
UC Davis 1 ECE Department

ADVANCED QUARTUS II TUTORIAL

OVERVIEW
This tutorial illustrates several advanced topics that were not covered in Lab 2. These topics include
creating symbols for use in a hierarchical design, using Altera parameterized modules, such as a ROM,
and initializing ROM contents.

USING PARAMETERIZED MODULES
Altera's Library of Parameterized Modules (LPM) contains many high-level components that can be
configured to meet specific design goals. You will probably find the LPM components very convenient
and easy to use.

In this tutorial, you will design a circuit that computes the Fibonacci sequence using an adder and
registers. (The Fibonacci sequence is 0, 1, 1, 2, 3, 5, 8, ...) Recall that a register is simply a group of flip-
flops with a common clock signal. The data path will be 8-bits wide (therefore the data is 8-bits wide as
well) so that the circuit can be easily tested using the Altera Education Board. If you thought a sequence
of numbers could never be very interesting or have any applications, read up on the Fibonacci sequence—
google it or check out http://www.branta.connectfree.co.uk/fibonacci.htm

• Open a new schematic and enter the symbol lpm_add_sub from the mega_lpm library. A dialog box

should come up to allow you to configure the parameters and ports. Click on each parameter from the
list and use the pull-down arrow in the dialog box to select the desired value for the parameter. Enter
the following values for the parameters:

 LPM_DIRECTION = "ADD"
 LPM_REPRESENTATION = "UNSIGNED"
 LPM_WIDTH = 8

 Any other parameters, such as LPM_PIPELINE or ONE_INPUT_IS_CONSTANT, should be left

unassigned. For an explanation on how the lpm_add_sub component works and how each of the
parameters can be used, select the Help on LPM_ADD_SUB button in the dialog box.

 Configure the ports so that cin, cout, dataa[], datab[] and result[] are Used and all other ports are

Unused. When you have configured all ports and parameters, press the OK button.

 If you need to change any parameters or port declarations after you have closed the dialog box, click

on the lpm_add_sub component on your schematic and select Edit Ports/Parameters… (Symbol
Menu). This will re-open the dialog box so that you can make corrections. Another way to re-open
the dialog box is to double-click the left-mouse button (LMB) on the parameters box.

The adder will be used to add the last two numbers in the sequence to produce the next number. We will
also need two 8-bit registers in order to store the last two numbers in the sequence. We could use a
standard D flip-flop and let the Altera software create a "primitive array". However, the standard D flip-
flop only has an asynchronous reset (resets can happen at any time) and in our design we would like to
synchronously clear the registers (synchronous reset—the reset signal can affect the output only during
the active clock transition edge) when a carry-out is generated by the adder. We can use another LPM
component to design a D flip-flop with both asynchronous and synchronous clear inputs.

• Enter the symbol lpm_dff from the mega_lpm library. Set the parameters such that LPM_WIDTH =

8 and the other parameters are unassigned. Configure ports aclr, clock, data[], q[] and sclr as Used
and all other ports as Unused.

UC Davis 2 ECE Department

• Make a copy of the lpm_dff that you just configured and place the components as shown in Figure 1.
Also, add the components not, dff, input and output and complete the schematic as shown in Figure
1. Note that buses are shown with thick lines and are labeled as NAME[MSB..LSB].

• Label the output bus with your first name. I.e. FRANK[7..0]. Also, label the output of the

lpm_add_sub component with your initials followed by _SUM[7..0]. Note that wires which have the
same name on the same level of hierarchy are connected. Remember to keep the wire labels close to
the wires that they label! Otherwise, the Altera Compiler may not interpret the text as a valid net
label.

• Save & Check your file to make sure that there are no errors. Then compile your circuit with the

following options selected: Functional SNF Extractor and Preserve All Node Name Synonynms
(Processing menu). (You must turn off the Timing SNF Extractor before you can select the
Functional SNF Extractor.) Once the options are selected, click on the Start button to compile your
circuit. You must fix any compile errors before proceeding to the next step.

• Open the Waveform Editor and select the Nodes to watch during simulation. You can use Enter

Nodes from SNF... (Node menu) to select nodes such as RESET, CLK and the output signal with
your name. Some other nodes are difficult to find in the SNF list. Instead, you can select Insert Node
(Node menu) and type the name of a node. Try this for entering nodes A[7..0], CIN, COUT and the
output of the lpm_add_sub that has your initials in the name.

• Set the Grid Size (Options menu) to 20 ns.

• Select the CLK node with the left-mouse button so that it is highlighted. Then select

Overwrite>Clock from the Edit pull-down menu. Specify a clock period of 40 ns.

