Chapter 1

Introduction

Clocking of a digital system is one of the single most important decisions. Unfortunately much too often it has been taken lightly at the beginning of a design and proven to be very costly afterwards (Wagner 1988). Thus, it is not pretentious to dedicate an entire book to this subject. However, this book is limited to the even narrower issue of Clocked Storage Elements (CSE), known widely as Flip-Flops and Latches. The issues dealing with clock generation, frequency stability and control, and clock distribution are too numerous to be discussed in depth in this book and they will be covered briefly. Interested reader is referred to the other books dealing with those issues such as (Friedman 1995).
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Fig. 1.1: Clock frequency versus year for various representative machines
The importance of clocking has become even more emphasized as the clock speed is rising rapidly doubling every three years, as seen in Fig. 1.1. However, the clock uncertainties have not been scaling proportionally with the frequency increase, and increasing portion of the clock cycle has been spent on the clocking overhead. The ability to absorb clock skew or to make the clocked storage element faster reflects directly in the performance improvement, since the performance is directly proportional to the clock frequency of a given system. Such performance improvements are very difficult to obtain through traditional techniques used on the architecture or micro-architecture level. Those are the overhead imposed by the CSE delay and clock uncertainties.  Thus, setting the clock to the right frequency, and utilizing every available pico-second of the critical path, is increasingly important. As the clock frequency reaches 5-10GHz range, it is our opinion that traditional clocking techniques will reach their limit. New ideas and new ways of designing digital systems will be required. We do not pretend to know what the future trend in clocking should be, but some ideas will be discussed in this book which, we feel, may provide a good path to follow.
Table. 1.1: Clock frequency of some known historic computers and super-computers (Wagner1988)

	System
	Intro Date
	Technology
	Class
	Nominal Clock

Period (nS)
	Nominal Clock

Freq. (MHz)

	Cray-X-MP

Cray-1S,-1M
	1982

1980
	MSI ECL

MSI ECL
	Vector Processor

Vector Processor
	9.5

12.5
	105.3

80.0

	CDC Cyber 180/990

IBM 3090

Amdahl 58

IBM 308X

Univac 1100/90
	1985

1986

1982

1981

1984
	ECL

ECL

LSI ECL

LSI TTL

LSI ECL
	Mainframe

Mainframe

Mainframe

Mainframe

Mainframe
	16.0

18.5

23.0

24.5, 26.0

30.0
	62.5

54.1

43.5

40.8,38.5

33.3

	MIPS-X

HP-900

Motorola 68020

Bellmac-32A
	1987

1982

1985

1982
	VLSI CMOS

VLSI CMOS

VLSI CMOS

VLSI CMOS
	Microprocessor

Micro-mainframe

Microprocessor

Microprocessor
	50.0

55.6

60.0

125.0
	20.0

18.0

16.7

8.0


*from IEEE Design & Test of Computers

Historically computers built in the past were large in size and they filled up several electronic cabinets occupying entire floors of a large air-conditioned room. They were built from discrete components or used a few LSI chips in the later models. Those systems were clocked at frequencies of about a MHz or a few tens of MHz, as shown in Table 1.1. The first electronic computer, ENIAC, for example, operated at the maximal clock frequency of 18 KHz. Given the low scale of integration it was possible to “tune” the clock. This was achieved by either adjusting the length of wires distributing clock signals, or by “tuning” the various delay elements on the cabinets or the circuit boards, so that the clock signal arrived to every circuit board in approximately the same time. With advent of VLSI technology, and increased integration levels, the ability to “tune” the clock has been greatly diminished.  The clock signals are generated and distributed internally in the VLSI chip. Therefore, much burden has fallen onto the clocked storage element to absorb clock signal variations at various points of the VLSI chip, known as the “clock skew”.

