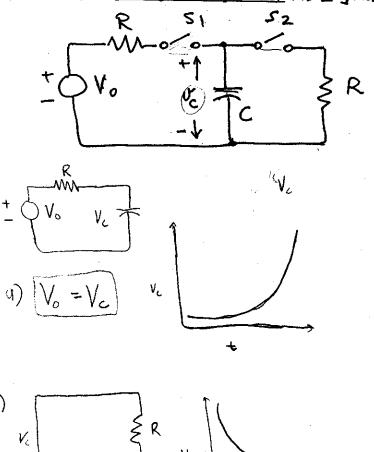
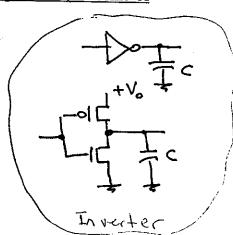
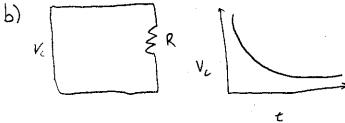
Problem #1: Digital CMOS inverter can be approximated as a circuit given in the figure.


(a.) find the expression for the voltage  $V_c$  (as a function of time t) when switch S1 is ON and S2 is off. Assume that the capacitor C was completely discharged before S1 was turned ON. Draw a graph of  $V_c$  (4)


Quiz -4


(b.) find the expression for the voltage  $V_c$  (as a function of time t) when (after sufficient time has elapsed to charge the capacitor C fully) the switch S1 is turned off and switch S2 is turned on. Draw - graph:  $V_c(t)$ 

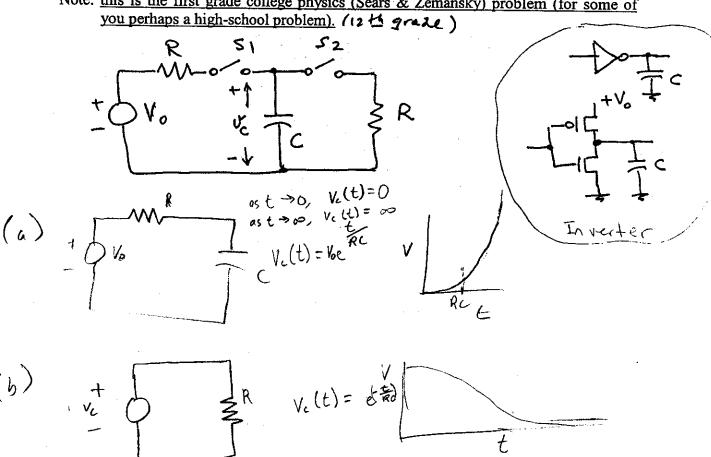
Note: this is the first grade college physics (Sears & Zemansky) problem (for some of

you perhaps a high-school problem). (12 1 graze)







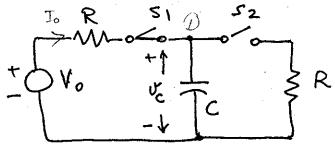

Problems:

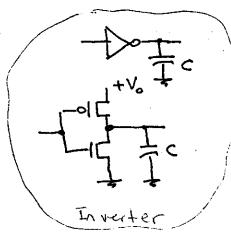


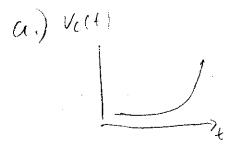
Problem #1: Digital CMOS inverter can be approximated as a circuit given in the figure.

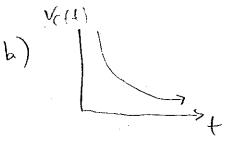
- (a.) find the expression for the voltage  $V_c$  (as a function of time t) when switch S1 is ON and S2 is off. Assume that the capacitor C was completely discharged before SI was turned ON. Draw a graph of Ja (t)
- (b.) find the expression for the voltage V<sub>c</sub> (as a function of time t) when (after sufficient time has elapsed to charge the capacitor C fully) the switch S1 is turned off and switch S2 is turned on. Draw a graph: Velt)

Note: this is the first grade college physics (Sears & Zemansky) problem (for some of





Problem #1: Digital CMOS inverter can be approximated as a circuit given in the figure.


- (a.) find the expression for the voltage  $V_c$  (as a function of time t) when switch S1 is ON and S2 is off. Assume that the capacitor C was completely discharged before SI was turned ON. Draw a graph of Ve (+)
- (b.) find the expression for the voltage V<sub>c</sub> (as a function of time t) when (after sufficient time has elapsed to charge the capacitor C fully) the switch S1 is turned off and switch S2 is turned on. Draw a graph:  $V_c(t)$

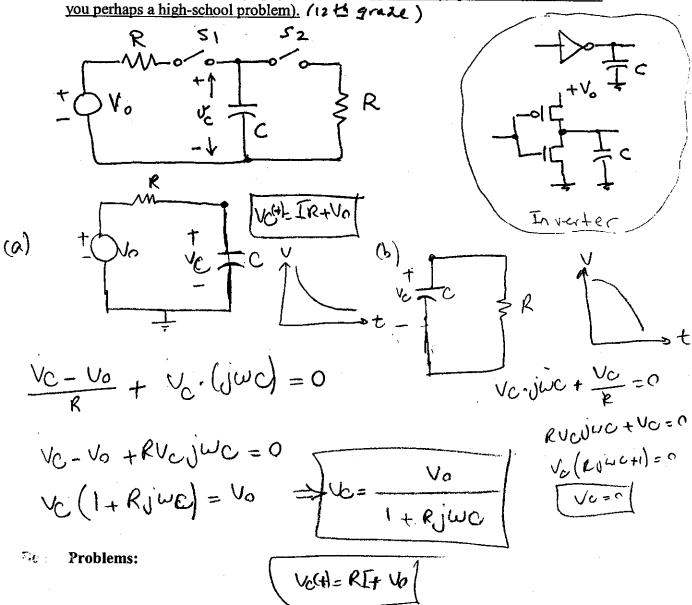

Note: this is the first grade college physics (Sears & Zemansky) problem (for some of

you perhaps a high-school problem). (12 13 graze)





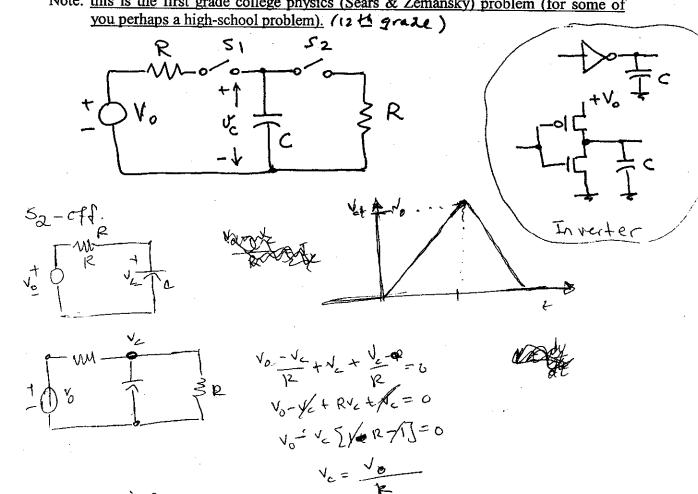





Problems:

Problem #1: Digital CMOS inverter can be approximated as a circuit given in the figure.