• Assert the RESET node high for the first clock cycle. (Note that the RESET is active-high in this

design.)

• Save your waveform file as an .scf file with the same prefix as your schematic and project. Open the

Simulator (QUARTUS II menu) and click on the Start button to run a functional simulation. Verify
your waveforms with the results shown in Figure 2.

CREATING A SYMBOL
You will now create a symbol for the circuit you have just designed so that it can be used as a component
in a more complex design.

• Open the graphic design file (.gdf) for your circuit. Select Create Default Symbol (File menu). This

will create a symbol file with the same name as your design and the .sym extension.

CREATING A HIERARCHICAL DESIGN
You will now design a top-level schematic that uses the component you just created.

• Close any open windows such as the Graphics Editor, Simulator, Waveform Editor, etc. Create a new

schematic file (.gdf) for your top-level design. Name the file and save it in your working directory.
Change the project to this new name.

• Place an instance of your component in your top-level schematic. Your symbol should have RESET

and CLK input ports and an output port named after you.

UC Davis 3 ECE Department

USING A ROM
In this design, we will use a ROM to implement a combinational logic circuit that converts a 4-bit hex
number to the corresponding 7-segment display driver signals. We will illustrate how the ROM can be
initialized using a Memory Initialization File (.mif) which can be created using a simple text editor.

• Select an lpm_rom component from the mega_lpm library. Select address[] and q[] as the only

ports to be Used. Also, configure the parameters as shown below.

 LPM_ADDRESS_CONTROL = "UNREGISTERED"
 LPM_OUTDATA = “UNREGISTERED”
 LPM_FILE = "hex7seg.mif"
 LPM_WIDTH = 8
 LPM_WIDTHAD = 4

 Note that you must type the quotes around the file name and the case of the name must match the file

that you create. Once the ports and parameters are configured, press OK.

• Using Copy and Paste, place a second, identical ROM component on your schematic.

Next we will create the .mif file. The format of the MIF file is quite simple and is explained in Altera's
on-line HELP documentation. The default radix is hexadecimal. Our ROM will contain 16 words (also
called “16 words deep”) and each word will be 8 bits wide. The data represents active-low 7-segment
display drivers where the MSB corresponds to signal a, MSB-1 corresponds to b, etc. and the LSB
corresponds to the decimal point which should always be off. For example, when the value 0 is the
address value, we would like to display the symbol 0 on the 7-segment display. This requires all
segments to be on (low) except for g and the decimal point, giving a hex value of 03.

UC Davis 4 ECE Department

----------------------------- hex7seg.mif ------------------------
DEPTH = 16;
WIDTH = 8;
CONTENT
 BEGIN
0 : 03;
1 : 9F;
2 : 25;
3 : 0D;
4 : 99;
5 : 49;
6 : 41;
7 : 1F;
8 : 01;
9 : 19;
A : 11;
B : C1;
C : 63;
D : 85;
E : 61;
F : 71;
 END;
--

CLOCK GENERATION
The Altera UP1 Education Board has a 25.175 MHz crystal oscillator that drives global clock input pin
83 of the EPM7128S device and global clock input pin 91 of the EPF10K20 device. Since the
EPM7128S device does not support memory devices such as ROM we will use the EPF10K20 for this
design. We will need to divide the clock signal down to a frequency on the order of 1 Hz so that we can
observe the Fibonacci sequence on the 7-segment displays. We can use a counter from the LPM library
to accomplish this.

• Select lpm_counter (mega_lpm library). Configure two ports, clk and q[], as Used and all other ports

as Unused. Set the LPM_DIRECTION parameter to "UP" and the LPM_WIDTH to 24. Then press
the OK button.

You will use the most significant bit of the counter as the clock signal for the Fibonacci subcircuit. The
frequency should be approximately (25 MHz / 2**24) = 1.5 Hz. After the design has been compiled with
the Timing SNF Extractor, we will use the Timing Analysis tool to verify that the counter can operate
with a clock frequency of 25 MHz.

TRI-STATES
Based on the state of a push-button switch input, this design will display on the 7-segment displays either
the value of eight input switches or the Fibonacci sequence. We will use tri-state buffers in order to
multiplex these different output functions.

• Select tri from the primitive library. Although this primitive represents a single tri-state buffer, it can

be connected to a bus and the Altera compiler will automatically generate a "primitive array" of the
same width as the bus. Place a tri buffer at the output of the Fibonacci subcircuit and another
connected to an input primitive, as shown in Figure 3.