1.1 Clocking in synchronous systems

The notion of clock and clocking is essential for the concept of synchronous design of digital systems. The synchronous system assumes the presence of the storage elements and combinational logic, which together comprise a Finite-State Machine (FSM). The changes in the FSM are in general result of two events: clock and input signal changes, as illustrated in Fig.1.2.
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Fig. 1.2: The concept of Finite-State Machine

The next state Sn+1 is a function of the present state Sn and the logic value of the input signals: Sn+1 = Sn+1(Sn, Xn). The remaining question is: when in time will FSM change to the next state Sn+1. This change is determined by the type of the clocked storage elements used and the clock signal. The function of the clock signal is to provide a reference point in time when the FSM changes from the present Sn to the next state Sn+1. This process is illustrated in Fig.1.3.
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Fig. 1.3: State changes in the finite-state machine

In Fig.1.3, we have implicitly assumed that the moment when the state changes from Sn to Sn+1 is determined by the change of the clock signal from logic “0” to logic “1”. In fact this is determined by the type of the clocked storage elements and its functionality.  We will be discussing this point in details further in this book. For the purpose of this discussion let us just observe that without the presence of the clock signal the change from Sn to Sn+1 would not be precisely determined. There are digital systems where this change is not caused by the presence, and more precisely, by the change of the clock signal, but by the change of the data signal, for example. Such systems are known as “asynchronous systems” because they do not require the presence of the clock signal in order to cause an orderly transition from Sn to Sn+1. Much research has been done in the last several decades in defining a workable “asynchronous system”. However, a practical design is yet to be produced. Recently one of the microprocessors was designed to operate in an asynchronous manner and it has been claimed that some small advantages in power consumption were obtained (Woods et al. 1997). In spite of that, the practicality as well as advantage of “asynchronous design” is yet to be proven (Furber et al. 2001). In this book, we will limit our discussion to synchronous systems.

If we choose to unroll the state diagram of the FSM in time, we obtain the illustration of the pipelined design, Fig.1.3. In many cases when dealing with the synchronous design, the delay throughout the logic block is excessive and the signal change cannot propagate to the inputs of the clocked storage elements in time to affect the change to the next state. In such a case, the machine has not met the “critical path requirement”. Such FSM will fail in its functionality because the changes initiated by the input signals will have no effect. This is because the time allowed to change to the next state Sn+1 is too short and the input signal change did not have sufficient time to propagate. In technical jargon this is known as “critical path violation”. Critical path is defined as the number of gates in the longest (slowest) path through the logic and it takes certain time for signal to propagate from input to output. In those cases, an additional state (or states) is inserted to assure that every transition proceeds orderly and in a timely fashion. A diagram of a pipelined system is shown in Fig. 1.4.
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Fig. 1.4: Diagram of a pipelined system

Several clock cycles may be needed in order to move through various stages of a computer system in time. In general, execution of an instruction may require several “machine cycles”, where machine cycle is defined as the time interval necessary to complete one atomic operation in the process of executing an instruction. One machine cycle normally take several clock cycles. The machine cycle is often designated by a waveform defining its own cycle. This is especially true if micro-code was used to control the machine. In the past micro-coding was a popular concept and it was extensively used in Complex Instruction Set Computers (CISC). In those cases a process of executing an instruction required several machine cycles. During each machine cycle one micro-instruction was executed. It normally took several micro-instructions to execute an instruction. Each machine cycle required one or several register transfers or passes through several pipeline stages. That in turn required one or more clock cycles, or multiple phases of the clock. Thus, the clocking was quite complex and encompassed several levels of hierarchy. This is illustrated in Fig. 1.5. where three distinct machine cycles: Instruction Fetch, Dependency Resolution and Instruction Issue are shown. Dependency Resolution can be quite complex operation requiring several register-transfers, thus several clock cycles are necessary to complete this operation (as shown in Fig. 1.5). Machine would normally scan the cache block for several instructions and try to resolve any data dependencies. At the end of this cycle, operands will be fetched and placed in the corresponding registers (reservation stations) of the execution units.
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Fig. 1.5: Machine execution phases with respect to the clock cycles

In micro-coded machines a large disparity between the speed of the clock and the speed of logic existed. It could take several clock cycles or even several tens or hundreds of clock cycles in order to execute one instruction. A more complex instruction required many more clock cycles. A number of “logic levels” in the “critical path” was of the order of several tens of logic levels and 40-50 logic levels were not uncommon.  Thus, the time associated with the clock and clocking was not as critical as it is today.

