EEC280 Fall 2005 Prof. Vojin G. Oklobdzija

Homework #2 Due: November 1, 2005

For problems 1-5, normalize each answer for g and p to following reference inverter. Use equal pull-up and pull-down sizing unless stated otherwise.

$$g = \frac{R_{gate}C_{in-gate}}{R_{inv}C_{in-inv}}$$
$$p = \frac{R_{gate}C_{p-gate}}{R_{inv}C_{in-inv}}$$

For the reference inverter:
$$\begin{split} &g_{up\text{-}inv} = g_{down\text{-}inv} = 1 \\ &p_{up\text{-}inv} = p_{down\text{-}inv} = 1 \end{split}$$

Problem 1:

Size each gate to have the same pull up and pull down resistance as the reference inverter. Calculate the logical effort (g_{up} , g_{down} , g_{avg}) and parasitic delay (p_{up} , p_{down} , p_{avg}) for each input of the following gates.

Note:
$$g_{avg} = \frac{1}{2}(g_{up} + g_{down})$$

 $p_{avg} = \frac{1}{2}(p_{up} + p_{down})$

(b)

Problem 2:

Calculate the logical effort $(g_{up}, g_{down}, g_{avg})$ for each input of the following asymmetric gates.

Problem 3:

Find the p/n ratio for the inverter which gives the best delay for the following path.

Note: Use g_{avg} and p_{avg} for your calculation

$$C_{out} = 256C_{inv}, C_{in} = C_{inv}.$$

Problem 4:

Given the following path, with $C_{out} = 64C_{inv}$, $C_{in} = C_1 = C_{inv}$. Size the circuit using LE and determine the total delay for (See Horowitz's slides):

- a. $C_{offpath} = 0 C_{inv}$
- b. $C_{offpath} = 5 C_{inv}$
- c. $C_{offpath} = 30 C_{inv}$
- d. $C_{offpath} = 120 C_{inv}$

Comment on each case.

Problem 5:

Assume $C_{out} = 64 C_{inv}$ and $C_{in} = C_1 = C_{inv}$.

- a. Size the following circuit using simple branching. Report the total delay.
- b. Size the circuit using exact branching and report the total delay.
- c. Identify the critical path on the schematic. Explain your selection.

d. Comment on what would happen if the load at $Output_1$, $Output_2$ and $Output_3$ differ. Would the critical path change?

Problem 6:

Use the following characterization setup (shown for a nand2).

Note: For Inverter characterization, replace each gate in the setup with Inverters, for NOR2 replace each gate in the setup with NOR2.

(a) Find the p/n ratio for an inverter where $g_{up} = g_{down}$

(b) Characterize an Inverter, NAND2, and NOR2 using HSPICE. Plot the delay vs. h relationship for each gate and input (for h = 2 to 10)

(c) Normalize the delay to τ -inv and plot the delay vs. h relationship (for h = 2 to 10)

(d) Report the g and p for each input of each gate normalized to the g and p of the inverter. Do the values for g and p differ for each input? If yes, explain.

(e) Do the values of g_{up} and g_{down} for *Input a* on the NAND2 differ? *Input b*? If yes, explain.

(f) Do the values obtained for g and p differ from the hand estimates? If yes, explain.