parasitic delay

• Determine the actual number and type of gates
– Fit the required logic in N stages, where N is close to N*
– This may change slightly the path EF

• Determine the stage effort
– New EF1/N =f

• Working from either end, determine gate sizes
– Cin = Cout*LE*B/f

EE 313 Lecture 5MAH 13

Some Definitions

EE 313 Lecture 5MAH 14

Decoder Review

Decoder has two main jobs:
• Logic function

– Using N address bits
– Needs to select 1 of 2N wordlines
– This means the logical effort of the chain will be larger than 1

• Equal to LE of an N input AND gate

• Act as a buffer chain
– The address line has a large fanout

• Each address line ultimately needs to drive every AND gate
• A0 drives ½ of the decoders and A0_b drives the other ½

– The wordline capacitance can be large
• It has 2M cells on it, and a large wire capacitance

– Total fanout is proportional to the size of the memory

EE 313 Lecture 5MAH 15

Decoder Logic

• N address
– 2N lines
– A0, A0_b both needed

• Each decoder an AND gate
– Large fanin
– Must drive wordline

2N address lines

2N gates

EE 313 Lecture 5MAH 16

Example for Class

• Assume we are building a 256x256 memory (8KB memory)
• Assume that Cadd = 4* Ccell

• Total fanout on each address input is then 214

• We still need to build the decoder too!

• What is the minimum logical effort for 8 input AND gate?
– Since fanout is large don’t need to worry about # of stages
– We will need lots of inverters anyhow

• Many possibilities
– 2 NAND -Inv trees
– 2 NAND - 2 NOR trees
– 4 NAND - Inv tree
– Etc

EE 313 Lecture 5MAH 17

Optimal Static Decoder

• Logical Effort of building 4 input AND
– Two 2 NAND gates is 4/3*4/3 = 1.8
– One 4 NAND is 2
– 2-input NAND/2-input NOR is 4/3*5/3 = 2.2

• Which is best?
– Depends on the number of levels of logic

you need
– If you need lots of gates, 2-input gates are

often the best
• Using 2-input NAND gates

– An 8-input gate will take 6 levels of gates
• 8 to 4 outputs, 4 to 2 outputs, 2 to 1 output

EE 313 Lecture 5MAH 18

Number of Stages of Logic

• For our decoder (assuming 2 input NAND gates)
– The decoder has a total effort of

• 2.4 (which is 4/3 cubed) * FO (which is 214)
• Note that using other gates would not change this result very

much, so don’t sweat which gate you are going to use when
you figure out the total effective fanout.

– For a effective fanout of around 4 per stage
• This design would need around 7.5 stages which is Log4(215)

• But how is it going to be put together?
– How do we size the individual gates?
– Which wires do we run up the decoder?

EE 313 Lecture 5MAH 19

Predecode Options

• Two basic choices
– Can do a 2-4 predecode in 4 groups, with a 4 to 1 final gate

• Final gate has two level of and gates
• Uses only 16 address wires running across the decoder
• Final gates are larger

– Can do a 4-16 predecode in 2 groups, with a 2-1 final gate
• Uses 32 address lines running across the decoder
• Final gates are smaller

• Generally doing a larger predecode is better for two reasons
– More levels of logic before the wire capacitance
– Less capacitance switches each cycle (lower power)

EE 313 Lecture 5MAH 20

Decode Path

• By using a 4-16 predecode we
have move more stages of logic
before the long wire
– This decreases its effect on

the circuit, since it naturally
give us more stages of
buffers before driving the
wire

– Otherwise we would need
more stages in the
predecode, just to drive the
wire

CL

1 161 16

256

4 to 16 predecoder

A0 A1 A2A3

A0A1A2A3

EE 313 Lecture 5MAH 21

General Predecode

• This formula has A0 and A0_b as separate inputs
– Otherwise branching effort would be 2n

42

CL

1 4
3

4
3

1 1

branching effort =

logical effort =

a1

a0

a0a1
a0a1a2a3

Consider the 4 to 16 decoder:

total path effort PE= (LEp)(BEp) (FOp)
=(4/3)2(2)(4)CL/Cin

for n inputs

BEpis approx 2 n-1

x x x x

x

EE 313 Lecture 5MAH 22

Logical Effort of Predecoder

This works
back from the
load on the
predecoder for
both a 2-4
predecoder,
and a 4-16
predecode

If this gives you
a input
capacitance
that is too high,
you need to
add extra buffer
stages

1

1/f

4/3 / f2

(4/3*2) / f2 is the load here

4 to 16 decoder
(16/9*8)/f4

2 to 4 decoder

portion of
4 to 16 decoder

1/f
4/3 / f 2

(4/3) *4/ f3

(4/3)2*4/ f4

(4/3)
2

*8/f
4
load

1

EE 313 Lecture 5MAH 23

Logical Effort in Real Life

• There are fixed side loads you need to deal with
– This is the wire capacitance of the predecoder outputs
– Since these capacitances don’t scale with sizing, they don’t

fit in nicely to the logical effort frame work
• They also are caused by loading of non-critical gates
• But they are not a huge issue either

• The optimal sizes are often pretty large
– This will cause power and area issues
– Often you need to back off a little to make things fit better

EE 313 Lecture 5MAH 24

Handling Fixed Side Loads

• First solve the problem without the sideload: gives w=1, x=4, y=16
• Formally we can add the sideload and solve the problem again using

the fact that x/w = (A+y)/x and y/x=B/y. These equations can be
rewritten in an iterative form and then solved. But after iterating, this
produces x=5 y=18. But increasing the size of ‘y’ makes a very small
difference and adds power and area. It is probably not a good idea.

• So, if the side load is smaller than the gate load, we can size gates
beyond the sideload using the standard approach, and size the gates
before the sideload using the the sum of the sideload and the previous
result.

w x y

BA
fixed sideload

If B=64 and A=0, then w=1, x=4, y=16
(easy)

If B=64 and A=8, things get more difficult.