As the level of integration increased, combined with  the speed increase of today’s machines, the number of logic levels in the critical path started to diminish rapidly. Today’s high-speed processors are either implementing Reduced Instruction Set Computer (RISC) architecture, or are running (Complex Instruction Set Computer) CISC code. However, to be able to efficiently implement super-scalar execution cores, even CISC computers are translating their instructions into simple RISC type operations called: ROPs (RISC Operations).  Their micro-architecture may execute one or several ROPs in place of one CISC instruction. Therefore, the concept of micro-coding has disappeared and so did the concept of machine cycle when implementing a particular machine architecture. The instructions (or ROPs) are executed in one cycle, which is usually driven by a single-phase clock. In other words one instruction (or one ROP) is executed in every clock cycle. The levels of hierarchy that existed between the clock cycle and instruction execution have disappeared. In addition, the number of pipeline stages depth keeps increasing in order to accommodate the trend in the ever-rising speed. As a result the amount of logic between the two CSE keep decreasing. Today 10 levels of logic in the critical path are more common. This number is still decreasing, as illustrated in Fig. 1.6. Any overhead associated with the clock system and clocking mechanism is directly and adversely affecting the machine performance and is therefore critically important.
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Fig. 1.6: Increase in the clock frequency and decrease in the number of logic levels in the pipeline (courtesy of Intel Corp.)

With this introduction we should be able to understand the function of the clock signal before we proceed with other definitions. The function of the clock signal can be compared to the function of the metronome in music. Similarly, in digital system the clock designates the exact moment when the state is changing as well as when the next state is to be captured. Also, all of the logic operations have to finish before the tick of the clock because their final values are being captured by that clock event. Therefore, the clock provides the time reference point, which determines the flow of the data in the digital system.

1.2 System clock design

Clock system is usually divided into two distinct categories: Clock Generation and Clock Distribution. However, this classification should be extended by adding Clocked Storage Elements (CSE) as an additional category because nature of the clocked storage elements is intimately connected to the clock system generation and distribution and it is the nature of clocked storage elements that dictates requirements imposed on the clock system. This relationship is best illustrated by the choice of the clocking scheme as shown in Fig. 1.7. The clock system could consist of a single-phase clock, two-phase, or multiple phase clocks. Transfer of data between Clocked Storage Elements in the system is usually accomplished by using an active phase of the clock. Thus, the clock phase controls the transfer of the information among the CSEs in the system. To prevent data from moving further then desired (achieving non-transparency), the clock phases are separated in time. This is referred to as non-overlapped clock phases. In high-performance systems various phases of the clock can be overlapped in order to increase the total system performance.


[image: image7.wmf]1

f

2

f

(b)

(a)

Clk

3

f

4

f

k

f

2

f

1

f


Fig. 1.7: System Clocking Schemes: (a.) single-phase, (b.) two-phase, (c.) multiple-phase clock

In the older systems it was more common to use multiple-phase clocks (Siewiorek, Bell and Newell 1982). For storage elements, they used transparent Latches or Flip-Flops triggered by short pulses. As the frequency of operation kept increasing it became exceedingly difficult to control various phases of the clock and their relationship to each other.

The two-phase clock is a robust scheme and is compatible with the design for testability, a desired feature of a complex computer system. Such a scheme, which incorporates a test mode, has been used in generations of IBM mainframe computers as a part of Level Sensitive Scan Design (LSSD) design methodology (LSSD 1985). The two non-overlapping phases of the clock assure a robust clocking system, tolerant to the manufacturing and process parameter changes.

With continuing quest for more speed and increased level of integration, even the two phases of the clock became difficult to control on the VLSI chip. That led to the wide-spread adoption of the single-phase clock today. The two-phase clocking is still used, however it is a single-phase clock that is distributed thoughout the system and the two necessary phases are generated locally. This technique achieves two goals: (a.) necessary amplification of the clock signals and ability to drive a large row of storage elements (register for example), (b.) generation of two clock phases and compatibility with scan test methodology. A scheme used for local two phase-clock generation from a single-phase clock distributed on the chip is shown in Fig. 1.8. Such a scheme is also capable of supporting the TEST (SCAN) and debug mode. The two phases of the clock: C1 and C2 are generated from the global clock CLKG. Specialized circuitry was added to allow for edge shifting at the cycle boundary (Sigal et al, 1997). Enabling and disabling of the clock phases is used to switch from the normal operation into the scan mode that is used for testing. 
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Fig. 1.8: Local generation of two-phase clocks as used in IBM S/390 G4 (Sigal 1997)

