
UNIVERSITY OF CALIFORNIA, DAVIS
Department of Electrical and Computer Engineering

EEC180A DIGITAL SYSTEMS I

ADVANCED ALTERA MAX + PLUS II TUTORIAL

OVERVIEW

This tutorial illustrates several advanced topics which were not covered in Lab 1. These topics
include creating symbols for use in a hierarchical design, using Altera parameterized modules,
such as ROM, and initializing ROM contents.

USING PARAMETERIZED MODULES

Altera's Library of Parameterized Modules (LPM) contains many high-level components which
can be configured to meet specific design goals. You will probably find the LPM components
very convenient and easy to use.

In this tutorial, you will design a circuit will computes the Fibonacci sequence using an adder
and registers. (The Fibonacci sequence is 0, 1, 1, 2, 3, 5, 8, ...) The data path will be 8-bits wide
so that the circuit can be easily tested using the Altera Education Board.

• Recall that there are many ways to execute commands in the Altera environment. You can
use the pull-down menus, a pop-up menu which is available when you click the right-mouse
button, keyboard shortcut commands, or the toolbar buttons. To see the definition of a
toolbar button, move the mouse so that the cursor is on top of the button. The button's
function will be described at the lower-left corner of your window.

• Open a new schematic and enter the symbol lpm_add_sub from the mega_lpm library. A
dialog box should come up to allow you to configure the parameters and ports. Click on each
parameter from the list and use the pull-down arrow in the dialog box to select the desired
value for the parameter. Enter the following values for the parameters:

LPM_DIRECTION = "ADD"
LPM_REPRESENTATION = "UNSIGNED"
LPM_WIDTH = 8

Any other parameters, such as LPM_PIPELINE or ONE_INPUT_IS_CONSTANT, should
be left unassigned. For an explanation on how the lpm_add_sub component works and how
each of the parameters can be used, select the Help on LPM_ADD_SUB button in the dialog
box.

Configure the ports so that cin, cout, dataa[], datab[] and result[] are Used and all other
ports are Unused. (Select each port name from the list and click on the Used or Unused
button.) When you have configured all ports and parameters, press the OK button.

If you need to change any parameters or port declarations after you have closed the dialog
box, click on the lpm_add_sub component on your schematic and select E d i t
Ports/Parameters... (Symbol menu). This will re-open the dialog box so that you can make
corrections. Another way to re-open the dialog box is to double-click the left-mouse button
(LMB) on the parameters box.

The adder will be used to add the last two numbers in the sequence to produce the next number.
We will also need two 8-bit registers in order to store the last two numbers in the sequence. We
could use a standard D flip-flop and let the Altera software create a "primitive array". However,
the standard D flip-flop only has an asynchronous reset and in our design we would like to

synchronously clear the registers when a carry-out is generated by the adder. We can use another
LPM component to design a D flip-flop with both asynchronous and synchronous clear inputs.

• Enter the symbol lpm_dff from the mega_lpm library. Set the parameters such that
LPM_WIDTH = 8 and the other parameters are unassigned. Configure ports aclr, clock,
data[], q[] and sclr as Used and all other ports as Unused.

• Make a copy of the lpm_dff that you just configured and place the components as shown in
Figure 1. Also, add the components not, dff, input and output and complete the schematic
as shown in Figure 1. Note that buses are shown with a thick line and are labeled as
NAME[MSB..LSB].

• Label the output bus with your first name. i.e. FRANK[7..0]. Also, label the output of the
lpm_add_sub component with your initials followed by _SUM[7..0]. Note that wires which
have the same name on the same level of hierarchy areconnected. Remember to keep the
wire labels close to wires which they label. Otherwise, the Altera Compiler may not interpret
the text as a valid net label.

• Save & Check your file to make sure that there are no errors. The Check command opens up
the Compiler tool and performs the first part of a circuit compilation. With the Compiler tool
still open, select the following options from the Processing menu: Functional SNF
Extractor and Preserve All Node Name Synonynms. (You will have to turn off the
Timing SNF Extractor before you can select the Functional SNF Extractor.) Once the
options are selected, click on the Start button to compile your circuit. You must fix any
compile errors before proceeding to the next step.

• Open the Waveform Editor and select the Nodes to watch during simulation. You can use
Enter Nodes from SNF... (Node menu) to select nodes such as RESET, CLK and the output
signal with your name. Some other nodes are difficult to find in the SNF list. Instead, you
can select Insert Node (Node menu) and type the name of a node. Try this for entering
nodes A[7..0], CIN, COUT and the output of the lpm_add_sub which has your initials in the
name.

