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Abstract: The architecture* of the newly announced IBM System/360  features four innovations: 

1. An approach to storage  which  permits  and  exploits  very large capacities,  hierarchies of speeds, read- 

only storage for microprogram control, flexible storage protection, and  simple program relocation. 

2. An input/output system offering new degrees of concurrent  operation,  compatible  channel  operation, 

data rates  approaching 5,000,000 characters/second, integrated design of hardware and software, a new 
low-cost, multiple-channel  package sharing main-frame hardware,  new  provisions for device  status infor- 

mation, and a standard  channel  interface  between  central processing unit and input/output devices. 

3. A truly general-purpose  machine organization offering new  supervisory  facilities, powerful logical pro- 
cessing  operations, and a wide variety of data formats. 

4. Strict upward and downward machine-language compatibility over a line of six  models having a per- 
formance  range  factor of 50. 

This paper discusses in detail the  objectives of the design and the rationale for the main features of the 
architecture.  Emphasis is given  to the  problems  raised by the need for compatibility among  central process- 

ing units of various size and by the conflicting demands of commercial,  scientific,  real-time, and logical in- 

formation processing. A tabular summary of the  architecture is shown in the  Appendices. 

Introduction 

The design philosophies of the new general-purpose  ma- 
chine organization for the IBM  System/360 are discussed 
in this paper.? In addition to showing the architecture* 
of the new family of data processing  systems, we point out 
the various  engineering  problems  encountered in attempts 
to make the system  design compatible, at the program bit 
level, for large and small  models.  The  compatibility  was 
to extend not only to models of any  size but also to their 
various applications-scientific, commercial,  real-time, and 
so on. 

The term architecture is used here to describe the attributes of a 
system as seen by the programmer, i.e., the conceptual structure and 
functimal behavior, as distinct from the organization of the data flow 
and controls, the logical design, and the physical implementation. 
i Additional details concerning the architecture, engineering design, 

programming, and application of the IBM System/360 will appear in a 
series of articles in the IBM Systems Journal. 

The  section that follows  describes the objectives of 
the new system  design,  i.e., that it serve as a base for new 
technologies and applications, that it be general-purpose, 
efficient, and strictly program  compatible in all models. 
The remainder of the paper is devoted to the design 
problems  faced, the alternatives  considered, and the deci- 
sions  made for data format, data and instruction codes, 
storage assignments, and input/output controls. 

Design  objectives 

The new architecture builds  upon but differs  from the de- 
signs that have  gradually evolved  since 1950. The evolution 
of the computer had included, besides major technological 
improvements,  several important systems  concepts and 
developments : 87 
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1. Adaptation to business data processing. 

2. Growing importance of the total system,  especially the 
input/output aspects. 

3. Universal  use of assembly  programs,  compilers, and 
other metaprograms. 

4. Development of magnetic  recording on tapes,  drums, 
and disks. 

5. Hundred-fold  expansion of storage capacities. 

6. Adaptation for real-time  systems. 

During this period  most new computer  models,  from 
the point of  view  of their logical structure, were  improved, 
enlarged, or technologically  recast  versions of the machines 
developed in the early 1950’s. IBM products are not 
atypical; the evolution  has  gone from IBM  701 to 7094, 
650 to 7074, from 702 to 7080, and from 1401 to 7010. 

The system  characteristics to be  described  here,  how- 
ever, are a new approach to logical structure and function, 
designed for the needs  of the next  decade as a coordinated 
set of data processing  systems. 

Advanced concepts 

It was  recognized from the  start  that the design had to 
embody  recent  conceptual  advances, and hence, if  neces- 
sary,  be  incompatible  with  existing  products. To this end, 
the following  premises  were  considered: 

1.  Since  computers  develop into families,  any  proposed 
design  would  have to lend  itself to growth and to suacessor 
machines. 

2. Input/output (I/O) devices make  systems  specifically 
useful for given applications. A general  method was  needed 
for using 1/0 devices  differing in  data rate, access, and 
function. 

3. The real  value of an information system is properly 
measured by answers-per-month, not bits-per-microsecond. 
The former criterion required specific  advances to increase 
throughput for a given internal speed, to shorten turn- 
around time for a given throughput, and to make the 
whole  complex  of  machines and programming  systems 
easier to use. 

4. The functions of the central processing unit (CPU) 
proper are specific to its application only a minor fraction 
of the time. The functions  required by the system for its 
own operation, e.g., compiling, input/output management, 
and the addressing of and within  complex data structures, 
use a major share of time.  These  functions had to be made 
efficient, and need not be  different  in  machines  designed 
for  different  applications. 
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5. The input/output channel and the input/output control 
program had to be  designed for each other. 

6. Machine  systems had to be capable of supervising 
themselves,  without  manual  intervention, for both real- 
time and multiprogrammed, or time-shared,  applications. 
To realize this capability requires: a comprehensive inter- 
ruption system, tamper-proof storage protection, a pro- 
tected  supervisor  program,  supervisor-controlled  program 
switching,  supervisor control of all input/output (includ- 
ing unit assignment), nonstop operation (no HALT), easy 
program  relocation,  simple  writing of read-only or un- 
modified  programs, a timer, and interpretive consoles. 

7. It must  be  possible and straightforward to assemble 
systems  with redundant I/O, storages, and CPU’s so that 
the system can operate when  modules  fail. 

8. Storage  capacities of more than the commonly  available 
32,000 words  would  be  required. 

9. Certain types of problems require floating-point  word 
length of more than 36 bits. 

10.  As CPU’s become  increasingly  reliable,  built-in 
thorough checking  against  hardware  malfunction is im- 
perative for all  systems,  regardless of application. 

11.  Since the largest  servicing  problem  is  diagnosis  of 
malfunction,  built-in  hardware fault-locating aids are 
essential to reduce  down-times. Furthermore, identifka- 
tion of individual  malfunctions and of individual  invalidi- 
ties in program  syntax  would  have to be  provided. 

Open-ended design 

The new design  had to provide a dependable  base for a 
decade of customer  planning and customer  programming, 
and continuing laboratory developments,  whether in tech- 
nology,  application and programming  techniques,  system 
configuration, or special  requirements. 

The  various circuit, storage, and input/output tech- 
nologies  used in a system  change at different  times,  causing 
corresponding  changes  in  their relative speeds and costs. 
To take advantage of these  changes, it is  desirable that the 
design  permit  asynchronous operation of  these  compo- 
nents  with  respect to each other. 

Changing application and programming  techniques 
would require open-endedness in function. Current trends 
had to be extrapolated and their consequences anticipated. 
This anticipation could  be  achieved by direct provision, 
e.g.,  by increasing storage capacities and by using  multiple- 
CPU systems,  various new 1/0 devices, and time shar- 
ing. Anticipation might  also take the form of general- 
ization of function, as in code-independent scan and 
translation facilities, or it might  consist of judiciously  re- 
serving spare bits, operation codes, and blocks  of operation 
codes, for new modes, operations, or sets of operations. 



Changing requirements for system configuration would 
demand not only such approaches as a standard interface 
between 1/0 devices and control  unit,  but  also capabilities 
for a machine to directly sense, control, and respond to 
other equipment modules via paths  outside the normal 
data routes. These capabilities permit the construction of 
supersystems that  can be dynamically reconfigured under 
program  control, to adapt  more precisely to specialized 
functions or  to give graceful degradation. 

In many particular applications, some special (and often 
minor) modification enhances the utility of the system. 
These modifications (RPQs), which may correct some 
shortsightedness of the original design, often embody 
operations not fully anticipated. In any event, a good 
general design would obviate  certain modifications and 
accommodate  others. 

General-purpose function 

The machine design would have to provide individual 
system configurations for large and small, separate and 
mixed applications as found in commercial, scientific, real- 
time, data-reduction, communications, language, and logi- 
cal data processing. The  CPU design would have to be 
facile for each of these applications. Special facilities such 
as decimal or floating-point arithmetic might be required 
only for one or another  application class and would be 
offered as options,  but they would have to be integral, 
from the viewpoint of logical structure, with the design. 