1.2.1 Global system clock generation

Clock generation begins on a system board, where the global system clock reference is generated from a "crystal" oscillator. This is a circuit that uses a piezoelectric quartz crystal or some other ceramic material, as a mechanical representation of an electrical LRC series resonant circuit. Piezoelectric effect in a material occurs with the exchange of energy between the mechanical forces and applied electric field. In quartz crystal, the physical dimensions of the lattice can very precisely determine the oscillation frequency. Very good property of such resonators is extremely high Q-factor, typically 1,000-10,000. By attaching a non-linear element (such as NFET) to the resonator, the series resistance of the resonator is cancelled by the negative resistance of the non-linear element and "loss-less" oscillations are maintained. Due to the high quality Q factor, the variation of the resonant frequency of the oscillator is only a few parts-per-million (ppm). Two realizations of the clock oscillator are shown in Fig. 1.9. (a) and (b).
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Fig. 1.9: Crystal oscillator (a), Temperature compensated crystal oscillator (b)

System clock is set to directly correspond to the speed of data busses on the system board, i.e. from 66MHz, 100MHz, 133MHz, 266MHz and higher, in PC boards, to a few hundred MHz in specialized systems. However, the on-chip clocks operate at frequencies that are in the GHz range. Even if the on-board clock signal, of the same frequency as the on-chip clock, could be generated, it would be very hard to bring it on-chip, because of large parasitic capacitances and inductances in the package and bond-wires/balls that connect to the die. For these reasons, the low frequency system clock is first brought on-chip and then frequency multiplication is performed to achieve desired on-chip clock rate.
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Fig. 1.10: On-chip clock insertion delay

The time difference between the external clock and the internal clock, insertion delay (shown in Fig.1.10), increases relative to clock period, with the increase of the clock frequency. Input data are synchronized with external clock but can directly be stored in the storage elements clocked by the internal clock. Any insertion delay between the external and internal clock directly impacts the cycle time of the processor. The insertion delay is caused by the on-chip clock driver delay with inverter chain representing the equivalent of the clock driver tree, and clocked storage elements representing the total clock load. Several nF of clock load are routinely encountered in modern microprocessor designs, (Young et al. 1992). The clock driver tree requires 5 or more FO4 delays, which easily attributes to over 50% of the processor cycle time. Moreover, due to process and environmental variations, the delay of the clock driver may vary, causing unknown phase relationship of the external and internal clock.

The problem of external and internal clock alignment can be solved using the phase-locked-loop (PLL). The main task of the PLL is to align the external reference clock with the on-chip internal clock at the end of the clock driver, thus effectively removing the driver delay.

1.2.2 On-chip clock generation

There are two main types of PLLs. In the first type, the PLL has its own voltage controlled oscillator (VCO) that generates the internal clock which is then aligned to the external reference clock by the virtue of negative feedback, as shown in Fig. 1.11. The phase difference between the external reference clock and the internal distributed clock is detected with the phase detector (PD), and low-pass filtered (LP), to create the control voltage for the VCO, steering the oscillation frequency in order to align the external and internal clocks, ideally achieving a zero phase difference. At this point a so-called “phase-lock” is achieved, (Gardner 1979). This type of PLL was introduced first and hence, historically kept the name PLL. One example of the PLL operation is shown in Fig. 1.11, where the output of the phase detector is the XOR of the external clock reference and the internal clock, producing pulses p, which are then low-pass filtered to produce the slowly changing control voltage cv, which changes the frequency of the VCO and hence the internal clock. At the first, the external and internal clock are at a phase difference of 135o, but after the phase difference is detected and frequency of the internal clock changes, the phase difference is decreased to 45o.
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Fig. 1.11: The Phase-Locked Loop block diagram and operation

