
University of California, Davis
Department of Electrical and Computer Engineering

EEC180B DIGITAL SYSTEMS II Spring 2006

LAB 5: µP1 Computer with Video Display

(300 points)

Objective: In this lab you will design, simulate, synthesize and download a simple processor
with a video display output. You will use the ALU that you designed in Lab 3 in your processor.
The video output will display the contents of the processor’s internal registers on a VGA monitor
while the processor executes a program. This is a three-week lab.

Pre-lab (60 points)

This processor is based on the example design given in Ch. 8 of your Hamblen text (although the
simulator and compiler used there are not the tools that we are using). Study that chapter
thoroughly before attempting this lab. Complete the following assignment by the end your first
lab session:

1. Give a complete drawing of your processor data resources. (You do not need to include
the video display logic.) Identify all of the control signals that will be needed to control
your data path. Draw a timing chart or waveform for each of the processor's instructions
showing how many clock cycles are needed for each instruction and which control
signals are asserted in each clock cycle. For example, for the first clock cycle of every
instruction, show the control signals that must be asserted to load the IR and increment
the PC, etc. Indicate clearly how the IR’s setup time is met. (For a –4 speed device, such
as we have on our Spartan-3 board, the minimum setup time, TAS, is 0.53 ns1. In order to
meet this time, you should assert the data at the IR register’s D inputs the clock cycle
before the data is clocked into IR. Since your clock period will be significantly greater
than 0.53 ns, this will satisfy the setup time. See the Spartan-3 datasheet on the course
website for more timing information.)

2. Based on your timing chart or waveforms, draw a detailed Algorithmic State Machine

(ASM) chart for your design that shows how each of your control signals will be
generated. Classify each control signal as either Moore or Mealy type.

3. Based on your individually assigned op codes, translate the Fibonacci sequence test

program provided in this write-up into 16-bit hexadecimal machine code.

Show all these design details to your TA before the end of the first Lab 5 meeting and have your
TA sign your verification sheet. NOTE: If you are working with a partner, only one pre-lab is
required for the team. (More details later about partnerships.)

1 TAS = data setup time at F or G input before rising clock edge at input of CLB. See p. 28 of Spartan-3
FPGA Family: DC and Switching Characteristics.

 1

I. Processor Specifications

The µP1 is a simple microprocessor with 16-bit data paths and a single 256x16 address space for
both instruction and data memory. The complete processor will be implemented in the Spartan-3
device. The block diagram of the µP1 processor is given in Figure 1. The block diagram shows
the general structure of the µP1 processor, but it does not provide details such as the control
signals needed for each register or device. It is up to you to specify the control signals needed to
implement the design. That is your challenge for the first lab meeting.

D

Q

Address
RAM

128x16

IR
B A

Y
ALU

AC

16

16

16ZN

MAR

8

MUX

PC 8

Control

8

control
signals

16

16

88 2

ROM
128x16

Address

Data

MUX

1616

Figure 1. µP1 Block Diagram

The instruction format for the µP1 CPU is shown in Figure 2 below. The 8-bit immediate address
field covers the full memory address space of 256 words. You will be assigned individual
opcodes for the instructions. See posted codes (not on web).

Opcode Address

15 8 7 0

Figure 2. µP1 Instruction Format

 2

We have defined the basic instruction set of the µP1 in Table 1. This table gives the function of
each instruction. Again, we are leaving the implementation details up to you.

Instruction Operation Description
Add address AC ← AC + M[address] Add
Adds address AC ← AC + M[address] (sat) Add with saturation
Sub address AC ← AC – M[address] Subtract
Subs address AC ← AC – M[address] (sat) Subtract with saturation
And address AC ← AC AND M[address] Bitwise AND
Com AC ← NOT (AC) One’s complement
Lw address AC ← M[address] Load word
Ldi AC ← M[PC+1] Load immediate (Note 1)
Sw address M[address] ← AC Store word
Jmp address PC ← M[address] Jump to address
Jmpz address PC ← M[address] if Z=1 Jump to address if zero (Z flag =1)

Table 1: µP1 Instruction Set
Note 1 M[PC+1] represents the next word in memory following the current instruction.

As you recall from your basic computer architecture class, such as EEC70, and your experience
in EEC180A, the basic processor cycle for executing an instruction consists of three operations:
Fetch, Decode and Execute. These operations are not necessarily a single clock cycle each. The
text by Hamblen and Furman gives a detailed view of the Fetch, Decode and Execute operations
for the µP1 in Ch. 8. You should study this material carefully since your processor is closely
based on their example. However, there are different ways to implement the processor cycle so
you need not rigidly follow their example. We provide the following information for a somewhat
different perspective from the Hamblen text.

Instruction Fetch
 The first execution step of any instruction is the instruction fetch. All instructions must be

fetched in identical fashion.