• Set the Grid Size(Options menu) to 20 ns.

• Select the CLK node with the left-mouse button so that it is highlighted. Then select
Overwrite > Clock from the Edit pull-down menu. Specify a clock period of 40 ns.

• Assert the RESET node high for the first clock cycle. (Note that the RESET is active-high in
this design.) Run a functional simulation and compare your results with Figure 2.

CREATING A SYMBOL

You will now create a symbol for the circuit you have just designed so that it can be used as a
component in a more complex design.

• Open the graphic design file (.gdf) for your circuit. Select Create Default Symbol (File
menu). This will create a symbol file with the same name as your design and the .sym
extension.

CREATING A HIERARCHICAL DESIGN

You will now design a top-level schematic which uses the component you just created.

• Close any open windows such as the Graphics Editor, Simulator, Waveform Editor, etc.
Create a new schematic file (.gdf) for your top-level design. Name the file and save it in your
working directory. Change the project to this new name.

• Place an instance of your component in your top-level schematic. Your symbol should have
RESET and CLK input ports and an output port named after you.

USING ROM

In this design, we will use ROM to implement a combinational logic circuit which converts a 4-
bit hex number to the corresponding 7-segment display driver signals. (This is a useful circuit
which you may want to use in Lab 8&9!) We will illustrate how the ROM can be initialized
using a Memory Initialization File (.mif) which can be created using a simple text editor.

• Select an lpm_rom component from the mega_lpm library. Select address[] and q[]as the
only ports to be Used. Also, configure the parameters as shown below.

LPM_ADDRESS_CONTROL = "UNREGISTERED"
LPM_OUTDATA = "UNREGISTERED"
LPM_FILE = "hex7seg.mif"
LPM_WIDTH = 8
LPM_WIDTHAD = 4

Note that you must type the quotes around the file name and the case of the name must match
the file which you create. Once the ports and parameters are configured, press OK.

• Using Copy and Paste, place a second, identical ROM component on your schematic.

Next we will create the .mif file. The format of the MIF file is quite simple and is explained in
Altera's on-line HELP documentation. The default radix is hexadecimal. Our ROM will be 16-
bytes deep and 8-bits wide. The data represents active-low 7-segment display drivers where the
MSB corresponds to signal a, MSB-1 corresponds to b, etc. and the LSB corresponds to the
decimal point which should always be off. For example, when the value 0 is the address value,
we would like to display the symbol 0 on the 7-segment display. This requires all segments to be
on (low) except for g and the decimal point, giving a hex value of 03.

-- hex7seg.mif --------------------------
DEPTH = 16;
WIDTH = 8;
CONTENT
 BEGIN
0 : 03;
1 : 9F;
2 : 25;
3 : 0D;
4 : 99;
5 : 49;
6 : 41;
7 : 1F;
8 : 01;
9 : 19;
A : 11;
B : C1;
C : 63;
D : 85;
E : 61;
F : 71;
 END;
--

CLOCK GENERATION

The Altera UP1 Education Board has a 25.175 MHz crystal oscillator which drives global clock
input pin 83 of the EPM7128S device and global clock input pin 91 of the EPF10K20 device.
Since the EPM7128S device does not support memory devices such as ROM we will use the
EPF10K20 for this design. We will need to divide the clock signal down to a frequency on the
order of 1 Hz so that we can observe the Fibonacci sequence on the 7-segment displays. We can
use a counter from the LPM library to accomplish this.

• Select lpm_counter (mega_lpm library). Configure two ports, clk and q[], as Used and all
other ports as Unused. Set the LPM_DIRECTION parameter to "UP" and the LPM_WIDTH
to 24. Then press the OK button.

You will use the most significant bit of the counter as the clock signal for the Fibonacci
subcircuit. The frequency should be approximately (25 MHz / 2**24) = 1.5 Hz. After the
design has been compiled with the Timing SNF Extractor, we will use the Timing Analysis tool
to verify that the counter can operate with a clock frequency of 25 MHz.

TRI-STATES

Based on the state of a push-button switch input, this design will display on the 7-segment
displays either the value of eight input switches or the Fibonacci sequence. We will use tri-state
buffers in order to multiplex these different output functions.

• Select tri from the primitive library. Although this primitive represents a single tri-state
buffer, it can be connected to a bus and the Altera compiler will automatically generate a
"primitive array" of the same width as the bus. Place a tri buffer at the output of the
Fibonacci subcircuit and another connected to an input primitive, as shown in Figure 3.