The other type of the PLL is delay-line based or delay-locked loop (DLL). As shown in Fig. 1.12, the VCO in the PLL is replaced by the Voltage Controlled Delay-Line (VCDL) which delays the external clock, feeding the clock driver, until the internal clock becomes aligned with the external clock, at which point the control voltage of the VCDL will become unchanged and the loop will stay in lock. Similar example to that in Fig. 1.11 is now illustrated in Fig. 1.12. The main difference between the examples is that unlike Fig. 1.11, the internal clock in Fig. 1.12 does not change frequency over time, but is delayed in order to achieve phase alignment. The key point to realize is that in both PLL and DLL, the alignment is possible because both external and internal clocks are periodic, hence delaying them by an integer number of cycles with respect to each other results in phase difference cancellation. Otherwise, it would not be physically possible to subtract this delay. It is only possible to add some more delay until the total delay becomes integer number of clock cycles.
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Fig. 1.12: The Delay-Locked Loop block diagram and operation

In addition to clock alignment, PLLs can perform frequency multiplication, which is very useful in microprocessor systems. Fig. 1.13. shows general block diagram where the VCO operates at fvco=fext(B(C/A, and the frequency of the internal clock is fint= fvco/B. Typically, the value of B is two, to guarantee 50% duty cycle of the internal clock and the value of A is one. The value of C is set to the ratio between the desired internal clock frequency and the external (system) clock frequency (Young et al. 1992), always conveniently set to be an integer value, preferably base two. There are, however, cases where multiple values of A, B and C are used in the power-up sequence to avoid excessive supply noise on large chips, like Alpha 21264, (von Kaenel et al. 1998).
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Fig. 1.13: PLL frequency multiplication

From the noise performance standpoint, the VCO (VCDL) is the most critical part of the PLL (DLL). It is therefore illustrative to compare most common design styles and discuss the possible tradeoffs. VCO is built either as a ring oscillator topology, Fig. 1.14 or LC tank oscillator, Fig. 1.15. Ring-oscillator based VCOs are relatively easy to implement and require much less area than LC tank oscillators. By regulating the supply, inverter delay is controlled and hence so is the frequency of oscillation. The minimum number of stages to sustain oscillations is 3, since it provides sufficient delay, while typical numbers range from 3-7 or more stages, (Hajimiri 1998).
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Fig. 1.14: Ring-oscillator based VCO, with CMOS inverters as delay elements

With increase in clock frequency and use of on-chip spiral inductors, feasibile in today's technology, LC tank based VCOs are becoming increasingly popular due to the superior phase noise performance. However, LC tank oscillators do not always perform better than ring-oscillators. This largely depends on the dominant source of noise and number of stages in the output buffer and ring-oscillator, (Hajimiri 1998). Typical LC tank VCO is shown in Fig. 1.15 with equivalent small-signal model and frequency characteristic as a function of applied control voltage, cv.
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Fig. 1.15: LC tank based VCO, equivalent ac circuit model and current waveform.

Voltage Controlled Delay Line can be built of the same delay elements as the ring oscillator VCO. The most often used delay elements are differential pairs which provide good power supply rejection, and the recently popular inverters with power supply regulator that performs power supply filtering and effectively shields the inverters of any power supply noise, (von Kaenl et al. 1998; Sidiropoulos et al. 2000). For details on other building blocks of the PLL and DLL we refer the reader to the literature (Gardner 1979; Kim et al. 1994; Razavi 1996). The following section briefly describes some of the most important noise sources and tradeoffs involved in PLL and DLL design as well as comparative analysis of PLL vs. DLL performance.