UC Davis 5 ECE Department

There are some very important guidelines for designing with tri-state buffers using Altera tools.
Altera devices do not have tri-state buffers for driving internal logic. When tri-state buffers are used
to multiplex signals, as in our current design, QUARTUS II will substitute a multiplexer made up of
combinational logic for the tri-state gates. Bidirectional signals, however, cannot be implemented in the
internal Altera logic due to the lack of internal tri-state buffers. Altera devices do have tri-state buffers in
the I/O Elements so that bidirectional I/O pins with tri-state output capability can be implemented. For
more information on using tri-state buses in Altera devices, check the documentation available on the
Altera Web page:

http://www.altera.com/support/examples/ged/tri_state.html

PIN AND DEVICE ASSIGNMENTS
• Add the remaining components and connect the circuit as shown in Figure 3. Select Line Style

(Options menu) to draw a bus between the input switches, SW[7..0], and the tri component.

• Label the output of the Fibonacci circuit with your name and the output of the tri-state multiplexer

with your initials.

We will now assign the device type and pin locations that correspond to the Altera Education Board.

• From the Graphics Editor, select Device... (Assign menu). Choose FLEX10K as the Device Family.

Make sure that the option "Show Only Fastest Speed Grades" is not selected and select device
EPF10K20RC240-4.

The pushbutton switches are active low and are each pulled-up through a 10 K ohm resistor. The
pushbutton switches have the following pin assignments.

Pushbutton switch Pin number
PB1 28
PB2 29

The pin assignments for the eight dipswitch inputs are:

Switch Pin number
SW-1 41
SW-2 40
SW-3 39
SW-4 38
SW-5 36
SW-6 35
SW-7 34
SW-8 33

The pin assignments for the 7-segment display driver signals are shown below. Note that these are
different from the pin assignments for the EPM7128S.

UC Davis 6 ECE Department

Display segment MS Digit pin number LS Digit pin number
a 6 17
b 7 18
c 8 19
d 9 20
e 11 21
f 12 23
g 13 24

decimal point 14 25

• Select Pin/Location/Chip (Assign menu) and, using the tables given above, assign pin numbers to all

input and output ports in your design. For example,

OSC = 91
/RESET = 28
PB = 29
SW7 = 41 ... SW0 = 33
MSB7 = 6 ... MSB0 = 14
LSB7 = 17 ... LSB0 = 25

• Save and Check your design. (The project should be set to your top-level design.) When it checks

without errors, compile the design using Timing SNF Extraction. If you receive warnings or errors,
you can select the message and press the Help on Message button if you aren't sure how to fix the
problem. You can also select the Locate button to locate the problem in your schematic.

VERIFYING TIMING
We should check that the 24-bit counter can actually operate with a clock frequency of 25 MHz.

• Select Timing Analyzer (QUARTUS II menu) and choose Registered Performance (Analysis

menu). When the dialog box comes up, press the Start button. Since this design uses 2 clocks, OSC
and Q23, the Timing Analyzer tools will calculate the maximum clock frequency for each clock. We
only need to verify that the OSC signal can be >= 25 MHz. After the Timing Analyzer has run,
choose OSC from the Clock pull-down box. You should see a maximum clock frequency in the
range of 69 MHz.

VERIFYING THE FINAL DESIGN
It is not necessary to do a complete simulation on the top-level design. The 24-bit counter would take
excessive computer resources to simulate completely. If you desire to simulate your design, you should
test the 24-bit counter and the remainder of the circuit separately.

Your TA will configure the Altera Education Board and help you download your circuit to the EPF10K20
device. The SRAM Object File (.sof) is used to program the FLEX10K family of devices rather than the
Programmer Object File (.pof) that is used to program the MAX 7000S family of devices. Thus, you will
need to transfer the .sof file to the lab PC for downloading.

UC Davis 7 ECE Department

DOWNLOADING TO THE ALTERA BOARD
The procedure for downloading the programming file to the Altera board is as follows:

1. Set up the Altera board. Connect the ribbon-cable connector to the primary parallel port of the PC. Set
the power supply to 7-8 Volts since the Altera board contains a +5V voltage regulator. Turn on the power
supply.

2. Log-in to the PC so that you will have access to your workstation directory. Otherwise, you will need
to use ftp or perhaps a diskette to transfer the programming file to the PC.

3. Run the Max+PlusII program by double-clicking on the icon or using the Start Menu. Open the
Programmer tool by selecting it from the Max+PlusII window.

