2.7 Exercises

- **2.1** A process has a nominal K_p of $10\mu AV^{-2}$ and a thin-oxide thickness $(t_{\rm ox})$ of 1000 A° . A batch of circuits have a $t_{\rm ox}$ of 800 A° . What would the nominal K_p be? What effect would this have on the drain current of n- and also p-transistors?
- **2.2** A transistor has a drawn W of 20μ and a drawn L of 5μ . During processing, the polysilicon is overetched by 1μ on all sides. The source and drain diffusions bloat by $.5\mu$. If $K_p = 15\mu AV^{-2}$, what is the β of the final transistor?
- **2.3** Calculate the $g_{m(sat)}$ of a transistor with $\beta = 40 \ \mu AV^{-2}$, $\lambda = .03 \ V^{-1}$, $V_t = 1.0 \ V$, and $V_{gs} = 5 \ V$, taking into account channel length modulation.
- 2.4 Calculate the input switching voltage for a 2-input NOR gate constructed of identical sized n- and p-transistors with one input held high and both inputs held high. How do the noise margins vary? What ramifications does this have for multiple input gates?