1.2.3 Noise sources and loop bandwidth

For the purposes of high-level analysis, we divide the noise sources into three main categories: 1) noise of the reference clock, 2) noise induced in the VCO (or VCDL) and 3) noise induced on the clock during distribution from the PLL (DLL) to the CSE, here defined as clock driver noise. Since these noise sources are introduced into the loop at different locations, the transfer functions to the output are different for each of them. For example, input reference noise is low pass filtered at the output of the PLL, with filter bandwidth set by the bandwidth of the PLL. On the other hand, input reference noise passes directly to the output of the DLL, through the VCDL, without any filtering. Noise induced in the VCO is fed-back to the VCO input (in ring-oscillator implementation) and "accumulated" over time (Kim et al. 1994). Any noise induced in VCO or VCDL is tracked and rejected by the loop, up to the loop bandwidth. Therefore, the transfer function of noise from VCO (VCDL) to the output is high-pass, contrary to the one from the input reference to the output, which is low-pass. This immediately points to the possible tradeoff between the amount of input reference noise and VCO noise, at the output of the PLL. Indeed, optimal bandwidth at which these two noise sources are balanced exists and minimum total noise is achieved, (Lim et al. 2000, Mansuri and Yang 2002). In summary, DLLs have better performance in cases where reference clock is not the dominant source of clock uncertainty and most dominant noise occurs from the noise induced in the VCDL line. PLLs are, however, better in cases where the input reference noise is dominant, and typically worse in cases of dominant noise induced in the VCO, due to the noise "accumulation" effect, given that compared VCOs and VCDLs are implemented using the same type of delay element.

The analysis above is somewhat blurred in modern systems, due to the noise induced in the clock driver. While VCOs and VCDLs are typically implemented using 3-7 delay stages, due to the increasing amount of clock load, clock driver depth increases from generation to generation, and is over 5 stages in modern processors. Given that sensitivity of the delay elements in VCO or VCDL is typically order of magnitude better than that of the inverter, which has 1% delay variation for 1% power supply variation, it can be easily seen that the overall noise of the distributed on-chip clock is usually dominated by the noise induced in the clock driver tree.

1.2.4 Design considerations

Regarding the design of the PLLs and DLLs, PLLs are typically harder to design, due to the stability issues (PLL is a second order system due to the integrating function of the VCO), but offer more flexibility than DLLs, i.e. wider locking range, frequency multiplication, etc. DLLs are simpler to design, given that they are first-order systems (unconditionally stable), but offer limited lock range. However, it is true that more complicated DLLs that offer similar flexibility to PLLs are also very complex systems, (Sidiropulos and Horowitz 1997).

PLLs are mostly used in modern processors to multiply the frequency of the external system clock and reject any existing high frequency reference clock noise. DLLs have recently found application as de-skewing elements in high-performance processors, synchronizing different clock domains on a die to the global clock reference from the PLL, (Rusu and Tam 2000; Xanthopoulos et al. 2001). It should be noted, however, that these approaches only deal with the DC portion of the noise on the clock (skew), while AC portion of the noise (jitter) is not eliminated. The jitter induced in the clock driver by power supply variations still presents the dominant source of noise in the on-chip clock distribution and needs to be budgeted for in any clocking methodology.

1.3 Timing parameters

It is appropriate at this point to consider the clock distribution system and define the clock parameters that will be used thought this text. For the purpose of the definition we should start with the Fig. 1.16 showing timing parameters for a single-phase clock.
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Fig. 1.16: Clock Parameters: Period, Width, Rise and Fall Times

The clock signal is characterized by its period T that is inversely proportional to the clock frequency f. The time during which the clock is active (assuming logic 1 value) is defined as clock width W. The ratio of W/T, and (T-W)/T is also defined as clock duty cycle (w). Usually, the clock signal has a symmetric shape, which implies 50-50 duty cycle. This is also the best we can expect, especially when distributing a high frequency clock. Another important point is the ability to precisely control the duty cycle. This point is of special importance when each phase of the clock is used for the logic evaluation, or when we trigger the clock storage elements on each edge of the clock  (as we will see later in the book). Some recently reported work demonstrates the ability to control the duty cycle to within 
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 (Bailey and Benschneider 1998).

There are two other important timing parameters that we need to define: Clock Skew and Clock Jitter.
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Fig. 1.17: Clock Parameters: Period, Width, Clock Skew and Clock Jitter

Clock skew

Clock skew is defined as a spatial variation of the clock signal as distributed thought the system. The clock skew is measured from some reference point in the system; the clock entry point to the board or VLSI chip, or the central point from where the clock distribution starts. Due to the various delay characteristics of the clock paths to the various points in the system, as well as different loading of the clock signal at different points, the clock signal arrives at different time to different points. This difference measured from the reference point to the particular destination CSE is defined as the clock skew. Further we can distinguish global clock skew and local clock skew. We define global clock skew as a maximal difference between two clock signals reaching any of the two storage elements on the chip, or in the system, that exchange data under the control of the same clock. Our definition of the clock skew describes global clock skew. Clock skew occurring between two adjacent CSEs represents local clock skew. If the two adjacent clock storage elements are connected with no logic in-between, the problem of data race-through can occur. Therefore characterizing a maximum local clock skew is important. Both clock skew definitions are equally important in high-performance system design.