In  particular, the general-purpose objective dictated that: 

1. Logical power of great generality would have to be 
provided, so that all  combinations of bits in  data entities 
would be allowed and might be manipulated  with  oper- 
ations whose power and utility depend upon  the general 
nature of representations rather  than upon  any specific 
selection of them. 

2. Operations would have to be code-independent except, 
of course, where code definition is essential to operation, 
as  in arithmetic. In particular,  all  bit combinations should 
be acceptable as  data; no combination  should exert any 
control function when it appears in a data stream. 

3. The individual bit would have to be separately manip- 
ulatable. 

4. The general addressing system would have to be able 
to refer to small units of bits, preferably the unit used for 
characters. 

Further,  the implications of general-purpose CPU design 
for communications-oriented systems indicated a radical 
departure  from  current systems philosophy. The conven- 
tional CPU, for example, is augmented by an independent 
stored-program  unit (such as  the IBM 7750 or 7740) to 
handle all communications functions. Since the new CPU 

would easily perform such logical functions as code trans- 
lation and message assembly, communications lines would 
be attached directly to the 1/0 channel via a control  unit 
that would perform only character assembly and  the elec- 
trical line-handling functions. 

Eficient performance 

The basic measure of a good design is high performance 
in comparison to  other designs having the same cost. This 
measure cannot be ignored in designing a compatible line. 
Hence each individual model and systems configuration 
in the line would have to be competitive with systems that 
are specialized in function, performance level or both. 
That this goal is feasible in spite of handicaps introduced 
by the compatibility requirement was due to the especially 
important cost savings that would be realized due to 
compatibility. 

Intermodel compatibility 

The design had to yield a range of models with internal 
performance varying from approximately that of the  IBM 
1401 to well beyond that of the IBM 7030 (STRETCH). As 
already mentioned, all models would have to be strictly 
program compatible, upward and downward, at  the pro- 
gram bit level. 

The phrase “strictly program  compatible”  requires a 
more technically precise definition. Here  it means that a 
valid program, whose logic will not depend implicitly upon 
time of execution and which runs upon configuration A, 
will also run  on configuration B if the latter includes at 
least the required storage, a t  least the required 1/0 de- 
vices, and  at least the required optional features. Invalid 
programs, i.e., those which violate the programming 
manual, are  not constrained to yield the same results on 
all models. The manual identifies not only the results of 
all dependable operations, but also those results of ex- 
ceptional and/or invalid operations that  are  not depend- 
able. Programs dependent on execution-time will operate 
compatibly if the dependence is explicit, and, for example, 
if completion of an 1 / 0  operation or the timer are tested. 

Compatibility would ensure that  the user’s expanding 
needs be easily accommodated by any model. Compati- 
bility would also ensure maximum utility of programming 
support prepared by the manufacturer, maximum sharing 
of programs generated by the user, ability to use small 
systems to back up large ones, and exceptional freedom in 
configuring systems for particular applications. 

It required a new concept and mode of thought to make 
the compatibility objective even conceivable. In  the last 
few years, many computer  architects  had realized, usually 
implicitly, that logical structure (as seen by the program- 
mer) and physical structure (as seen by the engineer) are 
quite different. Thus each may see registers, counters, etc., 
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that to the other are not at all  real  entities.  This was not 
so in the computers of the 1950’s. The explicit recognition 
of the duality of structure opened the way for the com- 
patibility  within  System/360. The compatibility  require- 
ment dictated that the basic architecture had to embrace 
different  technologies,  different  storage-circuit  speed ratios, 
different data path widths, and different  data-flow  com- 
plexities. The basic  machine structure and implementation 
at the various  performance levels are shown in Fig. 1. 

The  design  decisions 
Certain decisions for the architectural design  became 
mileposts,  because  they  (a)  established prominent charac- 
teristics of the System/360,  (b)  resolved  problems con- 
cerning the compatibility  objective, thus illuminating the 
essential differences  between  small  models and large, or 
(c)  resolved  problems  concerning the general-purpose ob- 
jective, thus illuminating the essential  differences  among 
applications. The sections that follow  discuss  these  de- 

Figure l Machine structure and implementation. 
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cisions, the problems  faced, the alternatives  considered, 
and the reasons  for the outcome. 

Data format 

The  decision on basic format (which  affected character 
size,  word  size, instruction field,  number  of  index  registers, 
input-output implementation, instruction set layout, stor- 
age  capacity, character code,  etc.) was  whether data length 
modules  should go as 2" or 3.2".  Even though many 
matters of format were considered in the basic  choice, 
we will for convenience treat the major components of 
the decision as if they were independent. 

Character size, 6 us 4/8. In character size, the funda- 
mental  problem  is that decimal  digits  require  4 bits, the 
alphanumeric characters require 6  bits. Three obvious 
alternatives were  considered - 6 bits for  all,  with 2 bits 
wasted on numeric data; 4 bits for digits, 8 for alpha- 
numeric,  with 2 bits  wasted on alphanumeric; and 4 bits 
for digits,  6  for  alphanumeric, which  would require adop- 
tion of a  12-bit  module as the minimum  addressable 
element.  The  7-bit character, which incorporated a  binary 
recoding of  decimal  digit  pairs,  was  also  briefly  examined. 

The 4/6 approach was rejected  because  (a) it was desired 
to have the versatility and power  of manipulating character 
streams and addressing  individual  characters, even  in 
models  where  decimal arithmetic is not used,  (b)  limiting 
the alphabetic character to 6 bits seemed short-sighted, 
and (c) the engineering  complexities of this approach 
might well cost  more than the wasted  bits in the character. 

The straight-6 approach, used in the IBM 702-7080 and 
1401-7010 families, as well as in other manufacturers' 
systems,  had the advantages of familiar  usage,  existing 
1/0 equipment,  simple  specification of  field structure, and 
commensurability  with  a  48-bit  floating-point  word  and  a 
24-bit instruction field. 

The 4/8 approach, used  in the IBM 650-7074 family 
and elsewhere,  had  greater  coding  efficiency, spare bits  in 
the alphabetic set (allowing the set to grow), and commen- 
surability  with  a  32/64-bit  floating-point  word and a  16- 
bit instruction field. Most important of these factors was 
coding efficiency,  which  arises from the fact that  the use 
of numeric data in  business  records is more than twice as 
frequent as alphanumeric.  This efficiency  implies, for a 
given hardware investment,  better  use of core storage, 
faster tapes, and more  capacious  disks. 

Ffoating-point  word  length, 48 us 32/64. For large 
models addition time goes up slowly  with  word  length, 
and multiplication time rises almost  linearly. For small, 
serial  models, addition time  rises  linearly and multiplica- 
tion as the square of  word  length. Input/output time for 
data files rises linearly.  Large  machines  more often require 
high  precision;  small  machines  more  urgently  require short 
operands. For this aspect of the basic format problem, 
then,  definite  conflicts  arose  because  of  compatibility. 

Good data were unavailable on the distribution of 
required  precision by the number of problems or running 
time.  Indeed, accurate measures  could not be acquired on 
such  coarse  parameters as frequency of double-precision 
operation on 36-bit and 48-bit  machines. The question 
became  whether to force all problems to the longer  48-bit 
word, or whether to provide 64 to take care of  precision- 
sensitive  problems  adequately, and either 32 or 36 to give 
faster  speed and better  coding  efficiency for the rest. The 
choice  was  made for the IBM  System/360 to have both 
64- and 32-bit  length  floating  point.  This  choice  offers the 
user the option of making the speed/space vs precision 
trade-off to best suit his  requirements. The user of the large 
models is expected to employ  64-bit  words  most  of the 
time. The user of the smaller  models will find the 32-bit 
length  advantageous in most of  his  work.  All  floating- 
point  models  have both lengths and operate identically. 