There are some very important guidelines for designing with tri-state buffers using Altera tools.
Altera devices do not have tri-state buffers for driving internal logic. When tri-state buffers
are used to multiplex signals, as in our current design, MAX+PLUSII will convert the logic to a
combinatorial multiplexer. However, bidirectional signals cannot be implemented in the internal
Altera logic. Altera devices do have tri-state buffers in the I/O Elements so that bidirectional I/O
pins with tri-state output capability can be implemented. For more information on using tri-state
buses in Altera devices, check the documentation available on the Altera Web page:

http://www.altera.com/html/atlas/examples/ged

Within this directory, there are several examples relating to tri-state buffers such as
tri_state.html, g_tri_bb.html, g_prim.html, g_tri2mux.html, etc.

PIN AND DEVICE ASSIGNMENTS

• Add the remaining components and connect the circuit as shown in Figure 3. Select Line
Style (Options menu) to draw a bus between the input switches, SW[7..0], and the tri
component.

• Label the output of the Fibonacci circuit with your name and the output of the tri-state
multiplexer with your initials. An example is given in Figure 3.

We will now assign the device type and pin locations which correspond to the Altera Education
Board.

• From the Graphics Editor, select Device... (Assign menu). Choose FLEX10K as the Device
Family. Make sure that the option "Show Only Fastest Speed Grades" is not selected and
select device EPF10K20RC240-4.

The pushbutton switches are active low and are each pulled-up through a 10 K ohm resistor. The
pushbutton switches have the following pin assignments.

Pushbutton switch Pin number
PB1 28
PB2 29

The pin assignments for the eight dip-switch inputs are:

Switch Pin number
SW-1 41
SW-2 40
SW-3 39
SW-4 38
SW-5 36
SW-6 35
SW-7 34
SW-8 33

The pin assignments for the 7-segment display driver signals are shown below. Note that these
are different from the pin assignments for the EPM7128S.

Display segment MS Digit pin number LS Digit pin number
a 6 17
b 7 18
c 8 19
d 9 20
e 11 21
f 12 23
g 13 24

decimal point 14 25

• Select Pin/Location/Chip (Assign menu) and, using the tables given above, assign pin
numbers to all input and output ports in your design. For example,

OSC = 91
/RESET = 28
PB = 29
SW7 = 41 ... SW0 = 33
MSB7 = 6 ... MSB0 = 14
LSB7 = 17 ... LSB0 = 25

• Save and Check your design. (The project should be set to your top-level design.) When it
checks without errors, compile the design using Timing SNF Extraction. If you receive
warnings or errors, you can select the message and press the Help on Message button if you
aren't sure how to fix the problem. You can also select the Locate button to locate the
problem in your schematic.

VERIFYING TIMING OF 24-BIT COUNTER

We should check that the 24-bit counter can actually operate with a clock frequency of 25 MHz.

• Select Timing Analyzer (MAX+plusII menu) and choose Registered Performance
(Analysis menu). When the dialog box comes up, press the Start button. Since this design
uses 2 clocks, OSC and Q23, the Timing Analyzer tools will calculate the maximum clock
frequency for each clock. We only need to verify that the OSC signal can be >= 25 MHz.

After the Timing Analyzer has run, choose OSC from the Clock pull-down box. You should
see a maximum clock frequency which is greater than 25 MHz.

VERIFYING THE FINAL DESIGN

It is not necessary to do a complete simulation on the top-level design. The 24-bit counter would
take excessive computer resources to simulate completely. If you desire to simulate your design,
you should test the 24-bit counter and the remainder of the circuit separately.

Your TA will configure the Altera Education Board and help you download your circuit to the
EPF10K20 device. The SRAM Object File (.sof) is used to program the FLEX10K family of
devices rather than the Programmer Object File (.pof) which is used to program the MAX 7000S
family of devices. Thus, you will need to transfer the .sof file to the lab PC for downloading.

LAB REPORT

Each individual will be required to submit a lab report. Use the format specified in the "Lab
Report Information" document available on the class web page. Include the following items in
your lab report:

• Lab cover sheet with TA verification for circuit simulation and performance
• Altera schematic for your Fibonacci sub-circuit. (This will be similar to Figure 1.)
• Simulation waveforms showing the functional simulation of your Fibonacci sub-circuit,

similar to Figure 2.
• Altera schematic for your top-level schematic, similar to Figure 3.

R
E

S
E

T
R

E
S

E
T

C
O

U
T

C
L

K

C
O

U
T

A
[7

..
0

]
L

E
H

_
S

U
M

[7
..