Clock jitter

Clock jitter is defined as temporal variation of the clock signal with regard to the reference transition (reference edge) of the clock signal as illustrated in Fig. 1.17. Clock jitter represents edge-to-edge variation of the clock signal in time. As such clock jitter can also be classified as: long-term jitter and cycle-to-cycle (or edge-to-edge) jitter. The edge-to-edge clock jitter which clock signal variation between two consecutive clock edges. In the course of high-speed logic design we are more concerned about cycle-to-cycle clock jitter because it is this phenomena that affects the time available to the logic. Long-term jitter represents clock edge variation over a large number of clock cycles (long-term). While short-term jitter is dependent on the type and quality of the clock generator, long-term jitter is a result of the accumulative effects. Long-term jitter is usually affecting communication and synchronization between various blocks within a system that are a distance apart and need to operate in synchrony.

1.4 Clock signal distribution

1.4.1. Historical Overview

Usually clock signal was generated using quartz crystal controlled oscillator which provides accurate and stable frequency. Given the size limitation of the quartz crystal, the frequency of such generated clock signal cannot be very high and frequencies in excess of 30-50 MHz are rarely generated using quartz crystal. The clock signal is then conditioned and amplified to reach desirable driving strength before it is being applied to the outside pins of a VLSI chip from which it is driving an internal PLL or DLL. Before reaching the boundaries of the VLSI chip adjustments to its shape and form are possible. In contrast, in older computer systems that consisted of several electronic cabinets distributed over the “computer floor”, and containing number of printed circuit boards, adjustment to the clock signal were made at each level. Thus, the clock signals were distributed over longer distances and over several levels including the cabinet, printed circuit boards and internal modules. Those separate entities entered by the clock signal were referred to as “logic islands”, the term introduced by Amdahl (Flynn and Amdahl 1965; Kogge 1981). The concept of “logic islands” is illustrated in Fig. 1.18.
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Fig. 1.18: The concept of Logic Islands (Flynn and Amdahl 1965)

At the point of the clock entry to the board or cabinet (referred to as an “island”), further tuning and delay adjusting of the clock signal is possible, as shown in Fig. 1.19. Those elements are usually referred to as “tuning points”. The positioning of “tuning points” in a system is illustrated in Fig.1.19. Various clock shaping, forming and tunable delay elements are employed, and some of them are illustrated in Fig. 1.20. They make it possible to control the timing of the “leading” as well as the “trailing edge” of the clock signal, and to produce an “early” as well as “late” clock signal with reference to the nominal clock.

By adjusting the clock delay and subsequently shaping the edges of the clock signal it is possible to create “early”, “nominal” and “late” clocks as shown in Fig. 1.21.c. Those clocks can be routed to various points on the board accordingly. Older systems had much greater control of the clock signal than what is possible today because once the clock reaches the boundary of the LSI chip, tuning and shaping the clock is not possible. This is because it is much more difficult to perform tuning on the chip due to the lack of external control and greater parameter variations on the chip. It is also difficult to build tuning elements such as inductors on the chip and to make adjustments from outside.
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Fig. 1.19: Clock Tuning Points (Wagner 1988)

With the advent of integration, the systems have shrunk dramatically in size. Today, a processor including several levels of cache memory contained entirely on a VLSI chip is quite common. The capacity of a VLSI chip for hundreds of millions of transistors makes it possible to integrate not only one processor, but also a multi-processor system onto a single chip. The inability to introduce tuning elements on the chip further aggravates the problem of distributing the clock signals precisely in time since it is not possible to make further manual adjustment to the clock signal once it has crossed the boundaries of the VLSI chip. Therefore a careful planning and design of the on-chip clock distribution network is one of the most critical tasks in a high performance processor design.
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Fig. 1.20: Various clock shaping elements and obtained clock signals (Wagner 1988)
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Fig. 1.21: Clock distribution network within a system (a), on the board (b) tuning of the clock (c) (Wagner 1988)