- (a.) find the expression for the voltage  $V_c$  (as a function of time t) when switch S1 is ON and S2 is off. Assume that the capacitor C was completely discharged before S1 was turned ON. Draw a graph of  $V_c$  (4)
- (b.) find the expression for the voltage  $V_c$  (as a function of time t) when (after sufficient time has elapsed to charge the capacitor C fully) the switch S1 is turned off and switch S2 is turned on. Draw graph:  $V_c(t)$


Note: this is the first grade college physics (Sears & Zemansky) problem (for some of



Problem #1: Digital CMOS inverter can be approximated as a circuit given in the figure.

- (a.) find the expression for the voltage  $V_c$  (as a function of time t) when switch S1 is ON and S2 is off Assume that the capacitor C was completely discharged before SI was turned ON. Draw a graph of ve (t)
- (b.) find the expression for the voltage V<sub>c</sub> (as a function of time t) when (after sufficient time has elapsed to charge the capacitor C fully) the switch S1 is turned off and switch S2 is turned on. Draw a graph: Vo(t)

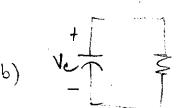
Note: this is the first grade college physics (Sears & Zemansky) problem (for some of



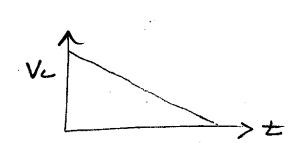
៊ាកូ

(1)

Problem #1: Digital CMOS inverter can be approximated as a circuit given in the figure.


- (a.) find the expression for the voltage  $V_c$  (as a function of time t) when switch S1 is ON and S2 is off. Assume that the capacitor C was completely discharged before S1 was turned ON. Draw a graph of  $V_c$  (4)
- (b.) find the expression for the voltage  $V_c$  (as a function of time t) when (after sufficient time has elapsed to charge the capacitor C fully) the switch S1 is turned off and switch S2 is turned on. Draw 3(-ph: Va(t))

Note: this is the first grade college physics (Sears & Zemansky) problem (for some of you perhaps a high-school problem). (12 12 2 7 22)


when SI is on circuit becomes



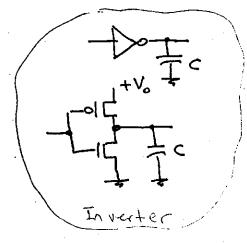
Ve



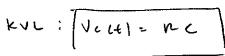
 $V_{L}(t) = \frac{V_{O}}{Kt}$ 

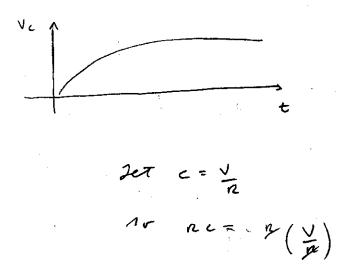


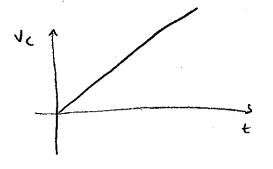
# D


## Your Name:

Problem #1: Digital CMOS inverter can be approximated as a circuit given in the figure.


- (a.) find the expression for the voltage  $V_c$  (as a function of time t) when switch S1 is ON and S2 is off. Assume that the capacitor C was completely discharged before S1 was turned ON. Draw a graph of  $V_c$  (4)
- (b.) find the expression for the voltage  $V_c$  (as a function of time t) when (after sufficient time has elapsed to charge the capacitor C fully) the switch S1 is turned off and switch S2 is turned on. Draw 31-ph:  $V_c(t)$


6)


Note: this is the first grade college physics (Sears & Zemansky) problem (for some of



KUL; Velt1 = Vo + RC



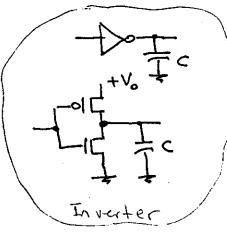




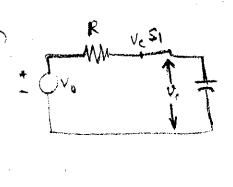
Problems:

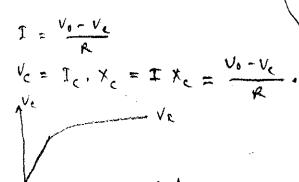
2)

· V

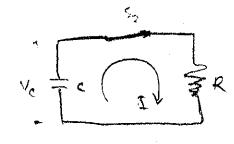



Problem #1: Digital CMOS inverter can be approximated as a circuit given in the figure.


- (a.) find the expression for the voltage  $V_c$  (as a function of time t) when switch S1 is ON and S2 is off. Assume that the capacitor C was completely discharged before S1 was turned ON. Draw a 1repl of  $V_c$  (t)
- (b.) find the expression for the voltage  $V_c$  (as a function of time t) when (after sufficient time has elapsed to charge the capacitor C fully) the switch S1 is turned off and switch S2 is turned on. Draw graph:  $V_c(t)$

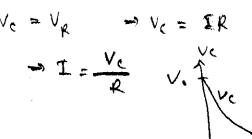

Note: this is the first grade college physics (Sears & Zemansky) problem (for some of you perhaps a high-school problem). (12 12 grade)

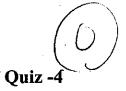
 $+ \begin{cases} & & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & &$ 




t







As time chapse, ve cherrenses percourse voltage usual drop on R.



ि : Problems:

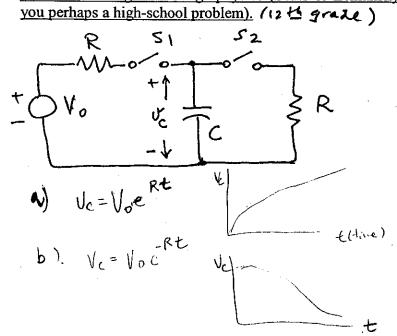
b)





Problem #1: Digital CMOS inverter can be approximated as a circuit given in the figure.

- (a.) find the expression for the voltage  $V_c$  (as a function of time t) when switch S1 is ON and S2 is off. Assume that the capacitor C was completely discharged before S1 was turned ON. Draw a graph of  $V_c$  (+)
- (b.) find the expression for the voltage  $V_c$  (as a function of time t) when (after sufficient time has elapsed to charge the capacitor C fully) the switch S1 is turned off and switch S2 is turned on. Draw a graph:  $V_c(t)$


off and switch S2 is turned on. Draw a graph: Velt) Note: this is the first grade college physics (Sears & Zemansky) problem (for some of you perhaps a high-school problem). (12 1 grave) 51 R SI De ... Problems: = RCdVc+ Ve



Problem #1: Digital CMOS inverter can be approximated as a circuit given in the figure.