Hexadecimal  floating-point radix. With no conflcts in 
questions of large vs small  machines,  base  16  was  selected 
for  floating point. Studies by  Sweeney' show that the fre- 
quency of pre-shift,  overflow, and precision-loss  post-shift 
on floating-point addition are substantially  reduced by this 
choice. He has  shown that, compared  with  base 2, the per- 
centage  frequency of occurrence of  overflow is 5 versus 20, 
pre-shift  is  43  versus 58, and precision-loss  post-shift  is 
11  versus  18. Thus speed  is  noticeably  enhanced. Also, 
simpler  shifting paths, with  fewer  logic  levels,  will  accom- 
plish a  higher proportion of all required  pre-shifting in a 
single  pass. For example,  circuits shifting 0, 1, 2,  3, or 4 
binary  places  cover  82%  of the base  2  pre-shifts.  Sub- 
stantially  simpler  circuits  shifting 0, 1, or 2  hexadecimal 
places  cover 93%  of all base  16  pre-shifts.  This  simplifica- 
tion yields  higher  speed for the large  models and lower 
cost for the small  ones. 

The  most substantial disadvantage of adopting base  16 
is the shift in bit usage  from  exponent to fraction. Thus, 
for a given range and a  given minimum precision,  base  16 
requires  2 fewer exponent bits and 3  more fraction bits 
than does  base 2. Alternatively and equivalently, rounding 
and truncation effects are 8  times as large for a given 
fraction length. For  the 64-bit  length, this is no problem. 
For the 32-bit  length,  with its 24-bit fraction, the minimum 
precision  is  reduced to the equivalent of  21  bits.  Because 
the 64-bit  length was available for problems where the 
minimum  precision  cramped the user, the greater  speed 
and simplicity of base  16  was  chosen. 

Significance arithmetic. Many schemes  yielding an esti- 
mate of the significance  of  computed  results  have  been 
proposed.  One  such  scheme,  a  modified form of unnor- 
malized arithmetic, was for a  time incorporated in the 
design. The scheme  was  finally  discarded  when  simulation 
runs  showed this mode of operation to cost about one 
hexadecimal  digit  of actual significance  developed, as 
compared  with  normalized operation. Furthermore, the 91 
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significance  estimate  yielded for a given problem  varied 
substantially  with the test data used. 

Sign representations. For the fixed-point arithmetic 
system,  which  is  binary, the two’s  complement  representa- 
tion for negative  numbers was selected.  The  well-known 
virtues of this system are the unique  representation 
of zero and the absence of recomplementation.  These 
substantial advantages are augmented by several  properties 
especially  useful in address arithmetic, particularly  in the 
large  models,  where  address arithmetic has its own hard- 
ware. With two’s complement notation, this indexing 
hardware requires no true/complement gates and thus 
works  faster. In  the smaller,  serial  models, the fact that 
high-order bits of address arithmetic can  be  elided  with- 
out changing the low-order  bits also permits a gain  in 
speed. The same truncation property simplifies  double- 
precision  calculations. Furthermore, for table calculation, 
rounding or truncation to  an integer  changes all variables 
in the same direction, thus giving a more  acceptable 
distribution than does  an  absolute-value-plus-sign  repre- 
sentation. 

The established  commercial  rounding  convention  made 
the use  of  complement notation awkward  for  decimal 
data; therefore,  absolute-value-plus-sign  is  used  here. In 
floating point, the engineering  virtues of normalizing  only 
high-order  zeros, and of having all zeros  represent the 
smallest  possible  number,  decided the choice in favor of 
absolute-value-plus-sign. 

Variable- versus fixed-length decimal fields. Since the 
fields  of  business records  vary  substantially in length,  cod- 
ing efficiency (and hence tape speed, file capacity, CPU 
speed,  etc.) can be  gained by operating directly on vari- 
able-length fields.  This  is  easy for serial-by-byte  machines, 
and the IBM 1401-7010 and 702-7080 families are among 
those so designed. A less  flexible structure is  more appro- 
priate for a more  parallel  machine, and the IBM  650-7074 
family  is  among those designed  with  fixed-word-length 
decimal arithmetic. 

As one would  expect, the storage efficiency advantage of 
the variable data format is  diminished by the extra instruc- 
tion information required for length  specification.  While 
the fixed format is  preferable  for the larger  machines, the 
variable format was adopted because  (a) the small  com- 
mercial  users are numerous and only  recently trained in 
variable-format  concepts, and (b) the large  commercial 
system  is  usually 1/0 limited; hence the internal perform- 
ance  disadvantage of the variable format is  more than 
compensated by the gain  in  effective tape rate. 

Decimal accumulators versus storage-storage  operation. 
A closely related  question  involving  large/small  models 
concerned the use  of an accumulator as  one of the oper- 
ands on decimal arithmetic, versus the use of storage 
locations for all operands and results.  This  issue  is per- 
tinent even after a decision  has  been  made for variable- 
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length fields in storage; for  example, it distinguishes  IBM 
702-7080 arithmetic from that of the IBM 1401-7010 
family. 

The large  models  readily  afford  registers or local stores 
and get a speed  enhancement from using  these as ac- 
cumulators. For the small  model,  using core storage for 
logical  registers, addition to an accumulator is no faster 
than addition to a programmer-specified  location. Addition 
of  two arbitrary operands and storage of the result  becomes 
LOAD, ADD, STORE, however, and this operation is 
substantially  slower for the small  models than the MOVE, 
ADD sequence appropriate to storage-storage operation. 
Business arithmetic operations (as hand coded and es- 
pecially as compiled from COBOL) often take this latter 
form and rarely  occur in strings where intermediate 
results are profitably  held in accumulators. In address 
arithmetic and floating-point arithmetic, quite the opposite 
is true. 

Field specification:  word-marks versus length. Variable- 
length fields can  be  specified in the  data via delimiter 
characters or word-marks, or in the instruction via  specifi- 
cation ef field length or start-finish  limits. For business 
data, the word-mark  has  some  slight  advantage in storage 
efficiency: one extra bit per 8-bit character would cost 
less than 4 extra length bits per  16-bit  address. Further- 
more, instructions, and hence  addresses,  usually  occupy 
most core storage space in business  computers.  However, 
the word-mark approach implies the use  of  word-marks on 
instructions, too, and here the cost  is without compensating 
function. The same  is true of all fixed-field data,  an im- 
portant consideration  in a general-purpose  design. On 
balance, storage efficiency is about equal; the field  speci- 
fication was put in the instruction to allow all data combi- 
nations to be  valid and to give  easier and more direct 
programming,  particularly  since it provides  convenient 
addressing of parts of  fields.  Length  was  chosen  over  limit 
specification to simplify  program  relocation and instruc- 
tion  modification. 

ASCZZ  us BCD codes. The selection of the 8-bit char- 
acter size in 1961 proved wise  by  1963,  when the American 
Standards Association adopted a 7-bit standard character 
code for information interchange  (ASCII).  This  7-bit 
code is now  under  final  consideration by the International 
Standards Organization  for adoption as an interna- 
tional standards recommendation.  The  question  became 
“Why not adopt ASCII as the only internal code  for 
System/360?’ 

The reasons  against  such  exclusive adoption was the 
widespread  use of the BCD  code  derived  from and easily 
translated to the  IBM card code. To facilitate  use of both 
codes, the central processing  units are designed  with a 
high  degree  of  code  independence,  with  generalized  code 
translation facilities, and with  program-selectable BCD or 
ASCII  modes  for  code-dependent instructions. Neverthe- 



Figure 2a Extended binary-coded-decimal (BCD) interchange code. 
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Figure 2b 8-bit representation  of  the 7-bit American Standard Code for Information Interchange (ASCII). 
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less,  a  choice had to be made  for the code-sensitive 1/0 
devices and for the programming support, and the solution 
was to offer both codes,  fully supported, as a  user option. 
Systems  with  either option will,  of course,  easily  read or 
write 1/0 media  with the other code. The extended  BCD 
interchange  code and  an 8-bit  representation of the 7-bit 
ASCII are shown  in  Fig. 2. 