 Fetch the instruction from the memory, latch it into the Instruction Register (IR) and

increment the program counter (PC):

 IR ← M[MAR]; PC ← PC + 1;

Instruction Decode
 In order to execute any instruction, the processor must first "decode" the instruction in order

to determine which actions to perform.

 Decode the instruction from the opcode field. Based on the opcode, your Control Unit should

generate specific control signals in their proper sequence. Once the instruction has been
decoded, the MAR can be loaded with the appropriate value to access the memory operand.
For most instructions, the MAR will be loaded with the address field of the instruction,

 3

although for an Ldi instruction the MAR will be loaded with the updated PC, which is an
implied address field, in order to fetch the immediate data.

Computation, Jump Completion, or Memory access
 The third execution step varies depending on the type of instruction being executed. Thus,

instead of a single execution step, there are actually three different steps depending on
whether the instruction is an ALU instruction, a jump instruction, or a memory access
instruction.

 Computation: Perform the ALU operation on the operand or operands specified by the

instruction. When any ALU instruction is executed, the status flags, N and Z, must be
“registered” (clocked into a register) based on the result of the ALU operation. The status
flags will only be updated by the ALU, Lw or Ldi instructions and will not be affected by
other instructions such as Sw, Jmp and Jmpz. These status flags are used to determine the
outcome of the conditional jump instructions such as Jmpz.

 Jump completion: The PC and the MAR need to be loaded with the target address specified

by the instruction. However, with this processor these actions could be done in the decode
cycle, eliminating the need for this cycle. (This is not true in general for a conditional jump
or branch.)

 Memory access: Place the address on the address bus. For a store instruction, place the data

on the data bus. You will need to satisfy setup and hold times for the Spartan-3 internal
memory component. You must show calculations to support your design’s implementation.
(Check the timing specifications on the Spartan-3 datasheets.) The execution stage of an Sw
instruction may take more than a single clock cycle in order to satisfy the address and data
setup and hold times. You should make this obvious in your ASM chart, after determining
the timing requirements for writing data.

Memory and I/O Interface

The µP1 processor will address memory using an 8-bit address bus and can therefore access up
to 256 words of memory. The instruction memory (ROM) should be mapped to the lower 128
words, 0x00 – 0x7F, while the data memory (RAM) should be mapped to the upper 128 words,
0x80 – 0xFF. A memory-mapped 16-bit output port, PR, will be mapped to RAM address 0xFF.
Writing to 0xFF will store data in two places, RAM location 0xFF and the PR port. Since PR is
only an output port, reading from location 0xFF will just read from that location in RAM,
avoiding any bus conflict. The output of the PR port will be displayed on both the 4-character
seven-segment display and on the video display, to be described shortly.

System Clock

In your final design, which will be downloaded to the Spartan-3 board, the system clock rate
should be selectable based on SW7. With SW7=’0’, your system clock frequency should be on
the order of 1 Hz so that you can easily read the video output display. You can compare the
register values shown on the video display with your simulation results. On the other hand, with
SW7=’1’, the system clock frequency should be faster so that the output of the seven-segment

 4

display updates at a quick, but easily readable rate. You will be able to observe the Fibonacci
number sequence by watching the PR’s value on either the seven-segment displays or on the
video display. To generate the system clock using the 50 MHz clock input, you will need to
design a clock divider circuit. However, you should be able to bypass the clock divider during
simulation. See the Lab 1 tutorial VHDL code for how it was done there with a generic.

Video Output Display

Your system will also contain video control logic that will display the contents of internal
registers of the µP1 processor. The display will look similar to the example given in Figure 9.8
of the Hamblen text, although the registers will be based on your µP1 processor rather than the
MIPS processor as in that example. Your video output should show the following information:
PC, IR, MAR, MDR (Data in), AC, PR, Z, CLK. You should display the corresponding
hexadecimal or binary value next to each of the register or signal names, respectively. In
addition, the top two lines of the display should show your name and your partner’s name (if you
have a partner).

The video display logic will not be controlled directly by the processor. Instead it will be
dedicated logic that takes some of the processor signals as inputs and generates the appropriate
video control signals. Therefore, you can test your processor independently from the video
display. Once your processor works correctly, you can add the video output.

Lab Requirements

Partners: You may choose a lab partner for this lab or you can go solo. To do so, you must
complete a partnership declaration form and give copies to each Lab Section TA associated with
the two individuals involved in the partnership. A form for submitting the declaration is posted
on the course web page. This declaration must be done at or before the first lab meeting affiliated
with Lab 5 for each person involved. Only one lab report from the partnership is required and a
joint grade will be assigned to each person. You may use either of the unique op code
assignments for the individuals. Choose your partner carefully because no “divorce” will be
possible. A joint grade will be assigned no matter what happens during the execution and
reporting of the lab.

 After the pre-lab assignment, this lab project has 3 separate milestones (or millstones if you
like).