- (a.) find the expression for the voltage  $V_c$  (as a function of time t) when switch S1 is ON and S2 is off. Assume that the capacitor C was completely discharged before S1 was turned ON. Draw a 100ph of  $V_c$  (t)
- (b.) find the expression for the voltage  $V_c$  (as a function of time t) when (after sufficient time has elapsed to charge the capacitor C fully) the switch S1 is turned off and switch S2 is turned on. Draw graph:  $V_c(t)$

Note: this is the first grade college physics (Sears & Zemansky) problem (for some of





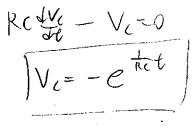
Τ.,

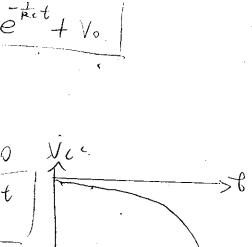


Problem #1: Digital CMOS inverter can be approximated as a circuit given in the figure.

- (a.) find the expression for the voltage V<sub>c</sub> (as a function of time t) when switch S1 is ON and S2 is off. Assume that the capacitor C was completely discharged before S1 was turned ON. Draw a graph of ve (4)
- (b.) find the expression for the voltage V<sub>c</sub> (as a function of time t) when (after sufficient time has elapsed to charge the capacitor C fully) the switch S1 is turned off and switch S2 is turned on. Draw a graph: Ve(t)

Note: this is the first grade college physics (Sears & Zemansky) problem (for some of


you perhaps a high-school problem). (12 1 graze) 51

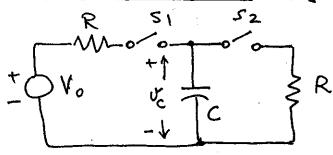

(M)

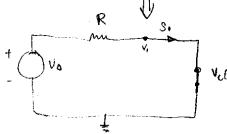
$$V_c = |s_1s_2| + |s_1s_2|$$

Vc = Vo - IR

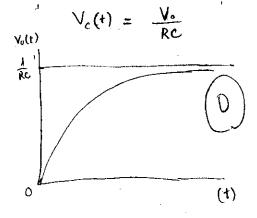
 $V_c = \Lambda R = R c \frac{W}{di}$ 







Problem #1: Digital CMOS inverter can be approximated as a circuit given in the figure.

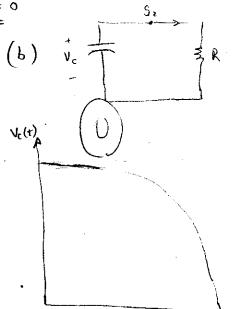
- (a.) find the expression for the voltage  $V_c$  (as a function of time t) when switch S1 is ON and S2 is off. Assume that the capacitor C was completely discharged before S1 was turned ON. Draw a graph of  $V_c$  (t)
- (b.) find the expression for the voltage  $V_c$  (as a function of time t) when (after sufficient time has elapsed to charge the capacitor C fully) the switch S1 is turned off and switch S2 is turned on. Draw graph:  $V_c(t)$


Note: this is the first grade college physics (Sears & Zemansky) problem (for some of

you perhaps a high-school problem). (12 1 graze)






 $V_{c(t)}$  This is RC circuit where t=0 =>  $V_{c}(t)=0$ when  $t=\infty$  =>  $V_{c}(t)$ =



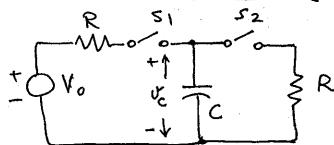
De : Problems:

(a)





## Ø


Your Name:

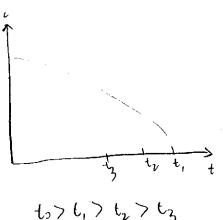
Problem #1: Digital CMOS inverter can be approximated as a circuit given in the figure.

- (a.) find the expression for the voltage  $V_c$  (as a function of time t) when switch S1 is ON and S2 is off. Assume that the capacitor C was completely discharged before S1 was turned ON. Draw a 1reph of  $V_c$  (t)
- (b.) find the expression for the voltage  $V_c$  (as a function of time t) when (after sufficient time has elapsed to charge the capacitor C fully) the switch S1 is turned off and switch S2 is turned on. Draw  $q_{raph}: V_c(t)$

Note: this is the first grade college physics (Sears & Zemansky) problem (for some of

you perhaps a high-school problem). (12 1/2 graze)




To verter

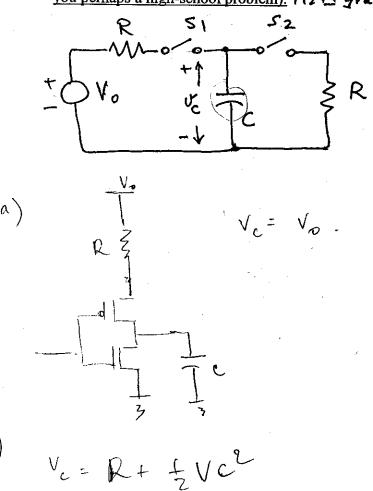
t 37 tr 74, 7 to b)

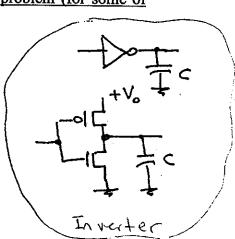
Via IS OFF

01/101/

Be Problems:







Problem #1: Digital CMOS inverter can be approximated as a circuit given in the figure.

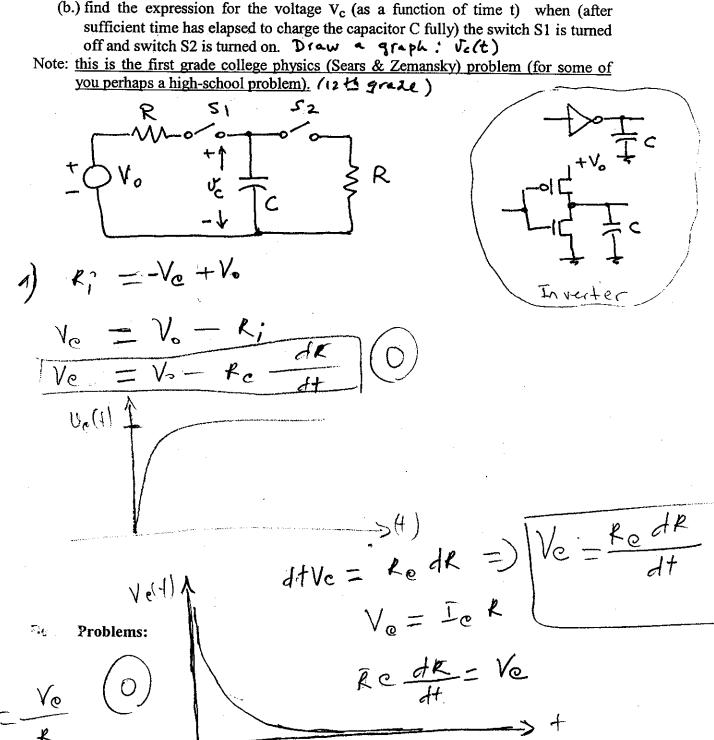
- (a.) find the expression for the voltage  $V_c$  (as a function of time t) when switch S1 is ON and S2 is off. Assume that the capacitor C was completely discharged before S1 was turned ON. Draw a 100ph of  $V_c$  (4)
- (b.) find the expression for the voltage  $V_c$  (as a function of time t) when (after sufficient time has elapsed to charge the capacitor C fully) the switch S1 is turned off and switch S2 is turned on. Draw a graph:  $V_c(t)$