Boundary alignment. A major  compatibility  problem 
concerned  alignment of field boundaries.  Different  models 
were to have  different  widths  of  storage and data flow, 
and therefore  each  model had a  different  set of preferences. 
For the 8-bit  wide  model the characters might  have  been 
aligned on character boundaries,  with no further con- 
straints. In the 64-bit  wide  model it might  have  been  pre- 
ferred to have no fields split  between  different  64-bit 
double-words. The general rule adopted (Fig. 3) was that 
each fixed  field must begin at a  multiple of its field length, 
and variable-length  decimal and character fields are uncon- 
strained and are processed  serially in all  models.  All 
models  must insure that programmers will adhere to these 
rules.  This  policing is essential to prevent the use  of 
technically  invalid  programs that might  work  beautifully 
on small  models but not on large  ones.  Such an outcome 
would  undermine  compatibility. The general  rule, which 
has  very  few and very  minor  exceptions,  is that invalidities 
defined in the manual are detected  in  the  hardware and 
cause an interruption. This  type of interruption is  distinct 
from an interruption caused by machine  malfunctions. 

Instruction decisions 

Pushdown stack us addressed registers. Serious  considera- 
tion was  given to a design  based on a  pushdown  accumu- 
lator or stack.’ This  plan was abandoned in  favor of 
several  registers,  each  explicitly  addressed. Since the 
advantages of the pushdown  organization are discussed in 
the literature: it suffices here to enumerate the disad- 
vantages  which prompted the decision to use an addressed- 
register organization: 

1. The performance advantage of a  pushdown stack organi- 
zation  is  derived  principally from the presence  of  several 
fast registers, not from the way they are used or specified. 

2. The fraction of “surfacings” of data in the stack which 
are “profitable,”  i.e.,  what was  needed  next,  is about 
one-half in general  use,  because of the occurrence of 
repeated operands (both constants and common  factors). 
This suggests the use of operations such as TOP and SWAP, 
which  respectively  copy  submerged data to the active 
positions and assist  in  clearing  submerged data when the 
information  is no longer  needed. 

3. With TOP’s and SWAP’s counted, the substantial in- 
struction density  gained by the widespread  use of implicit 
addresses  is about equalled by that of the same instruc- 
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tions with  explicit, but truncated, addresses which  specify 
only the fast registers. 

4. In any practical implementation, the depth of the stack 
has  a  limit. The register  housekeeping  eliminated by the 
pushdown organization reappears as management of a 
finite-depth stack and as specification  of locations of 
submerged data for TOP’S and SWAP’S. Further, when 
part of a full stack must  be  dumped to make room for new 
data, it is the bottom part, not  the active part, which 
should be dumped. 

5.  Subroutine transparency,  i.e., the ability to use a sub- 
routine recursively,  is one of the apparent advantages of 
the stack.  However, the disadvantage is that the trans- 
parency  does not materialize  unless additional independ- 
ent stacks are introduced for addressing  purposes. 

6. Fitting variable-length  fields into a  fixed-width stack is 
awkward. 

In the final  analysis, the stack organization would  have 
been about break-even for a  system  intended  principally for 
scientific  computing. Here the general-purpose  objective 
weighed  heavily  in favor of the more flexible addressed- 
register  organization. 

Full us truncated addresses. From the beginning, the 
major challenge  of  compatibility  lay in storage  addressing. 
It was  clear that large  models  would  require storage 
capacities  in the millions  of  characters.  Small  (serial) 
models  would  require short addresses to conserve  precious 
core  space and instruction fetch  time.  Some  help  was  given 
by the decision to use  register  addressing,  which  reduces 
address  appearances in the instruction stream by a factor 
approaching 2. 

An early  decision  had dictated that all addresses  had to 
be  indexable, and that a  mechanism had to be  provided 
for making all programs  easily  relocatable. The indexing 
technique  had  fully  proved its worth in current ~ystems.~ 
This technique  suggested that abundant address  size  could 
be attained through a  full-sized  index  register,  used as a 
base.  This approach, coupled  with  a truncated address in 
the instruction, gives consequent  gains in instruction 
density. The base-register approach was adopted, and 
then  augmented, for some instructions, with  a  second  level 
of  indexing. 

Now the question  was:  How  much  capacity was to be 
made  directly  addressable, and how  much  addressable 
only  via  base  registers?  Some  early  uses  of  base  register 
techniques  had been fairly  unsuccessful,  principally be- 
cause  of  awkward transitions between direct and base 
addressing. It was  decided to commit the system  com- 
pletely to a  base-register technique; the direct part of the 
address, the displacement, was made so small (12 bits, 
or 4096 characters) that direct addressing is a practical 
programming  technique  only on very small  models. This 



DOUBLE WORD 

WORD WORD 

D 

> 

HALFWDRD - r H A L N V D R D  . 
I 

I LONG FLOATING-POIAT NUMBER I I I 
FRACTION 

56 

-BYTE" 

BYTE- rsyTE-"r 

I 
1 L '  

71 

I 

I I 
ZONED  DECIMAL  NUMBER 

I 

+[""j """ 

I 

FIXED-LENGTH  LOGICAL  INFORMATION I 
LOGICAL  DATA 

0 31 

VARIABLE-LENGTH  LOGICAL  INFORMATION 

I 8 I 
""" 

8 
CHARACTER CHARACTER 

""" 

INSTRUCTIONS BY FORMAT  TYPE RR FORMAT 

OP CODE 
8 4 

RI R 2  
4 

L 
0 7 I I  15 

I 

?X FORMAT 

8 
6 2  x 2  RI OP CODE 
4  4 4 12 

02 

I I ""_ I 
4 

DIGIT SIGN DIGIT ZONE DIGIT 
4 4 4  4 

""_ 
I 

CHARACTER """_ 

RS  FORMAT 

8 4 4 4 
OP CODE 62 R3  RI 

12 
0 2  

SI FORMAT 

4 
DP CODE 

8 8 
I 2  

12 
Dl BI 

0 7 15 19 31 

SS FORMAT I 
8 4  4 4 4 12 

OP CODE 
12 
0 2  8 2  Dl B I  L 2  LI 

0 7 II 15 19 31 35 47 

Figure 3 Boundary alignment of formats. 95 

ARCHITECTURE OF THE IBM SYSTEM/360 



96 

commitment  implies that all programs are location-inde- 
pendent,  except for constants used to load the base 
registers.  Thus,  all  programs can easily be relocated.  This 
commitment  also  implies that the programming support 
effectively and efficiently handles  the  mechanics of  base- 
register  use. The assembler  automatically constructs and 
assigns  base-plus-displacement  addresses as  it constructs 
the symbol  table. The compilers not only do this, but also 
allocate base  registers to give  efficient programs. 

Decimal us binary addressing. It was  decided to use 
binary rather than decimal  addressing,  because  (a)  as- 
sembly programs  remove the user  one  level  from the 
address, thus reducing the importance of familiar  usage, 
(b)  binary  addressing  is  more efficient in the ratio 3.32/ 
4.00, and (c) table exploitation is  easier and more  gen- 
eral because  any datum can be  made into or added to 
a binary  address,  yielding a valid  address.  This  decision, 
however,  represented  some  conflict  with past approaches. 
Machines  for  purely  business  applications  had often used 
decimal  addressing (in the ancestral machine of the 
family). Most business  computers  now  have  binary ad- 
dressing or have  evolved to mixed-radix  addressing. 

Multiple  accumulators. An extrapolation of technologi- 
cal trends indicated the probable availability of small, 
high-speed  storage.  Consequently, the design  uses a sub- 
stantial number of logically  identifiable  registers, which 
are physically  realized in core  storage,  local  high-speed 
storage, or transistors, according to the model.  There are 
sixteen  32-bit  general-purpose  registers and four  64-bit 
floating-point  registers in the logical  design,  with  room 
for  expansion to eight  floating-point  registers.  Surprisingly 
enough, the multiple-register  decision  was not a large- 
small conflict.  Each  model has an appropriate (and differ- 
ent) mechanization of the same  logical  design. 

Storage hierarchies. Technology  promises to yield a 
continuing  spectrum of storage systems  whose  speed 
varies  inversely  with  capacity for equal cost-per-bit. Of 
equal significance,  problem  requirements naturally follow 
a matching pattern - small quantities of data are used 
with great frequency,  medium quantities with  medium 
frequency, and very large quantities with  low  frequency. 
These  facts  promise substantial performance/cost ad- 
vantages if storage hierarchies  can be  effectively  used. 