4. If the Hardware Setup Dialog Box pops up, set Hardware Type to ByteBlaster. Click OK.

5. From the JTAG menu, choose Multi-Device JTAG Chain Setup. In the dialog box, set Device Name:
EPF10K20. Then choose the Select Programming File button. Select the Programming File type as:
SRAM Object Files (*.sof). Then locate the programming file *.sof. If you have logged-in to the PC, you
can set the drive to h: and browse your directories. Once you have located the file, double-click on it and
then choose the Add button in the dialog box. You can then close the dialog box. Answer Yes to the
question about whether it is ok to turn on the multi-device JTAG Chain Mode.

6. Choose Configure in the Programmer dialog box. The software should download your file to the Altera
board. You can then test the circuit on the Altera board.

7. Remember to log out when you are done so that others don’t gain access to the files in your
workstation account. Also, delete the programming file from the PC if you stored it on the hard drive.

UC Davis 8 ECE Department

R
E

S
E

T
R

E
S

E
T

C
O

U
T

C
O

U
T

C
LK

A
[7

..0
]

LE
H

_S
U

M
[7

..0
]

C
LK

C
O

U
T

C
IN

FI
G

U
R

E
 1

 -
FI

B
O

N
A

C
C

I S
U

B
C

IR
C

U
IT

L P
M

_A
VA

L U
E =

LP
M

_S
V

AL
U

E=
LP

M
_W

ID
TH

=
8

da
ta

[]

sc
lr

ac
lr

q[
]

LP
M

_D
FF

LP
M

_D
IR

E
C

TI
O

N
="

AD
D

"
LP

M
_P

IP
EL

IN
E=

LP
M

_R
EP

R
ES

EN
TA

TI
O

N
="

U
N

S
IG

N
ED

"
LP

M
_W

ID
TH

=
8

O
N

E
_I

N
PU

T_
IS

_C
O

N
S

TA
N

T=

da
ta

b[
]

co
ut

re
su

lt[
]

da
ta

a[
]

ci
n

LP
M

_A
D

D
_S

U
B

LP
M

_A
VA

LU
E=

L P
M

_ S
V A

L U
E =

LP
M

_W
ID

TH
=

8

da
ta

[]

sc
lr

ac
lr

q[
]

LP
M

_D
FF

LA
N

C
E

[7
..0

]
O

U
TP

U
T

C
LK

IN
P

U
T

D

D
FF

C
LR

N

Q
P

R
N

R
E

S
ET

IN
P

U
T

N
O

T

UC Davis 9 ECE Department

UC Davis 10 ECE Department

Q
23

LA
N

C
E[

7.
.0

]
LE

H
[7

..0
]

LE
H

[3
..0

]

Q
[2

3.
.0

]

LE
H

[7
..4

]

FI
G

U
R

E
 3

 -
TU

TO
R

IA
L2

 T
O

P
-L

E
V

E
L

C
IR

C
U

IT

S
W

[7
..0

]
IN

P U
T

TR
I

tu
to

ria
l2

@
29

P
B

IN
PU

T
N

O
T

N
O

T

R
E

S
E

T

C
LK

LA
N

C
E

[7
..0

]

fib
TR

I

tu
to

ria
l2

@
28

/R
E

S
E

T
IN

PU
T

LP
M

_A
V

AL
U

E
=

LP
M

_D
IR

E
C

TI
O

N
="

U
P"

LP
M

_M
O

D
U

LU
S

=
LP

M
_S

V
AL

U
E

=
LP

M
_W

ID
TH

=2
4

q[
]

LP
M

_C
O

U
N

TE
R

LP
M

_A
D

D
R

E
S

S
_C

O
N

TR
O

L=
"U

N
R

E
G

IS
TE

R
ED

"
LP

M
_F

IL
E

="
he

x7
se

g.
m

if"
LP

M
_N

U
M

W
O

R
D

S
=

LP
M

_O
U

TD
A

TA
="

U
N

R
E

G
IS

TE
R

ED
"

LP
M

_W
ID

TH
=

8
LP

M
_W

ID
TH

A
D

=4

ad
dr

es
s[

]

q[
]

LP
M

_R
O

M

L S
B

[7
..0

]
O

U
T P

U
T

tu
to

ria
l2

@
91

O
S

C
IN

PU
T

LP
M

_A
D

D
R

ES
S

_C
O

N
TR

O
L=

"U
N

R
E

G
IS

TE
R

ED
"

LP
M

_F
IL

E
="

he
x7

se
g.

m
if"

LP
M

_N
U

M
W

O
R

D
S

=
LP

M
_O

U
TD

A
TA

="
U

N
R

E
G

IS
TE

R
E D

"
LP

M
_W

ID
TH

=
8

LP
M

_W
ID

TH
A

D
=4

ad
dr

es
s[

]

q [
]

LP
M

_R
O

M

M
S

B
[7

..0
]

O
U

TP
U

T