1.4.2. Clock Distribution in Modern Microprocessors

Typically on a complex processor chip the clock signal has to be distributed to several hundreds of thousands of the clocked storage elements (Flip-Flops and Latches). Therefore, the clock signal has the largest fan-out of any node in the design, which requires several levels of amplification (buffering). As a consequence of such a load imposed on the clock signal, the clock system by itself can use up to 40-50% of the power of the entire VLSI chip  (Gronowsky et al. 1998).  However, power is not the only problem associated with the distribution of the clock signals. Since we are dealing with synchronous systems we must assure that every clocked storage element receives the clock signal at precisely the same moment in time. Tracing the path of the clock signal from its origin, entry point to the VLSI chip, to different clocked storage elements receiving it, the clock signal traverses different paths on the VLSI chip. Those paths may differ in several attributes such as the length of the path (wire), the physical properties of the material along different paths, the differences in clock buffers on the chip as a consequence of the process variations, and the general effects of non-uniformities of the chip and of the process. The negative effect of those variations on the synchronous design is that different points on the chip will receive the clock signal at different moments in time which results in further increase in both: local and global clock uncertainties.

There are several methods for the on-chip clock signal distribution that attempt to minimize the clock skew and to contain the power dissipated by the clock system. The clock can be distributed in several ways of which it is worth to consider the two typical cases: (a) an RC matched tree and (b) a grid shown in Fig. 1.22.
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Fig. 1.22: Clock distribution methods: (a) an RC matched tree and (b) a grid (Bailey and Benschneider 1998)

An RC matched tree (Fig.1.22.a) is a method of assuring  (to the best of our abilities) that all the paths in the clock distribution tree have the same delay which includes the same resistance-capacitance of the wire, as well as the same number of equal size buffers on the clock signal path to the storage element. There are several different topologies used to implement an RC matched tree. The common objective is to do the best possible in balancing various clock signal paths across the variations points on the VLSI chip. An example of four different topologies, as taken from Bailey, (Chandrakasan et al. 2001) is shown in Fig. 1.23.
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Fig. 1.23: RC delay matched clock distribution topologies: (a) a binary tree (b) and H tree (c) and X tree (d) an arbitrary matched RC matched tree (from Bailey in Chandrakasan et al. 2001)

If we had superior Computer Aided Design (CAD) tools, a perfect and uniform process and ability to route wires and balance loads with a high degree of flexibility, a matched RC delay clock distribution (Fig.1.23) would be preferable to grid (b) as shown in Fig.1.22.b and Fig.1.24. However, none of that is true. Therefore the grid is used when clock distribution on the chip has to be very precisely controlled which is paid by higher clock power, as is the case of high performance systems. This is not difficult to understand given that in a grid arrangement a high-capacitance plate has been driven by buffers connected at various points.

One such example is DEC Alpha processor, which was a speed champion for several generations of microprocessors starting with their first 200MHz design introduced in 1992 and ending with 600MHz design in 1998 (Dobberpuhl et al. 1992; Benschneider et al. 1995; Gieske et al. 1997). The picture of the clock distribution grid is shown in Fig. 1.24.

[image: image25.png]



Fig. 1.24: Clock distribution grid used in DEC Alpha 600MHz processor (Bailey and Benschneider 1998), courtesy of IEEE.

With an increased number of transistors, local variations in device geometry and supply voltage become a more important component of the clock skew, which cannot be compensated for with layout (Schutz and Wallace 1998). More sophisticated clock distribution than a simple RC matched or grid based schemes is thus necessary. One such example will be described in the Chapter 9 of this book. The active schemes with adaptive digital deskewing typically reduce clock skew of the simple passive clock networks by an order of magnitude, allowing tighter control of the clock period and higher clock rates. The digital deskewing circuit for clock distribution compensates out the static components of skew (load, interconnect, and device mismatches). Additionally it compensates for the dynamic variations of temperature and voltage gradients between the two spines during all phases of microprocessor active operation.
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