Note: this is the first grade college physics (Sears & Zemansky) problem (for some of

you perhaps a high-school problem). (12 1 graze)






**Problems:** 

 $\Gamma_{ij}$ 



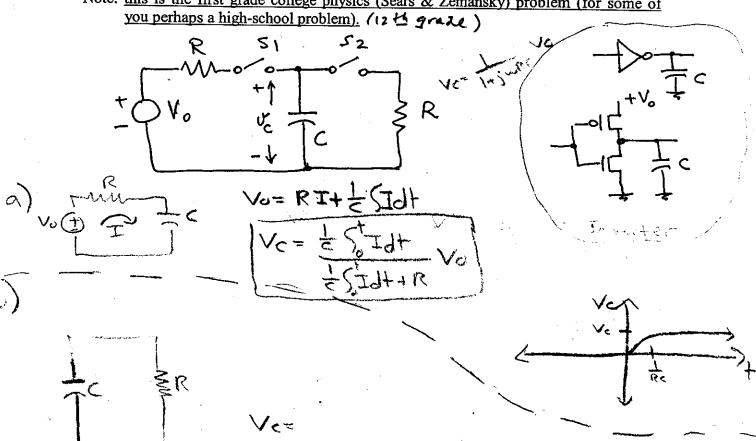
Problem #1: Digital CMOS inverter can be approximated as a circuit given in the figure.

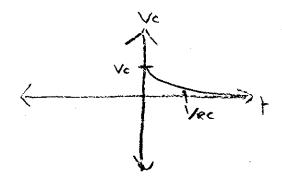
- (a.) find the expression for the voltage V<sub>c</sub> (as a function of time t) when switch S1 is ON and S2 is off. Assume that the capacitor C was completely discharged before SI was turned ON. Draw a graph of ve (+)
- (b.) find the expression for the voltage V<sub>c</sub> (as a function of time t) when (after



Problem #1: Digital CMOS inverter can be approximated as a circuit given in the figure.

- (a.) find the expression for the voltage V<sub>c</sub> (as a function of time t) when switch S1 is ON and S2 is off. Assume that the capacitor C was completely discharged before S1 was turned ON. Draw a 1repl of ve (4)
- (b.) find the expression for the voltage V<sub>c</sub> (as a function of time t) when (after sufficient time has elapsed to charge the capacitor C fully) the switch S1 is turned off and switch S2 is turned on. Draw a graph: Va(t)


  Note: this is the first grade college physics (Sears & Zemansky) problem (for some of

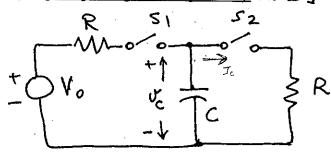

you perhaps a high-school problem). (12 1/2 graze) 51 R Ve Voe the Vc = Vc - Voe \*/RC Fig. Problems

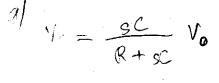
Problem #1: Digital CMOS inverter can be approximated as a circuit given in the figure.

- (a.) find the expression for the voltage  $V_c$  (as a function of time t) when switch S1 is ON and S2 is off. Assume that the capacitor C was completely discharged before S1 was turned ON. Draw a graph of  $V_c$  (t)
- (b.) find the expression for the voltage  $V_c$  (as a function of time t) when (after sufficient time has elapsed to charge the capacitor C fully) the switch S1 is turned off and switch S2 is turned on. Draw graph:  $V_c(t)$

Note: this is the first grade college physics (Sears & Zemansky) problem (for some of

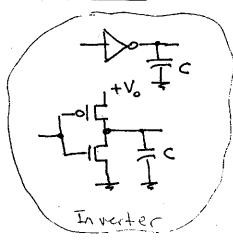






Problem #1: Digital CMOS inverter can be approximated as a circuit given in the figure.

- (a.) find the expression for the voltage  $V_c$  (as a function of time t) when switch S1 is ON and S2 is off. Assume that the capacitor C was completely discharged before S1 was turned ON. Draw a 1rept of  $V_c$  (t)
- (b.) find the expression for the voltage  $V_c$  (as a function of time t) when (after sufficient time has elapsed to charge the capacitor C fully) the switch S1 is turned off and switch S2 is turned on. Draw a graph:  $V_c(t)$

Note: this is the first grade college physics (Sears & Zemansky) problem (for some of


you perhaps a high-school problem). (12 1 grate)



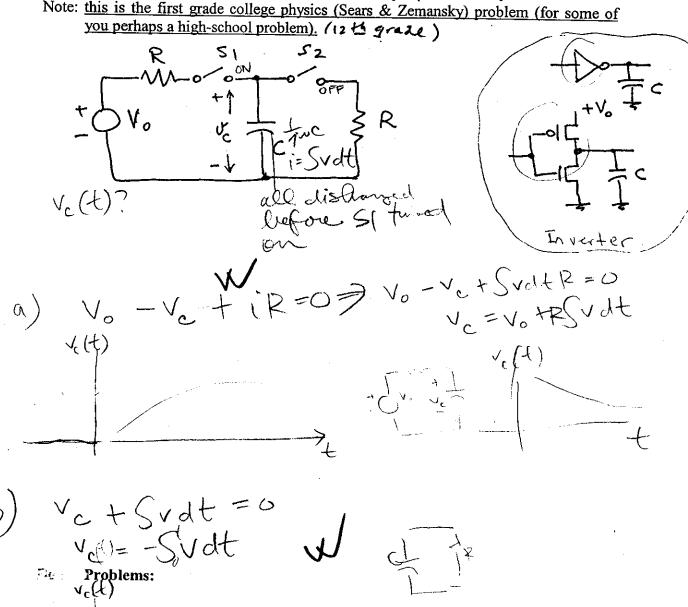


v(3)= Vc+ 1/2





Ve =



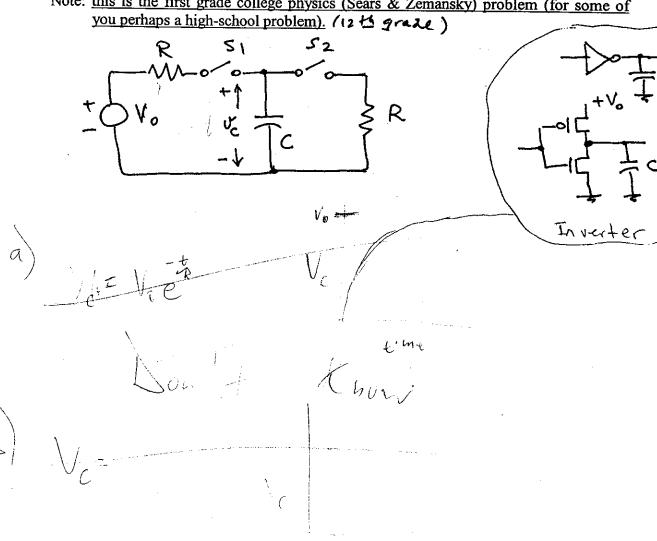

$$V = I_{c}R$$

Problem #1: Digital CMOS inverter can be approximated as a circuit given in the figure.