It was  decided to accept the engineering,  architec- 
tural, and programming  disciplines  required for stor- 
age-hierarchy  use. The engineer  must  accommodate in 
one system  several storage technologies,  with separate 
speeds,  circuits, power requirements,  busing  needs, etc., 
all requiring  asynchronous operation of all storage with 
respect to the CPU. The system  programmer  must  contend 
with  awkward  boundaries  within total storage capacity 
and must allocate usage. He must  devise  addressing  for 
very large  capacities,  block  transfers, and means of 
handling,  indexing  across and providing protection across 

gaps in the addressing  sequence. 
Separate us universal accumulators. There are several 

advantages of having  fixed- and floating-point  arithmetic 
use the same  logical  (as  opposed to physical)  registers. 
There are some less obvious  disadvantages which  weighed 
in favor of separate accumulator  sets. First, in a given 
register  specification (4 bits, in our case) the use  of sepa- 
rate sets  permits  more  registers to be  specified  because of 
the information implications of the operation code. Sec- 
ond, in the large  models instruction execution and the 
preparation of later instructions are done  concurrently 
in separate units. To use a single  register  set  would  couple 
these  closely, and reduce the asynchronous  concurrency 
that can be attained. Historically,  index  registers  have 
been separated from fixed-point  registers,  limiting  analy- 
sis of register allocation to index quantities only. Inte- 
gration of these  facilities  brings the full power of the fixed- 
point arithmetic operation set to bear upon indexing 
computations. The  advantages of the integration appear 
throughout program  execution  (even  compiler and as- 
sembly execution),  whereas the register allocation burdens 
only  compilation and assembly. 

Znput/output system 

The method  of input/output control would  have  been a 
major  compatibility  problem were it not for the recognition 
of the distinction between  logical and physical structures. 
Small  machines  use CPU hardware for 1/0 functions; 
large  machines  demand  several  independent  channels, 
capable of operating concurrently  with the CPU and with 
each other. Such  large-machine  channels  often  each  con- 
tain more  components than an entire small  system. 

Channel instructions. The logical  design  considers  the 
channel as an independently operating entity. The CPU 
program starts the channel operation by specifying the 
beginning  of a channel  program and the unit to be  used. 
The  channel instructions, specialized for the 1/0 function, 
specify storage blocks to be read or written, unit oper- 
ations, conditional and unconditional branches  within the 
channel program, etc. When the channel program ends, 
the CPU program is interrupted, and complete  channel 
and device status information are available. 

An  especially  valuable feature is command chaining, the 
ability of  successive channel instructions to give a sequence 
of  different operations to the unit, such as SEARCH, 
READ, WRITE, READ FOR CHECK. This feature per- 
mits  devices to be  reinstructed  in very short times, thus 
substantially  enhancing effective speed. 

Standard  interface. The generalization of the com- 
munication  between the central processing unit and an 
input/output device has yielded a channel which presents 
a standard interface to the device control unit.  This inter- 
face was  achieved  by  making the channel design trans- 
parent, passing  not  only data, but also control and status 
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information between storage and device. AU functions 
peculiar to  the device are placed in  the  control unit. The 
interface requires a total of 29 lines and is made inde- 
pendent of time through  the use of interlocking signals. 

Implementation. In small models, the flow of data  and 
control information is time-shared between the  CPU  and 
the channel  function. When a byte of data  appears  from  an 
1/0 device, the  CPU is seized, dumped, used and restored. 
Although the maximum data  rate handled is lower (and 
the interference with CPU computation higher) than with 
separate  hardware, the function is identical. 

Once the channel becomes a conceptual  entity, using 
time-shared hardware, one may have a large  number of 
channels at  virtually no cost save the core storage space 
for the governing control words. This kind of multiplex 
channel embodies up  to 256 conceptual channels, all of 
which may be concurrently  operating, when the  total  data 
rate is within acceptable limits. The multiplexing consti- 
tutes a major  advance  for communications-based systems. 

Conclusion 

This paper has shown how the design features were chosen 
for the logical structure  of  the six models that com- 
prise the  IBM System/360. The rationale has been given 
For the  adoption of the  data  formats, the  instruction  set, 
md  the  input/output controls. The main features of the 
new machine  organization are  its general-purpose utility 
For many types of data processing, the new approaches 

to large-capacity storage, and  the machine-language com- 
patibility among  the six models. 

The contributions discussed in  this  paper may be sum- 
marized as follows : 

1. The relative independence of logical structure  and 
physical realization  permits efficient implementation at 
various levels of performance. 

2. Tasks that  are common to operating a system for 
most  applications  require a complement of instructions 
and system functions that may serve as a base for  the 
addition of application-oriented functions. 

3. The  formats, instructions, register assignment, and 
over-all functions  such as protection and  interruption of 
a computer can be so defined that they apply to many 
levels of performance and  that they permit diverse special- 
ization for particular  applications. 

It is hoped that  the discussions of these design features 
will shed  some light on  the present and  future needs of 
data processing system organization. 

Appendices 

The design resulting from  the decision process sketched 
above is tabulated in five appendices showing formats, 
data  and instruction codes, storage assignments and 
interruption  action. (Appendices I through 5 appear on 
the following four pages.) 
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!i Appendix I All operation codes are shown in the following table. 
The 8-bit codes are  grouped by the  main classes,  such  as fixed-point 
arithmetic, floating-point arithmetic  and logical operations. The 
codes are furthermore  grouped  according  to  the five main instruc- 
tion formats RR (register-register), RX (register-indexed storage  loca- 

5 
: m 

E tion), RS (register-storage), SI (storage-immediate information) and 
SS (storage-storage). 

rg 
OD 

OPERATION  CODES 

Appendix 2 continued 
from addressable  registers and storage. The PSW is stored  upon 
interruption. The  Channel  Command  Word  controls input/output 
operation and sequencing. The commands which  may  be  given  to 
the  channel  are  listed as part of the table.  The Channel  Address 
Word is used to initiate input/output sequencing. The Channel  Status 
Word  indicates  the  channel  status at the  completion of an input/ 
output operation or, when  specified, during an 1/0 operation. 

CONTROL WORD FORMATS 

FORMAT RR 

CLASS  BRANCHING  AN0 
S I ~ ~ ~ L I ~ L L G  

x x x x   o o o o x x x x  

0000 
0001 
0010 
0011 
0100 S E T  PROGRAM MASK 
0101 BRANCH  AN0 L I N K  
0110 BRANCH ON COUNT 
0111 BRANCH/CONOITION 
1000 SET  KEY 
1001 INSERT  KEY 
1010 SUPERVISOR  CALL  
1011 
1100 
1101 
1110 
1111 

FORMAT  RX 

C L A S S  

x x x x  

0 0 0 0  
0001 
0010 
001 1 
0100 
0101 
0110 
0111 
1000 
I001 
1010 
1011 
1100 
1101 
1110 
1111 

F I X E D - P O I N T  
HALFWORO 

AY!LEEANSHLJ1P?G 

o l o o x x x x  

STORE 
LOAD  ADDRESS 
STORE  CHARACTER 
INSERT  CHARACTER 
EXECUTE 
BRANCH  AN0 L I N K  
BRANCH ON  COUNT 

LOAD 
BRANCH/CONOITlON 

COMPARE 
ADO 
SUBTRACT 
M U L T I P L Y  

CONVERT-DECIMAL 
CONVERT-BINARY 

RR 
F I X E D - P O I N T  

FULLWOROI 
A N D E & A L  

o o o l x x x x  

LOAD P O S I T I V E  
L O A D  N E G A T I V E  
LOAD AN0  TEST 
LOAO COMPLEMENT 

COMPARE L O G I C A L  
AN0 

OR 
E X C L U S I V E  OR 
LOAO 
COMPARE 
A 0 0  
SUBTRACT 
M U L T I P L Y  
D I V I D E  
ADO L O G I C A L  

RR RR 

F L O A T I N G - P O I N T   F L O A T I N G - P O I N T  
LQNG 

o o l o x x x x  

L O A D   P O S I T I V E  
LOAD  NEGATIVE 
LOAD  AN0  TEST 
LOAD  COMPLEMENT 
HALVE 

LOAD 
COMPARE 
ADD  N 
SUBTRACT  N 
MULT I P L Y  
O I V I O E  
ADO U 

SUBTRACT  LOGICAL  SUBTRACT  U 

RX 
F I X E D - P O I N T  

RX 

~~ 

% N E 1  

o o l l x x x x  

L O A D   P O S I T I V E  
LOAD  NEGATIVE 
LOAD  AN0  TEST 
LOAO  COMPLEMENT 
H A L V E  

LOAO 
COMPARE 
ADO N 
SUBTRACT  N 
M U L T I P L Y  
D I V I D E  
ADO U 
SUBTRACT  U 

RX 

A U Q 5 r n L  
FULLWORD  FLOATING-POINT  FLOATING-POINT 

LPY4 SnmI 

o l o l x x x x  OAlOXXXX o l l l x x x x  

STORE  STORE  STORE 

AN0 
COMPARE L O G I C A L  
OR 
E X C L U S I V E  OR 
LOAD 
COMPARE 
ADD 
SUBTRACT 
MULT I P L Y  
D I V I D E  
ADO L O G I C A L  
SUBTRACT  LOGICAL 