Part L1 – VHDL modeling and functional simulation of the processor (80 points)
a) Write a synthesizable VHDL description of your processor based on your pre-lab design. Do

not include the video display logic until you have verified your processor design through
simulation.

b) Write a test bench program to functionally simulate your design. You will verify your design

using the Fibonacci sequence test program that you translated in the pre-lab. In your
simulation, you should trace all the signals in the entity of your processor as well as
important registers and control signals. Save some of the traces for your final report.

 5

c) Demonstrate your functional simulation to your TA and have this TA sign a separate
verification sheet. This must be completed by the end of the second Lab 5 meeting date.

Part L2 – Synthesis to the Xilinx library and downloading to the Spartan-3 board (100 points)
a) Write a synthesizable VHDL description of your video display logic and add it to your

processor model. You will need to modify the top-level entity to include the video control
signals.

b) Synthesize the design for the Spartan-3 board.

c) Download your synthesized design to a Spartan-3 board and demonstrate your processor to

your TA. The TA should sign a separate verification sheet if your design works. This must be
done by the end of your third Lab 5 meeting date.

Part L3 – Lab Report (60 points)
Submit a consistent report of your design and its simulation, synthesis and operation. The
following items are required.

a) Machine language program using your unique op code assignment.
b) List of data resources used in your design, registers, ALU blocks, buses, etc.
c) VHDL code listings actually used for the synthesis and simulation.
d) Test bench code and simulation results including sample traces of some control signals
e) Schematics of typical pieces of the final synthesis results printed from Amplify.
f) Separate signed verification sheets for the pre-lab and Parts L1 and L2 as described

above
g) Conclusions

Hints

In order to facilitate the debugging and synthesis of your VHDL model you should follow the
guidelines given below:

1. Think before you write the VHDL code. For every VHDL construct that you use, make sure

you know what it is likely to produce in hardware. Do not write redundant code.

2. Keep the VHDL model simple. You can accomplish a lot by just "if-then-else" or case

statements. You don't need fancy loop, generate statements, and procedures for this exercise.

3. Remember that wait statements infer registers. Use them carefully.

4. Model the various signals using the appropriate data types. Do not use types unthinkingly.

If a signal (bus) is expected to be of a certain size, make sure you model that using a subtype
or integer range type.

5. The control unit is the crucial aspect of your design. After you draw the state diagram, spend

some time thinking about it and discussing it with your partner. Make sure all the control
signals that you need are there and are assigned correctly in each clock cycle.

 6

6. Write behavioral code as far as possible. Let the tool do the synthesis for you. That means
don't try to design individual registers, multiplexers, etc. from basic gates and flip-flops.

7. Be careful not to infer level-sensitive latches unintentionally. Check the report files to make

sure that you have not inferred any latches.

 7

APPENDIX

Fibonacci number generator test program
; Calculate the Fibonacci sequence between 0 and 0x7fff.
; First show the sequence in ascending order, then descending order, etc. in endless loop
; The program uses some RAM locations for specific variables:
; RAM addresses: 0x80 Low Fibonacci number
; 0x81 High Fibonacci number
 0x82 New Fibonacci number or saturated value
; 0xFF Latest Fibonacci number stored in PR (display) register

RAM
Address

 Hex Code

Label

Instruction

Comment

0 ST: Ldi ; load 0 into AC
1 0x0000 ; immediate data
2 Sw 0x80 ; store first Fib. number
3 Sw 0xFF ; display 0 on PR
4 Ldi ; load 1 into AC
5 0x0001 ; immediate data
6 Sw 0x81 ; store second Fib. number
7 Sw 0xFF ; display 1 on PR
8 UP: Lw 0x80 ; get low Fib. number
9 Adds 0x81 ; AC gets Low + High (w/ sat)
A Sw 0x82 ; Store result
B Ldi ; load 0x7FFF into AC
C 0x7FFF ; immediate data
D Sub 0x82 ; AC gets 0x7FFF – result
E Jmpz 0x16 ; if result = 0x7FFF, jump to DN
F Lw 0x81 ; shift Fib. numbers
10 Sw 0x80 ; Low gets previous High
11 Lw 0x82 ; get new Fib. number
12 Sw 0x81 ; High gets new Fib. number
13 Sw 0xFF ; Display new Fib. number
14 Jmp 0x8 ; jump back to UP
15 ; memory location not used
16 DN: Lw 0x81 ; AC gets High
17 Sw 0xFF ; display next Fib. number
18 Subs 0x80 ; AC gets High – Low
19 Sw 0x82 ; store new Fib. number
1A Jmpz 0x0 ; if new Fib. = 0, jump to ST
1B Lw 0x80 ; shift Fib. numbers
1C Sw 0x81 ; High gets previous Low
1D Lw 0x82 ; get new Fib. number
1E Sw 0x80 ; Low gets new Fib. number
1F Jmp 0x16 ; jump back to DN

 8

	Video Output Display
	Part L3 – Lab Report (60 points)
	Fibonacci number generator test program