- (a.) find the expression for the voltage V<sub>c</sub> (as a function of time t) when switch S1 is ON and S2 is off. Assume that the capacitor C was completely discharged before SI was turned ON. Draw a graph of ve (t)
- (b.) find the expression for the voltage  $V_c$  (as a function of time t) when (after sufficient time has elapsed to charge the capacitor C fully) the switch S1 is turned off and switch S2 is turned on. Draw a graph: Velt)

Note: this is the first grade college physics (Sears & Zemansky) problem (for some of




Problems:

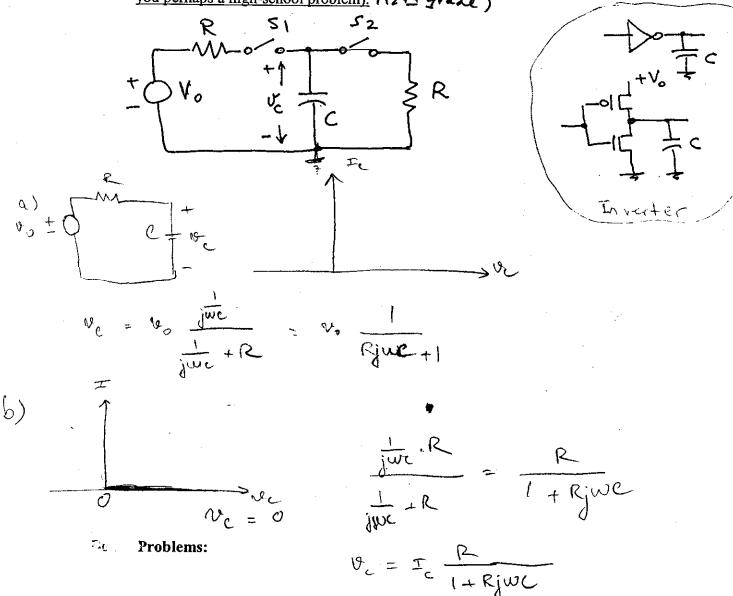
Your Name:

Problem #1: Digital CMOS inverter can be approximated as a circuit given in the figure.

- (a.) find the expression for the voltage V<sub>c</sub> (as a function of time t) when switch S1 is ON and S2 is off. Assume that the capacitor C was completely discharged before SI was turned ON. Draw a graph of ve (t)
- (b.) find the expression for the voltage V<sub>c</sub> (as a function of time t) when (after sufficient time has elapsed to charge the capacitor C fully) the switch S1 is turned off and switch S2 is turned on. Draw a graph: Velt)

Note: this is the first grade college physics (Sears & Zemansky) problem (for some of



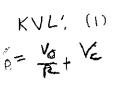

fine

Problem #1: Digital CMOS inverter can be approximated as a circuit given in the figure.

- (a.) find the expression for the voltage V<sub>c</sub> (as a function of time t) when switch S1 is ON and S2 is off. Assume that the capacitor C was completely discharged before S1 was turned ON. Draw a 1reph of ve (+)
- (b.) find the expression for the voltage V<sub>c</sub> (as a function of time t) when (after sufficient time has elapsed to charge the capacitor C fully) the switch S1 is turned off and switch S2 is turned on. Draw a graph: Va(t)

  Note: this is the first grade college physics (Sears & Zemansky) problem (for some of

you perhaps a high-school problem). (12 1 graze)



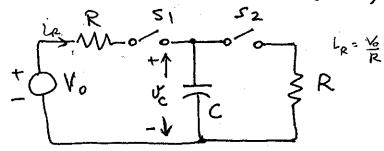

Problem #1: Digital CMOS inverter can be approximated as a circuit given in the figure.

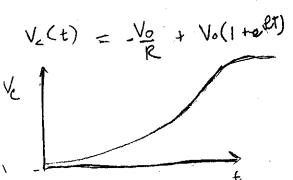
- (a.) find the expression for the voltage  $V_c$  (as a function of time t) when switch S1 is ON and S2 is off. Assume that the capacitor C was completely discharged before S1 was turned ON. Draw a 7reph of  $V_c$  (t)
- (b.) find the expression for the voltage  $V_c$  (as a function of time t) when (after sufficient time has elapsed to charge the capacitor C fully) the switch S1 is turned off and switch S2 is turned on. Draw a graph:  $V_c(t)$

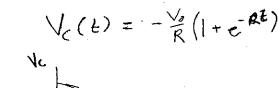
Note: this is the first grade college physics (Sears & Zemansky) problem (for some of

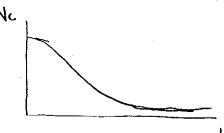
you perhaps a high-school problem). (12 1 graze)




KVL (2);


心# 10


Vc = - Vc

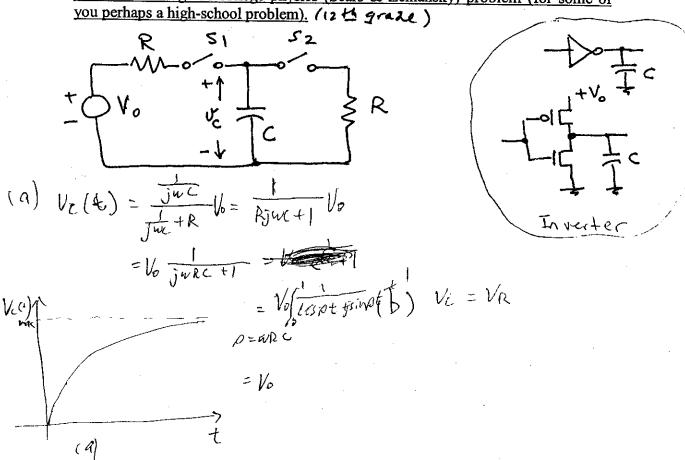

a)

P)

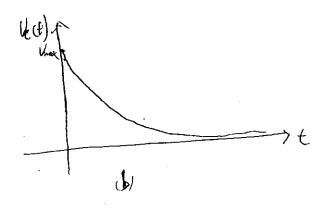






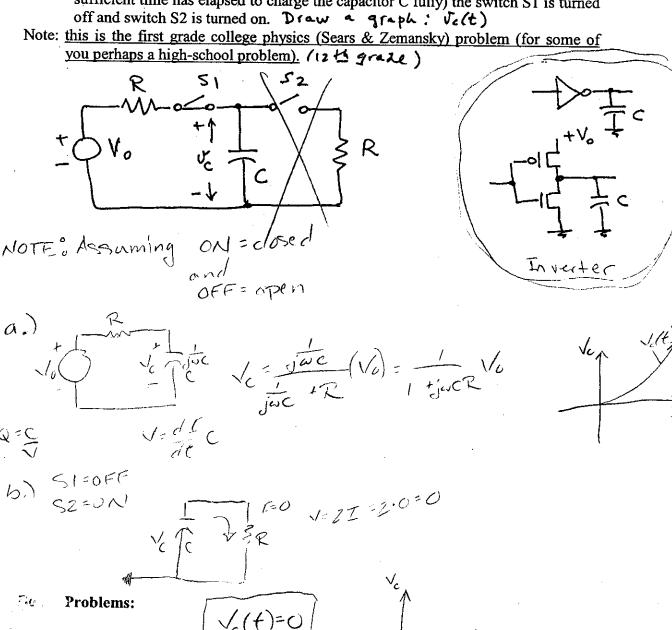






Problem #1: Digital CMOS inverter can be approximated as a circuit given in the figure.