LOAD 
COMPARE 
A 0 0   N  
SUBTRACT  N 
M U L T I P L Y  
O I V I O E  
ADD  U 
SUBTRACT  U 

LOAO 
COMPARE 
ADO N 
SUBTRACT  N 
M U L T I P L Y  
D I V I D E  
A 0 0   U  
SUBTRACT  U 

B a s e   a n d   I n d e x   R e g i s t e r s  

rO-O-O-O-O-O-O-O-O-O-1-1-1-1-1-1-1-1-1-1-2-2-2-2-2-2-2-2-2-2-3-3~ 
I I I 
I i I BASE  ADDRESS OR I N D E X  I 
I I I 
L0-1-2-3-4-5-6-7-8-9-0-1-2-3-4-5-6-7-B-9-0-1-2-3-4-5-6-7-8-9-0-1J 

0 - 7 I g n o r e d  
8 - 31 B a s e   a d d r e s s  or i n d e x  

-3-3-3-3-3-3-3-3-4-4-4-4-4-4-4-4-4-4-5-5-5-5-5-5-S-5-5-5-6-6-6-61 
I l l  I I 

INSTRUCTION  ADDRESS I 
I 

0 - 7 S y s t e m   m a s k  
0 M u l t i p l e x o r   c h a n n e L   m a s k  
I S e l e c t o r   c h a n n e L  1 m a s k  
2 S e l e c t o r   c h a n n e l  2 m a s k  
3 S e l e c t o r   c h a n n e L  3 m a s k  
4 S e l e c t o r   c h a n n e l  4 m a s k  
5 S e l e c t o r   c h a n n e l  5 m a s k  
6 S e l e c t o r   c h a n n e l  6 m a s k  

8 - 11 P r o t e c t i o n   k e y  
7 E x t e r n a l  mask 

12 A S C I I   m o d e   ( A )  
13 
14 

M a c h i n e   c h e c k   m a s k  ( M )  
w a i t  s t a t e  ( w )  

15 P r o b l e m   s t a t e  ( P )  

32 - 33 I n s t r u c t i o n   L e n g t h   c o d e   ( I L C )  
1 6  - 31 I n t e r r u p t i o n   c o d e  

34 - 35 C o n d i t i o n   c o d e   ( C C )  
36 - 39 P r o g r a m   m a r k  

36 F i x e d - p o i n t   o v e r f l o w   m a s k  
37 D e c i m a l   o v e r f L o u   m a s k  
38 E x p o n e n t   u n d e r f L o w   m a s k  
39 S i g n i f i c a n c e   m a s k  



Appendix I continued 

FORMAT  RS.SI 
BRANCHING, 

CLASS  STATUS  SWITCHING """"-"_ AND S H I F T I N G  

x x x x  l o o o x x x x  

0001 
0 0 0 0  SET  SYSTEM MASK 

0010 LOAD PSW 
0011 DIAGNOSE 
0100 WRITE  D IRECT 
0 1 0 1  REA0  DIRECT 
0 1 1 0  BRANCH/HIGH 
0111 BRANCH/LOW-EQUAL 
1000 S H I F T   R I G H T   S L  
1001 S H I F T   L E F T   S L  

1011 S H I F T  L E F T  S 
1010 S H I F T  R I G H T  S 

1100 S H I F T  R I G H T   D L  
1101 S H I F T  L E F T   D L  
1110 S H I F T  R I G H T  D 
1111 S H I F T  L E F T  D 

FORMAT 
CLASS 

x x x x  l l o o x x x x  

0 0 0 0  
0001 
0010 
0011 
0100 
0101 
0 1 1 0  
0111 
1000 
1001 
1010 
1011 
1100 
1101 
1110 
1111 

FIXED-POINT.  
LOGICAL.  AND 

R S s S I  

lNeL!lLoUlPuI 

l o o l x x x x  

TEST UNDER  MASK 
STORE MULTIPLE 

MOVE 

AN0 

OR 
COMPARE LOGICAL 

L O A 0   M U L T I P L E  
EXCLUSIVE OR 

START I/O 
TEST 1/0 
HALT 1/0 
TEST  CHANNEL 

MOVE NUMERIC 
MOVE 
MOVE ZONE 
AND 
COMPARE LOGICAL 
OR 
EXCLUSIVE OR 

TRANSLATE 
TRANSLATE  AND  TESl 
E D I T  
E D I T  AND MARK 

l o l o x x x x  1 O l l X X X X  

5s 
oEZlMAL 

l l l 0 x x x x  1 l l l X X X X  

MOVE W OFFSET 
PACK 
UNPACK 

ZERO  AND ADD 
COMPARE 
ADO 
SUBTRACT 
MULTIPLY 
D I V I D E  

* L e g e n d  E SL = S i n g l e   l o g i c a l  S = S i n g l e  

N = N o r m a l i z e d  U = U n n o r m a l i z e d  

D L  = Double l o g i c a l  D = D o u b l e  3 m n e s m Appendix 2 The formats  of all control  words required for CPU and 

% channel operation are shown in the following table. The  base and 

E 

F 

1 
1 index registers provide 24 bits of address and  are specified by the 

B and X fields of instructions.  The Program Status Word controls 
instruction  sequencing and indicates  the  complete  CPU  status apart 

VJ 
2 
1 

-. 
w m 
0 

d 
rg 

Appendix 2 continued 

C h a n n e l   C o m m a n d   W o r d  

~O-O-O-O-O-O-O-O-O-O-1-1-1-1-1-1-1-1-1-1-2-2-2-2-2-2-2-2-2-2-3-3~- 

I COMMAND CODE I 
I I I 

LO-1-2-3-4-5-6-7-8-9-0-1-2-3-4-5-8-7-8-9-0-~-2-3-4-5-6-7-~-9-0-~J--- I I I 
DATA ADDRESS I 

- r3-3-3-3-3-3-3-3-4-4-4-4-4-4-4-4-4-4-5-5-5-5-5-5-5-5-5-5-6-6-6-6~ 

I I I I I 
I FLAGS I O  0 01 I COUNT 
I I I I 

" ~2-3-4-5-6-7-8-9-0-1-2-3-4-5-6-7-0-9-0-1-2-3-4-5-6-7-8-9-0-1-2-3J 

I 
I 

0 - 7 Command   code  
8 - 31 D a t a   a d d r e s s  
32 - 36 Command f l a g s  

32 C h a i n   d a t a   f l a g  

34 S u p p r e s s   l e n g t h   i n d i c a t i o n   f l a g  
33 C h a i n   c o m m a n d   f l a g  

35 S k i p   f l a g  
36 P r o g r a m - c o n t r o l l e d   i n t e r r u p t i o n   f l a g  

37 - 39 Z e r o  
40 - 47 I g n o r e d  
48 - 63 C o u n t  

C h a n n e l   A d d r e s s   W o r d  

rO-O-O-O-O-O-O-O-O-O-1-1-1-1-1-1-1-1-1-1-2-2-2-2-2-2-2-2-2-2-3-~, 

I KEY 10 0 0 01 COMMAND ADDRESS I 
I I I 

L0-1-2-3-4-5-6-7-8-9-0-1"3-4-5-6-7-8-9-0-1-2-3-4-5-6-7-8-9-~-~J I I I I 
I 

0 - 3 P r o t e c t i o n   k e y  
4 - 7 Z e r o  
8 - 31 C o m m a n d   a d d r e s s  

