Problem 1 (20 points)
Using algebraic manipulations (without using Karnaugh maps) prove that:

F = (A+B+D)(A+B+D)(B+C+D)(A+C)(A+C+D) = ACD+ACD+BCD
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Problem 2 (25 points)

Realize the given function F = F(A,B,C,.D}):

a) using one 8:1 MUX with control inputs A, C and D

b} using one 4:1 MUX. Select the control inputs to minimize the number of added gates.
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Problem 3 {30 points)
Show that;
F = ABD+BCD+ABC+ABD reduces to F = BCD+AD+ABC

You can use Karnaugh map (if you wish) — however you are allowed to use only
product of sums (i.e. you can only minimize them using zeros).

List the essential prime implicants for this expression.
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