- (a.) find the expression for the voltage  $V_c$  (as a function of time t) when switch S1 is ON and S2 is off. Assume that the capacitor C was completely discharged before S1 was turned ON. Draw a Jreph of  $V_c$  (4)
- (b.) find the expression for the voltage  $V_c$  (as a function of time t) when (after sufficient time has elapsed to charge the capacitor C fully) the switch S1 is turned off and switch S2 is turned on. Draw  $\sim 3 \text{ Gaph}$ :  $V_c(t)$

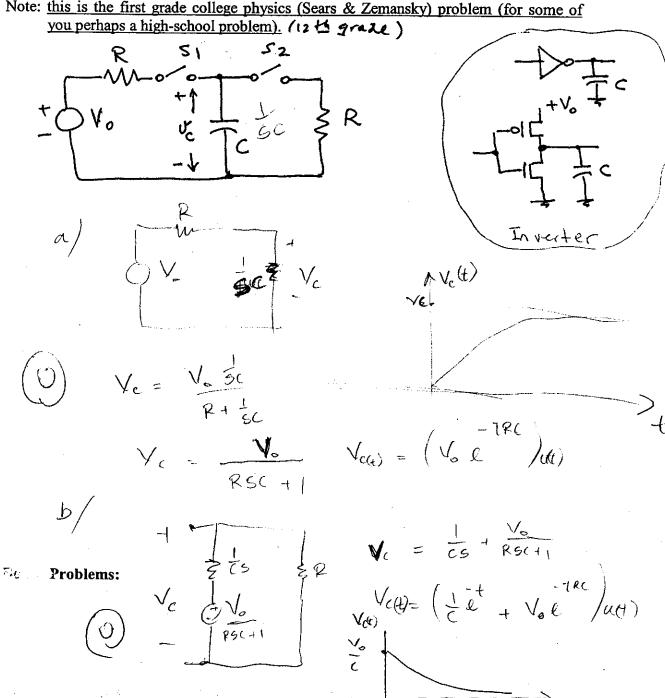
Note: this is the first grade college physics (Sears & Zemansky) problem (for some of




Te Problems:

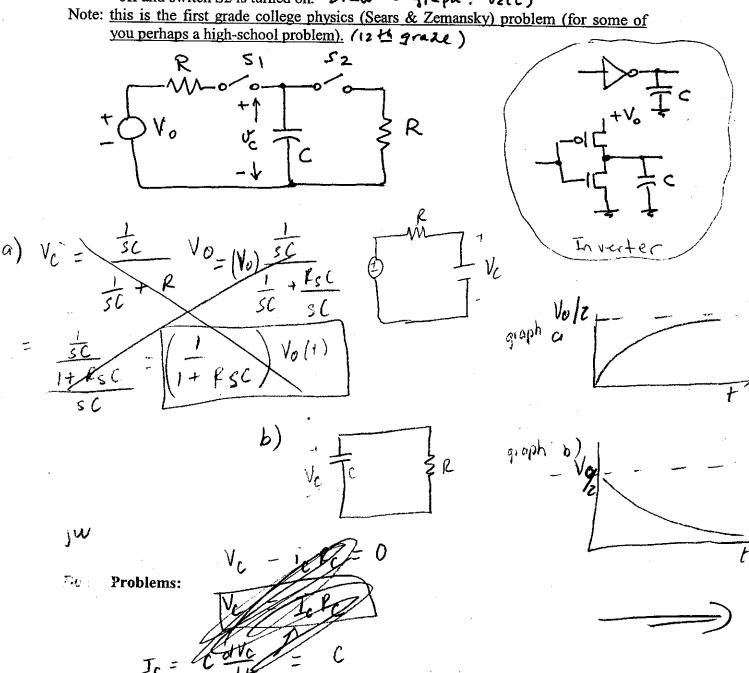


Problem #1: Digital CMOS inverter can be approximated as a circuit given in the figure.


- (a.) find the expression for the voltage  $V_c$  (as a function of time t) when switch S1 is ON and S2 is off. Assume that the capacitor C was completely discharged before S1 was turned ON. Draw a 1rept of  $V_c$  (t)
- (b.) find the expression for the voltage  $V_c$  (as a function of time t) when (after sufficient time has elapsed to charge the capacitor C fully) the switch S1 is turned off and switch S2 is turned on. Draw a graph:  $V_c(t)$



Problem #1: Digital CMOS inverter can be approximated as a circuit given in the figure.


- (a.) find the expression for the voltage V<sub>c</sub> (as a function of time t) when switch S1 is ON and S2 is off. Assume that the capacitor C was completely discharged before SI was turned ON. Draw a graph of ve (t)
- (b.) find the expression for the voltage V<sub>c</sub> (as a function of time t) when (after sufficient time has elapsed to charge the capacitor C fully) the switch S1 is turned off and switch S2 is turned on. Draw a graph: Velt)

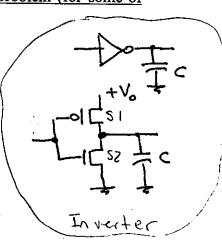
Note: this is the first grade college physics (Sears & Zemansky) problem (for some of



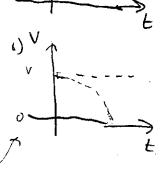
Problem #1: Digital CMOS inverter can be approximated as a circuit given in the figure.

- (a.) find the expression for the voltage  $V_c$  (as a function of time t) when switch S1 is ON and S2 is off. Assume that the capacitor C was completely discharged before S1 was turned ON. Draw a 1reph of ve (+)
- (b.) find the expression for the voltage V<sub>c</sub> (as a function of time t) when (after sufficient time has elapsed to charge the capacitor C fully) the switch S1 is turned off and switch S2 is turned on. Draw - graph: Ve(t)




## D

#### Your Name:


Problem #1: Digital CMOS inverter can be approximated as a circuit given in the figure.

- (a.) find the expression for the voltage  $V_c$  (as a function of time t) when switch S1 is ON and S2 is off. Assume that the capacitor C was completely discharged before S1 was turned ON. Draw a 1rept of  $V_c$  (t)
- (b.) find the expression for the voltage  $V_c$  (as a function of time t) when (after sufficient time has elapsed to charge the capacitor C fully) the switch S1 is turned off and switch S2 is turned on. Draw graph:  $V_c(t)$

Note: this is the first grade college physics (Sears & Zemansky) problem (for some of



 $V_{0}(t) = R + 1$   $V_{0}(t) = R_{j} \omega C + 1$   $V_{0} j \omega C = R_{j} \omega C + 1$   $j \omega C (V_{0} - R) = 1$   $j \omega C = 1$   $V_{0} - R$   $W = \left(\frac{1}{V_{0} - R}\right) \frac{1}{C_{j}}$   $V_{c} = R + \frac{1}{J} \omega C$ 

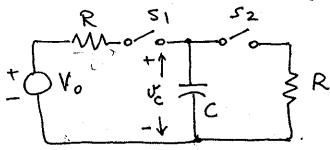


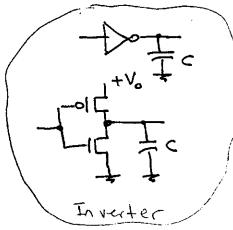
 $\omega = \left(\frac{1}{v_c - e}\right)^{\frac{1}{c}}$ 

Problems: Note to TAS this whole quiz is an UNREASONABLE

1'udge of our knowledge of DIGITAL CIRCUITS

why should we need to know and one log. I'm a


Conjuter Science Student This is an EE course and this
is a quiz of basic knowledge. You should complain about your degree.