0
]

C
L

K

C
O

U
T

C
IN

F
IG

U
R

E
 1

LP
M

_A
V

A
LU

E
=

LP
M

_S
V

A
LU

E
=

LP
M

_W
ID

T
H

=
 8

da
ta

[]

sc
lr

ac
lr

q[
]

LP
M

_D
F

F

LP
M

_D
IR

E
C

T
IO

N
=

"A
D

D
"

LP
M

_P
IP

E
LI

N
E

=
LP

M
_R

E
P

R
E

S
E

N
T

A
T

IO
N

=
"U

N
S

IG
N

E
D

"
LP

M
_W

ID
T

H
=

 8
O

N
E

_I
N

P
U

T
_I

S
_C

O
N

S
T

A
N

T
=

da
ta

b[
]

co
ut

re
su

lt[
]

da
ta

a[
]

ci
n

LP
M

_A
D

D
_S

U
B

LP
M

_A
V

A
LU

E
=

LP
M

_S
V

A
LU

E
=

LP
M

_W
ID

T
H

=
 8

da
ta

[]

sc
lr

ac
lr

q[
]

LP
M

_D
F

F

LA
N

C
E

[7
..0

]
O

U
T

P
U

T

C
LK

IN
P

U
T

D

D
F

F

C
LR

N

Q
P

R
N

R
E

S
E

T
IN

P
U

T
N

O
T

[I]
R

E
S

E
T

[I]
C

LK

[B
]C

IN

[B
]A

[7
..0

]

[B
]L

E
H

_S
U

M
[7

..0
]

[B
]C

O
U

T

[O
]L

A
N

C
E

[7
..0

]

00
01

02
03

05
08

0D
15

22
37

59
90

00

01
02

03
05

08
0D

15
22

37
59

90
E

9
79

01

00
01

02
03

05
08

0D
15

22
37

59
90

E
9

00
01

F
IG

U
R

E
 2

40
.0

ns
80

.0
ns

12
0.

0n
s

16
0.

0n
s

20
0.

0n
s

24
0.

0n
s

28
0.

0n
s

32
0.

0n
s

36
0.

0n
s

40
0.

0n
s

44
0.

0n
s

48
0.

0n
s

52
0.

0n
s

56
0.

0n
s

60
0.

0n
s

64
0.

0n
s

N
am

e:
V

Q
2

3

L
A

N
C

E
[7

..
0

]
L

E
H

[7
..
0

]

L
E

H
[3

..
0

]

Q
[2

3
..
0

]

L
E

H
[7

..
4

]

F
IG

U
R

E
 3

S
W

[7
..0

]
IN

P
U

T
T

R
I

la
b5

_t
op

@
29

P
B

IN
P

U
T

N
O

T

N
O

T

R
E

S
E

T

C
L

K

L
A

N
C

E
[7

..
0

]

la
b

5
T

R
I

la
b5

_t
op

@
28

/R
E

S
E

T
IN

P
U

T

LP
M

_A
V

A
LU

E
=

LP
M

_D
IR

E
C

T
IO

N
=

"U
P

"
LP

M
_M

O
D

U
LU

S
=

LP
M

_S
V

A
LU

E
=

LP
M

_W
ID

T
H

=
24

q[
]

LP
M

_C
O

U
N

T
E

R

LP
M

_A
D

D
R

E
S

S
_C

O
N

T
R

O
L=

"U
N

R
E

G
IS

T
E

R
E

D
"

LP
M

_F
IL

E
=

"h
ex

7s
eg

.m
if"

LP
M

_N
U

M
W

O
R

D
S

=
LP

M
_O

U
T

D
A

T
A

=
"U

N
R

E
G

IS
T

E
R

E
D

"
LP

M
_W

ID
T

H
=

 8
LP

M
_W

ID
T

H
A

D
=

4

ad
dr

es
s[

]

q[
]

LP
M

_R
O

M

LS
B

[7
..0

]
O

U
T

P
U

T

la
b5

_t
op

@
91

O
S

C
IN

P
U

T

LP
M

_A
D

D
R

E
S

S
_C

O
N

T
R

O
L=

"U
N

R
E

G
IS

T
E

R
E

D
"

LP
M

_F
IL

E
=

"h
ex

7s
eg

.m
if"

LP
M

_N
U

M
W

O
R

D
S

=
LP

M
_O

U
T

D
A

T
A

=
"U

N
R

E
G

IS
T

E
R

E
D

"
LP

M
_W

ID
T

H
=

 8
LP

M
_W

ID
T

H
A

D
=

4

ad
dr

es
s[

]

q[
]

LP
M

_R
O

M

M
S

B
[7

..0
]

O
U

T
P

U
T