C h a n n e l   S t a t u s   W o r d  

r0-0-0-0-0-0-0-0-0-0-~-1-1-1-~-1-~-~-1-1-2-~-2-~-~-~~~-~-~~~~3~3,~~~ 

I KEY IO 0 0 01 
I I I 

COMMAND ADDRESS I 
I L0-1-2-3-4-5-6-7-8-9-0-1-2-3-4-5-6-7-8-9-0-1-2-3-4-5-6-7-~-g-0-~~-- I I I 

I 

"r3~3"3"3"3"3"3~3"4-4"4"4-4-4-4-4-4-4-5-5-5-5-5-~-5-5-5-5~~-~-~-6, 
I 
I 

I I 
STATUS I 

I I 
COUNT I 

--~2-3-4--5"&7-8-9-O--1-2-3-4--5-6-7-B-9-O-~-~-3-4-~-~-7-~-g-~-~-~-~J I 

0 - 3 P r o t e c t i o n   k e y  
4 - 7 Z e r o  

32 - 47 S t a t u s  
8 - 31 C o m m a n d   a d d r e s s  

32 A t t e n t i o n  
33 S t a t u s   m o d i f i e r  
34 C o n t r o l  u n i t  e n d  

36 C h a n n e l   e n d  

38 U n i t   c h e c k  
37 D e v i c e   e n d  

40  P r o g r a m - c o n t r o l l e d   i n t e r r u p t i o n  
39 U n i t   e x c e p t i o n  

35 B u s y  

(continued  overleaf) 
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i Appendix 2 continued 
41 Incorrect  length 
42 Program  aheck 
43 Protection  check 
44 Channel  data  check 
45 Channel  control  check 

47 Chaining  check 

5 
m 46 Interface  control  check 

E 
48 - 63 Count 

Appendix 3 All permanently assigned  storage  locations  are  shown in 

this  table. These locations  are  addressed by the CPU and 1/0 chan- 

nels during initial program loading, during interruptions and in 

order  to  update  the  timer.  During initial program loading 24 bytes 

are read from a specified input device into locations 0 to 23. This 
information is subsequently  used  as CCW's to specify  the  locations 

of further input information and as a PSW to  control CPU operation 

after the loading operation is completed. During an interruption the 
current PSW is stored in the  "old"  location and the PSW from the 
"new" location is obtained as the  next PSW. The timer is counted 

down  and  provides an interrupt when  zero is passed. All perma- 

nently assigned  locations  may  also be addressed by the  program. 

PERMANENT  STORAGE  ASSIGNMENT 

AOPBESS CENGIY EuREQsE 
0 0000 0000 double  word 
8 0000 1000  double  word 

Initial  program  Loading PSW 

1 6  0001 0000 double  word 
Initial  program  loading  CCWl 

24 0001 1000 double  word  External  old PSW 
Initlal  program  loadlng  CCW2 

40 0010 1000 double  word 
3 2  0010 0000 double  word  Supervisor  call  old  PSW 

48 0011 0000 double  word 
Program  old  PSW 
Machine  old  PSW 

56 0011  1000  double  word  Input/output  old  PSW 
64 0100 0000 double  word  Channel  status  word 
72 0100 1000 word 
76 0100 1100 word 

Channel  address  word 
Unused 

80 0101 0000 word  Timer 
84 0101  0100  word 
88 0101 1000 double word  

Unused 
External  new  PSW 

96 0110 0000 double  word 
104 0110 1000 double  word 

Supervisor  call  new  PSW 
Program  new  PSW 

120 0 1 1 1  1000 double  word 
112 0 1 1 1  0000 double  word  Machine  new PSW 

Input/output  new PSW 
128 1000 0000 Diagnostic  scan-out  area* 

"- 
The  size o f  the  dlagnostic  scan-out  area  depends  upon  the  particular 

model  and 1 / 0  channels. 

Appendix 4 continued 
LSSSEd 

busy 
avallabla  Unlt  and  channel  available 

Unit  or  channel  busy 
carry A carry  out  of  the  sign  position  occurs 
complete 
CSW  ready 

Last  result  byte  nonzero 

CSW  stored 
Channel  status  word  ready  for  test or interruption 
Channel  status  word  stored 

equal. Operands  compare  equal 
F 
g zero 

FuLlword 
Result  is  greater  than  zero 

H Halfword 
halted  Data  transmission stopped. Unit in  halt-reset  mode 
high 
incomplete 

Flrst  operand  compares  high 
Nonzero  result  byte;  not  last 

L Long  precision 
1 zero 
L O W  

Result i s  less  than  zero 
First  operand  compares  low 

mixed  Selected  bits  are  both  zero  and  one 
not  oper  Unlt or channel  not  operational 
not  working  Unit o r  channel  not  working 
not  zero 
one 
sverflow  Result  overftows 
S 
stopped 
working 
zero 

Result  is  not all Zero 
Selected  bits are one 

Short  precision 
Data  transmlssion  stopped 
Unit o r  channel  working 
Result  or  selected  bits  are  zero 

lscn 

The  conditlon  code  also  may  be  changed  by  LOA0 PSW. SET  SYSTEM MASK. 
DIAGNOSE.  and  by  an Interruption.. 

Appendix 5 All interruptions  which  may occur are shown in the fol- 

lowing table.  Indicated here are  the code in the old PSW which 

identifies the  source of the  interruption,  the mask bits which  may be 
used to  prevent an interruption, and the  manner in which  instruction 

execution is affected.  The instruction  to  be performed next if the in- 

terruption had not occurred is indicated in the  instruction address 

field of the old PSW. The length of the  preceding instructions, if 
available, is shown in the  instruction  length code, ILC, as is further 

detailed in the  table. 

INTERRUPTION  ACTION 

INTERRUPTION  SOURCE  INTERRUPTION  CODE  MASK  ILC  INSTRUCTION 
I P P N I I F ~ e L I Q N - - - - - - - P B I - B I l s " s r L S -  

I=euf&uf& (old  PSW 5 6 .  new PSW 120. priority 4) 

Multiplexor  channel 00000000 aaaaeaaa 0 x 
Selector  channel 1 00000001 aaaaaaaa 1 x 
SeLector  channel 2 00000010 aaaaaaaa 2 x 

complete 
complete 
complete 



Appendix 4 All instructions which set the  condition  code  (bits 32 and 

33 of the PSW) are listed in the following table. All other  instructions 

leave the  condition code unchanged. The  eondition  code determines 

the  outcome of a BRANCH ON CONDITION instruction.  The four-bit mask 

contained in this  instruction  specifies  which  code  settings will cause 

the branch to be taken. 

CONDITION CODE SETTING 

Q 2 - a 

ADO H/F 
ADD LOGICAL 
COMPARE H/F 
LOAD AND TEST 
LOAD COMPLEMENT 
LOAD  NEGATIVE 
L O A 0   P O S I T I V E  
SHIFT   LEFT DOUBLE 
SHIFT  LEFT  S INGLE 
SHIFT  RIGHT DOUBLE 
SHIFT  RIGHT  S INGLE 
SUBTRACT H/F 
SUBTRACT LOGICAL 

ElX+P-PQini-&iihm.S*iS 
z e p o  
z e r o  
e q u a l  
z e r o  
z e r o  
z e r o  
z e r o  
z e r o  
z e r o  
z e r o  
z e r o  
z e r o  
" 

n o t  z e r o  
1 z e r o  

1 z e r o  
1 z e r o  
1 z e r o  

L O W  

1 z e r o  
1 z e r o  
1 z e r o  
1 z e r o  
1 z e r o  

n o t   z e r o  

" 

z e r o . c a r t - y  
g z e r o  

h i g h  
g z e r o  
g z e r o  

g z e r o  

g z e r o  
g z e r o  

g z e r o  
g z e r o  

z e r o s c a r r y  
g z e r o  

" 

o v e r f l o w  
c a r r y  
" 

" . 
o v e r f l o w  

o v e r f l o w  

o v e r f l o w  
o v e r f l o w  

" 

" 

o v e r f l o w  

" 

c a r r y  

ADO DECIMAL z e r o  1 z e r o  g z e r o   o v e r f l o w  
COMPARE DECIMAL 
SUBTRACT DECIMAL 

e q u a l  low 
z e r o  L z e r o  g z e r o   o v e r f l o w  

ZERO AND  ADD z e r o  L z e r o  g z e r o   o v e r f l o w  

- Dqcimal """_" A r i t h m & j =  

h i g h  " 

ADO NORMALIZED  S/L 
ADD UNNORMALIZED S / L  

z e r o  
z e r o  

COMPARE S /L  
LOAD AND TEST  S/L 

e q u a l  

LOAD COMPLEMENT S / L   z e r o  
z e r o  

LOAD  NEGATIVE  S/L 
L O A D   P O S I T I V E   S / L   z e r o  

z e r o  

SUBTRACT NORMALIZED  S/L Z e r o  
SUBTRACT  UNNORMALIZEO S / L   z e r o  

FlQntinS=el?inlt-Arithmmtlc 

b 
!a 
Q 

2 
% 

=i rn 
Ll?alS*l-Q2SCStiQEi 

AND z e r o  
COMPARE L O G I C A L   e q u a l  
E D I T  
E D I T  AND  MARK 

z e r o  
z e r o  

EXCLUSIVE OR z e r o  
OR z e r o  
TEST UNDER MASK z e r o  
TRANSLATE AND T E S T   z e r o  

n 

a 2  

1 z e r o  
1 z e r o  

L z e r o  
1 z e r o  
L z e r o  

1 z e r o  
1 z e r o  

Low 

" 

n o t   z e r o  

1 z e r o  

n o t   z e r o  
1 z e r o  

n o t   z e r o  

i n c o m p l e t e  

L O W  

m i x e d  

g z e r o  
g z e r o  

g z e r o  
h i g h  

g z e r o  

g z e r o  
g z e r o  
g z e r o  

" 

" 

h i g h  
g z e r o  
g z e r o  
" 

" 

" 

c o m p l e t e  

o v e r f l o w  
o v e r f l o w  
" 

" 

" 

" 

o v e r f l o w  
o v e r f l o w  

" 

" 

" 

" 

" 

" 

o n e  
" 

" 

Ineut=ol?teut-Qet~atinllE 
HALT 1/0 n o t   w o r k i n g   h a l t e d  
START 1/0 

s t o p p e d   n o t   o p e r  
a v a i l a b l e  CSW s t o r e d   b u s y  

TEST CHANNEL n o t   w o r k i n g  CSW r e a d y   w o r k i n g   n o t   o p e r  
n o t   o p e r  

TEST 1 / 0  a v a i l a b l e  CSW s t o r e d   w o r k i n g   n o t   o p e r  

- 
k 
v) 

Appendix 5 continued 
S e l e c t o r   c h a n n e l  3 0 0 0 0 0 0 1 1   a a a a a a a a  3 x 
S e l e c t o r   c h a n n e l  4 0 0 0 0 0 1 0 0   a a g a a a a a  4 x 

c o m p l e t e  

S e l e c t o r   c h a n n e l  5 0 0 0 0 0 1 0 1   a a a a a a a a  5 x 
c o m p l e t e  
c o m p l e t e  

S e l e c t o r   c h a n n e l  6 0 0 0 0 0 1 1 0   a a a a a a a a  6 x c o m p l e t e  

e~sgrsm ( o l d  PSW 40.  new PSW 1 0 4 .   p r i o r i t y   2 )  

O p e r a t i o n  
P r i v i l e g e d   o p e r a t i o n  0 0 0 0 0 0 0 0  0 0 0 0 0 0 1 0  

00000000 0 0 0 0 0 0 0 1  1.2.3 s u p p r e s s  

E x e c u t e  00000000 0 0 0 0 0 0 1 1  
1 . 2   s u p p r e s s  

P r o t e c t i o n  
s u p p r e s s  

00000000 0 0 0 0 0 1 0 0   0 . 2 . 3   s u p p r e s s / t e r m i n a t e  
A d d r e s s i n g  
S p e c i f i c a t i o n  

00000000 0 0 0 0 0 1 0 1   0 1 1 . 2 . 3   s u p p r e 4 s / t e r m i n a t e  
00000000 00000110 1.2.3 s u p p r e s s  

D a t a  00000000 0 0 0 0 0 1 1 1   2 . 3   t e r m i n a t e  
F i x e d - p o i n t   o v e r f l o w  00000000 0 0 0 0 1 0 0 0   3 6  1.2 
F i x e d - p o i n t   d i v i d e  00000000 0 0 0 0 1 0 0 1  

c o m p l e t e  

D e c i m a l   o v e r f l o w  00000000 0 0 0 0 1 0 1 0  37 3 
1.2 s u p p r e s s / c o m p l e t e  

D e c i m a l   d i v i d e  00000000 0 0 0 0 1 0 1 1  
c o m p l e t e  

3 
E x p o n e n t   o v e r f l o w  00000000 0 0 0 0 1 1 0 0  

s u p p r e s s  
1 .2  

E x p o n e n t   u n d e r f l o w  00000000 0 0 0 0 1 1 0 1   3 8  1.2 
t e r m i n a t e  
c o m p l e t e  

S i g n i f i c a n c e  00000000 0 0 0 0 1 1 1 0   3 9  1.2 c o m p l e t e  
F l o a t i n g - p o i n t   d i v i d e  00000000 0 0 0 0 1 1 1 1   1 . 2   s u p p r e s s  

Bgeqrvlgnr C a l l   ( o l d  PSW 32.  new PSW 96.  p r i o r i t y   2 )  

I n s t r u c t i o n   b i t s  00000000 r r r r r r r r  1 c o m p l e t e  

2 

- E x t e r n a l  """_ ( o l d  PSW 24.   new PSW 88 .  p r i o r i t y  3) 

E x t e r n a l   s i g n a l  1 00000000 x x x x x x x l  7 x c o m p l e t e  
E x t e r n a l   s i g n a l  2 00000000 x x x x x x l x  7 x c o m p l e t e  

E x t e r n a l   s i g n a l  4 00000000 x x x x l x x x  7 x 
E x t e r n a l   s i g n a l  3 0 0 0 0 0 0 0 0  x x x x x l x x  7 x c o m p l e t e  

c o m p l e t e  
E x t e r n a l   s i g n a l  5 00000000 x x x l x x x x  7 x c o m p l e t e  
E x t e r n a l   s i g n a l  6 00000000 x x l x x x x x  7 x c o m p l e t e  
I n t e r r u p t   k e y  oooooooo X l x x x x x X  7 X 

T i m e r  
c o m p l e t e  

00000000 1 x x x x x x x  7 x c o m p l e t e  

M a c h i n e   C h e c k   ( o l d  PSW 48.  new PSW 1 1 2 ,   p r i o r i t y   1 )  

M a c h i n e   m a l f u n c t i o n  00000000 00000000 1 3  x t e r m i n a t e  

Lrams! 

a D e v i c e   a d d r e s s   b i t s  
r B i t s   o f   R 1   a n d   R 2   f i e l d   o f  SUPERVISOR  CALL 
x U n p r e d i c t a b l e  

INSTRUCTION  LENGTH RECORDING 

INSTRUCTION PSW BITS  INSTRUCTION  INSTRUCTION  INSTRUCTION 
L%t?4ln_cQo€""a~~""" -~~~~-Q=~""" -L~t?4l~""" " -FQ~~~~ 

0 00 
1 0 1  00 O n e   h a l f w o r d  
2 1 0   0 1  Two h a l f w o r d s  RX 
2 10 1 0  
3 11 11 

N o t   a v a i l a b l e  
RR 

Two h a l f w o r d s  R S  or SI 
T h r e e   h a l f w o r d s  S S  