Problem #1: Digital CMOS inverter can be approximated as a circuit given in the figure.

- (a.) find the expression for the voltage  $V_c$  (as a function of time t) when switch S1 is ON and S2 is off. Assume that the capacitor C was completely discharged before S1 was turned ON. Draw a Jreph of  $V_c$  (t)
- (b.) find the expression for the voltage  $V_c$  (as a function of time t) when (after sufficient time has elapsed to charge the capacitor C fully) the switch S1 is turned off and switch S2 is turned on. Draw 3(aph:  $V_c(t)$

Note: this is the first grade college physics (Sears & Zemansky) problem (for some of

you perhaps a high-school problem). (12 1 graze)





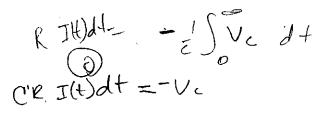
a) voti it Teve

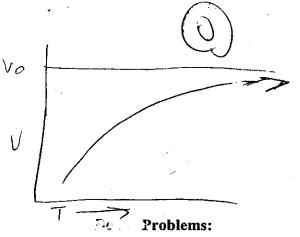


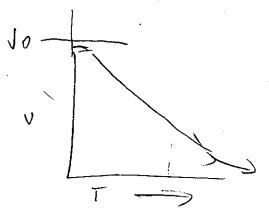
b) on back




Problem #1: Digital CMOS inverter can be approximated as a circuit given in the figure.


- (a.) find the expression for the voltage  $V_c$  (as a function of time t) when switch S1 is ON and S2 is off. Assume that the capacitor C was completely discharged before S1 was turned ON. Draw a Jraph of  $V_c$  (4)
- (b.) find the expression for the voltage  $V_c$  (as a function of time t) when (after sufficient time has elapsed to charge the capacitor C fully) the switch S1 is turned off and switch S2 is turned on. Draw a graph:  $V_c(t)$

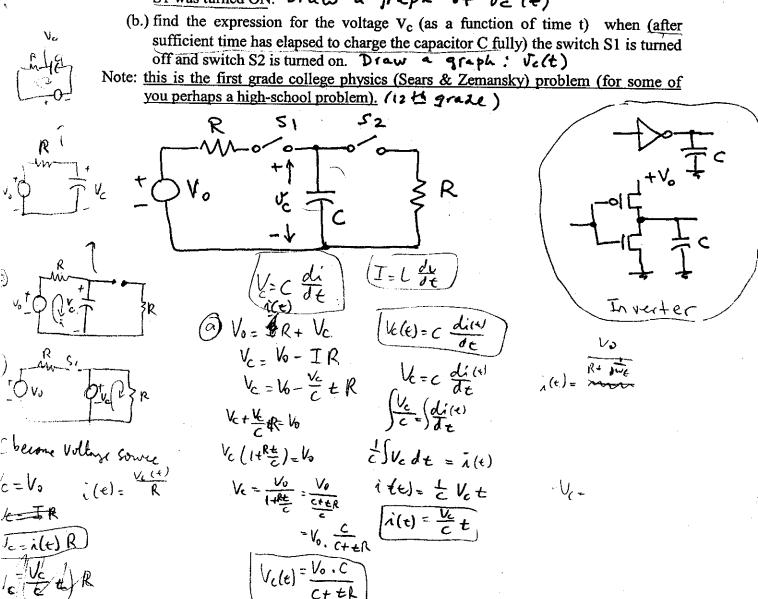

Note: this is the first grade college physics (Sears & Zemansky) problem (for some of


you perhaps a high-school problem). (12 th grave)



 $\frac{1}{c} \int_{0}^{\infty} V_{c} - V_{o} = J(t)R$   $V_{c} = RCJ(t)dt$ 

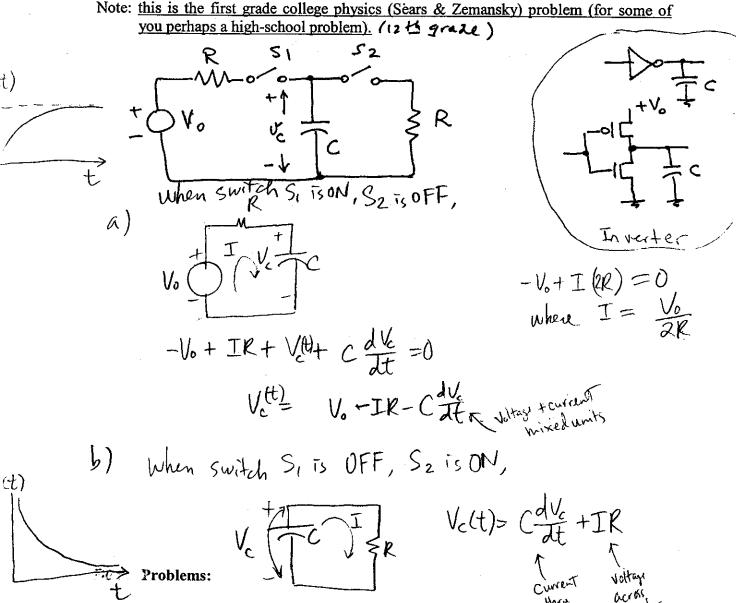







Problem #1: Digital CMOS inverter can be approximated as a circuit given in the figure.

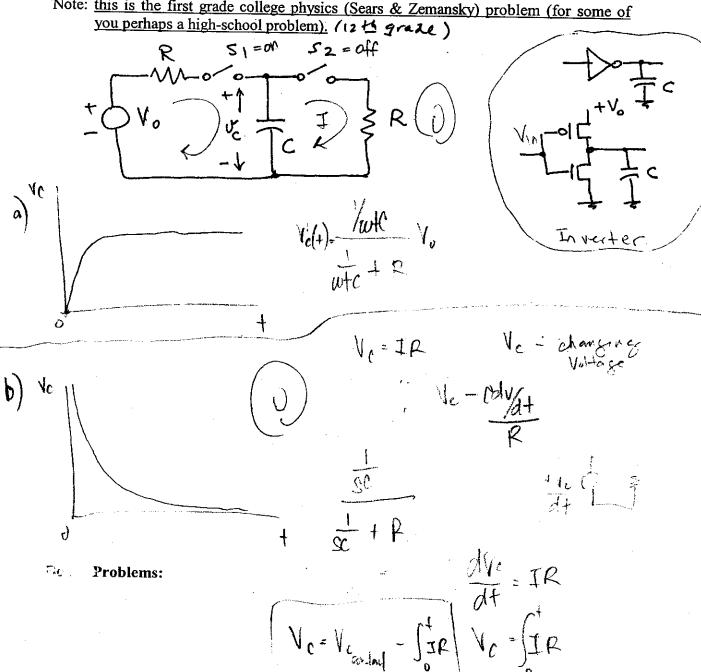
Verl die


(a.) find the expression for the voltage  $V_c$  (as a function of time t) when switch S1 is ON and S2 is off. Assume that the capacitor C was completely discharged before S1 was turned ON. Draw a 1rept of  $V_c$  (t)



Problem #1: Digital CMOS inverter can be approximated as a circuit given in the figure.

- (a.) find the expression for the voltage  $V_c$  (as a function of time t) when switch S1 is ON and S2 is off. Assume that the capacitor C was completely discharged before SI was turned ON. Draw a graph of ve (t)
- (b.) find the expression for the voltage V<sub>c</sub> (as a function of time t) when (after sufficient time has elapsed to charge the capacitor C fully) the switch S1 is turned off and switch S2 is turned on. Draw a graph: Ve(t)


Note: this is the first grade college physics (Sears & Zemansky) problem (for some of

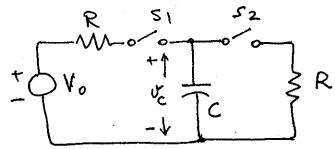


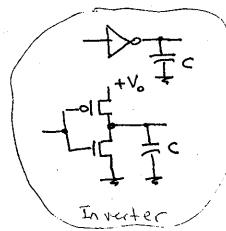
Problem #1: Digital CMOS inverter can be approximated as a circuit given in the figure.

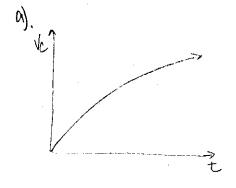
- (a.) find the expression for the voltage  $V_c$  as a function of time t) when switch S1 is ON and S2 is off. Assume that the capacitor C was completely discharged before S1 was turned ON. Draw a 1rept of  $V_c$  (t)
- (b.) find the expression for the voltage V<sub>c</sub> (as a function of time t) when (after sufficient time has elapsed to charge the capacitor C fully) the switch S1 is turned off and switch S2 is turned on. Draw - graph:  $V_c(t)$

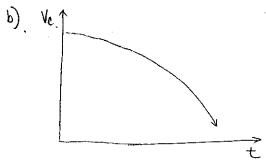
Note: this is the first grade college physics (Sears & Zemansky) problem (for some of







Problem #1: Digital CMOS inverter can be approximated as a circuit given in the figure.


- (a.) find the expression for the voltage  $V_c$  (as a function of time t) when switch S1 is ON and S2 is off. Assume that the capacitor C was completely discharged before S1 was turned ON. Draw a Jraph of  $V_c$  (4)
- (b.) find the expression for the voltage  $V_c$  (as a function of time t) when (after sufficient time has elapsed to charge the capacitor C fully) the switch S1 is turned off and switch S2 is turned on. Draw a graph:  $V_c(t)$


Note: this is the first grade college physics (Sears & Zemansky) problem (for some of

you perhaps a high-school problem). (12 1 graze)





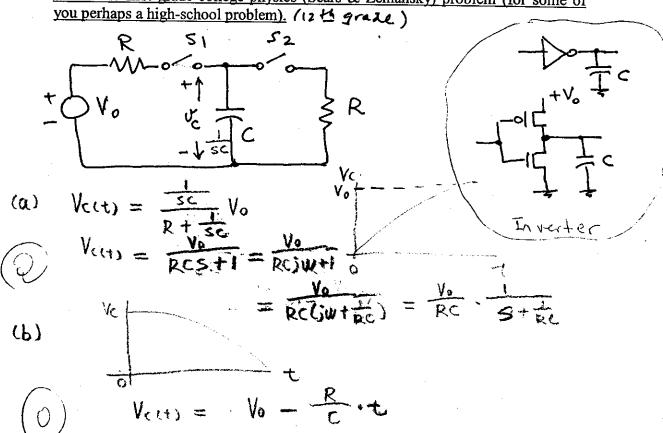




De Problems:



Problem #1: Digital CMOS inverter can be approximated as a circuit given in the figure.


- (a.) find the expression for the voltage  $V_c$  (as a function of time t) when switch S1 is ON and S2 is off. Assume that the capacitor C was completely discharged before S1 was turned ON. Draw a graph of  $V_c$  (t)
- (b.) find the expression for the voltage  $V_c$  (as a function of time t) when (after sufficient time has elapsed to charge the capacitor C fully) the switch S1 is turned off and switch S2 is turned on. Draw graph:  $V_c(t)$

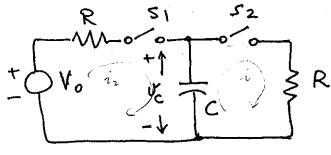
off and switch S2 is turned on. Draw a graph: Ve(t) Note: this is the first grade college physics (Sears & Zemansky) problem (for some of you perhaps a high-school problem). (12 13 graze) 51 (ilt)dt=\Vc -16 + Rilt) + E since the switch 1. is off there is no Vo going the capaciter C.  $V_{c} = \frac{1}{c} \int i(1)d1 + Ri(1) = 0$ ?  $V_{c} = 0$  volts. Problems:

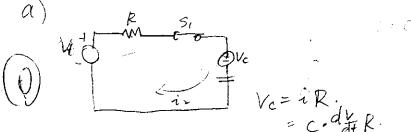
Problem #1: Digital CMOS inverter can be approximated as a circuit given in the figure.

- (a.) find the expression for the voltage  $V_c$  (as a function of time t) when switch S1 is ON and S2 is off. Assume that the capacitor C was completely discharged before S1 was turned ON. Draw a Jraph of  $V_c$  (t)
- (b.) find the expression for the voltage  $V_c$  (as a function of time t) when (after sufficient time has elapsed to charge the capacitor C fully) the switch S1 is turned off and switch S2 is turned on. Draw graph:  $V_c(t)$

Note: this is the first grade college physics (Sears & Zemansky) problem (for some of

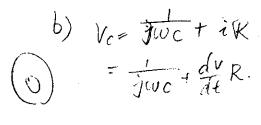


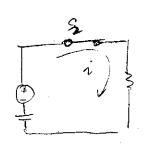




Problem #1: Digital CMOS inverter can be approximated as a circuit given in the figure.

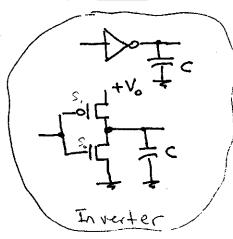
- (a.) find the expression for the voltage V<sub>c</sub> (as a function of time t) when switch S1 is ON and S2 is off. Assume that the capacitor C was completely discharged before S1 was turned ON. Draw a 172ph of ve (+)
- (b.) find the expression for the voltage V<sub>c</sub> (as a function of time t) when (after sufficient time has elapsed to charge the capacitor C fully) the switch S1 is turned off and switch S2 is turned on. Draw a graph: Ve(t)

Note: this is the first grade college physics (Sears & Zemansky) problem (for some of


you perhaps a high-school problem). (12 1 grate)







$$V_4-V_c+i_zR=0$$

$$V_4=-i_zR+V_c=\overline{jwc}-i_zR$$





dŧ



Vt=16 (S,=

V4= 0 (S,=01)

 $\Sigma_{ij}$ Problems: