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LAB 5: µP1 Computer with Video Display 

(300 points) 
 

Objective: In this lab you will design, simulate, synthesize and download a simple processor 
with a video display output. You will use the ALU that you designed in Lab 3 in your processor. 
The video output will display the contents of the processor’s internal registers on a VGA monitor 
while the processor executes a program. This is a three-week lab. 
 
Pre-lab  (60 points) 
 
This processor is based on the example design given in Ch. 8 of your Hamblen text (although the 
simulator and compiler used there are not the tools that we are using). Study that chapter 
thoroughly before attempting this lab. Complete the following assignment by the end your first 
lab session: 
 

1. Give a complete drawing of your processor data resources. (You do not need to include 
the video display logic.) Identify all of the control signals that will be needed to control 
your data path.  Draw a timing chart or waveform for each of the processor's instructions 
showing how many clock cycles are needed for each instruction and which control 
signals are asserted in each clock cycle.  For example, for the first clock cycle of every 
instruction, show the control signals that must be asserted to load the IR and increment 
the PC, etc. Indicate clearly how the IR’s setup time is met. (For a –4 speed device, such 
as we have on our Spartan-3 board, the minimum setup time, TAS, is 0.53 ns1. In order to 
meet this time, you should assert the data at the IR register’s D inputs the clock cycle 
before the data is clocked into IR. Since your clock period will be significantly greater 
than 0.53 ns, this will satisfy the setup time. See the Spartan-3 datasheet on the course 
website for more timing information.) 

 
2. Based on your timing chart or waveforms, draw a detailed Algorithmic State Machine 

(ASM) chart for your design that shows how each of your control signals will be 
generated. Classify each control signal as either Moore or Mealy type. 

 
3. Based on your individually assigned op codes, translate the Fibonacci sequence test 

program provided in this write-up into 16-bit hexadecimal machine code. 
 
Show all these design details to your TA before the end of the first Lab 5 meeting and have your 
TA sign your verification sheet. NOTE: If you are working with a partner, only one pre-lab is 
required for the team. (More details later about partnerships.) 
 
 
                                            
1 TAS = data setup time at F or G input before rising clock edge at input of CLB. See p. 28 of Spartan-3 
FPGA Family: DC and Switching Characteristics. 
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I. Processor Specifications 
 
The µP1 is a simple microprocessor with 16-bit data paths and a single 256x16 address space for 
both instruction and data memory. The complete processor will be implemented in the Spartan-3 
device. The block diagram of the µP1 processor is given in Figure 1. The block diagram shows 
the general structure of the µP1 processor, but it does not provide details such as the control 
signals needed for each register or device. It is up to you to specify the control signals needed to 
implement the design. That is your challenge for the first lab meeting. 
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Figure 1. µP1 Block Diagram 
 
 
The instruction format for the µP1 CPU is shown in Figure 2 below. The 8-bit immediate address 
field covers the full memory address space of 256 words. You will be assigned individual 
opcodes for the instructions. See posted codes (not on web). 
 

Opcode Address

15 8 7 0  
 

Figure 2. µP1 Instruction Format 
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We have defined the basic instruction set of the µP1 in Table 1. This table gives the function of 
each instruction. Again, we are leaving the implementation details up to you.  
 
 

Instruction Operation Description 
Add address AC ←  AC + M[address] Add 
Adds address AC ←  AC + M[address] (sat) Add with saturation 
Sub address AC ←  AC – M[address] Subtract 
Subs address AC ←  AC – M[address] (sat) Subtract with saturation 
And address AC ←  AC AND M[address] Bitwise AND 
Com  AC ← NOT (AC)  One’s complement 
Lw address AC ← M[address] Load word 
Ldi  AC ← M[PC+1] Load immediate (Note 1) 
Sw address M[address] ←  AC Store word 
Jmp address PC ← M[address] Jump to address  
Jmpz address PC ← M[address] if Z=1 Jump to address if zero (Z flag =1) 

Table 1: µP1 Instruction Set 
Note 1  M[PC+1] represents the next word in memory following the current instruction. 

 
 

As you recall from your basic computer architecture class, such as EEC70, and your experience 
in EEC180A, the basic processor cycle for executing an instruction consists of three operations: 
Fetch, Decode and Execute. These operations are not necessarily a single clock cycle each. The 
text by Hamblen and Furman gives a detailed view of the Fetch, Decode and Execute operations 
for the µP1 in Ch. 8. You should study this material carefully since your processor is closely 
based on their example. However, there are different ways to implement the processor cycle so 
you need not rigidly follow their example. We provide the following information for a somewhat 
different perspective from the Hamblen text. 
 
Instruction Fetch 
 The first execution step of any instruction is the instruction fetch.  All instructions must be 

fetched in identical fashion. 
 
 Fetch the instruction from the memory, latch it into the Instruction Register (IR) and 

increment the program counter (PC): 
 
  IR ← M[MAR];  PC ← PC + 1; 
 
Instruction Decode 
 In order to execute any instruction, the processor must first "decode" the instruction in order 

to determine which actions to perform. 
 
 Decode the instruction from the opcode field. Based on the opcode, your Control Unit should 

generate specific control signals in their proper sequence. Once the instruction has been 
decoded, the MAR can be loaded with the appropriate value to access the memory operand. 
For most instructions, the MAR will be loaded with the address field of the instruction, 
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although for an Ldi instruction the MAR will be loaded with the updated PC, which is an 
implied address field, in order to fetch the immediate data. 
 

Computation, Jump Completion, or Memory access 
 The third execution step varies depending on the type of instruction being executed.  Thus, 

instead of a single execution step, there are actually three different steps depending on 
whether the instruction is an ALU instruction, a jump instruction, or a memory access 
instruction. 

 
 Computation:  Perform the ALU operation on the operand or operands specified by the 

instruction.  When any ALU instruction is executed, the status flags, N and Z, must be 
“registered” (clocked into a register) based on the result of the ALU operation.  The status 
flags will only be updated by the ALU, Lw or Ldi instructions and will not be affected by 
other instructions such as Sw, Jmp and Jmpz.  These status flags are used to determine the 
outcome of the conditional jump instructions such as Jmpz. 

 
 Jump completion: The PC and the MAR need to be loaded with the target address specified 

by the instruction. However, with this processor these actions could be done in the decode 
cycle, eliminating the need for this cycle. (This is not true in general for a conditional jump 
or branch.) 

 
 Memory access: Place the address on the address bus.  For a store instruction, place the data 

on the data bus.  You will need to satisfy setup and hold times for the Spartan-3 internal 
memory component. You must show calculations to support your design’s implementation. 
(Check the timing specifications on the Spartan-3 datasheets.) The execution stage of an Sw 
instruction may take more than a single clock cycle in order to satisfy the address and data 
setup and hold times. You should make this obvious in your ASM chart, after determining 
the timing requirements for writing data. 

 
Memory and I/O Interface
 
The µP1 processor will address memory using an 8-bit address bus and can therefore access up 
to 256 words of memory. The instruction memory (ROM) should be mapped to the lower 128 
words, 0x00 – 0x7F, while the data memory (RAM) should be mapped to the upper 128 words, 
0x80 – 0xFF. A memory-mapped 16-bit output port, PR, will be mapped to RAM address 0xFF. 
Writing to 0xFF will store data in two places, RAM location 0xFF and the PR port. Since PR is 
only an output port, reading from location 0xFF will just read from that location in RAM, 
avoiding any bus conflict. The output of the PR port will be displayed on both the 4-character 
seven-segment display and on the video display, to be described shortly. 
 
System Clock  
 
In your final design, which will be downloaded to the Spartan-3 board, the system clock rate 
should be selectable based on SW7. With SW7=’0’, your system clock frequency should be on 
the order of 1 Hz so that you can easily read the video output display. You can compare the 
register values shown on the video display with your simulation results. On the other hand, with 
SW7=’1’, the system clock frequency should be faster so that the output of the seven-segment 
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display updates at a quick, but easily readable rate. You will be able to observe the Fibonacci 
number sequence by watching the PR’s value on either the seven-segment displays or on the 
video display. To generate the system clock using the 50 MHz clock input, you will need to 
design a clock divider circuit. However, you should be able to bypass the clock divider during 
simulation. See the Lab 1 tutorial VHDL code for how it was done there with a generic.  
 
Video Output Display 
 
Your system will also contain video control logic that will display the contents of internal 
registers of the µP1 processor. The display will look similar to the example given in Figure 9.8 
of the Hamblen text, although the registers will be based on your µP1 processor rather than the 
MIPS processor as in that example. Your video output should show the following information: 
PC, IR, MAR, MDR (Data in), AC, PR, Z, CLK. You should display the corresponding 
hexadecimal or binary value next to each of the register or signal names, respectively. In 
addition, the top two lines of the display should show your name and your partner’s name (if you 
have a partner). 
 
The video display logic will not be controlled directly by the processor. Instead it will be 
dedicated logic that takes some of the processor signals as inputs and generates the appropriate 
video control signals. Therefore, you can test your processor independently from the video 
display. Once your processor works correctly, you can add the video output. 
 
Lab Requirements
 
Partners: You may choose a lab partner for this lab or you can go solo. To do so, you must 
complete a partnership declaration form and give copies to each Lab Section TA associated with 
the two individuals involved in the partnership. A form for submitting the declaration is posted 
on the course web page. This declaration must be done at or before the first lab meeting affiliated 
with Lab 5 for each person involved. Only one lab report from the partnership is required and a 
joint grade will be assigned to each person. You may use either of the unique op code 
assignments for the individuals. Choose your partner carefully because no “divorce” will be 
possible. A joint grade will be assigned no matter what happens during the execution and 
reporting of the lab. 
 
 After the pre-lab assignment, this lab project has 3 separate milestones (or millstones if you 
like). 
 
Part L1 – VHDL modeling and functional simulation of the processor  (80 points) 
a) Write a synthesizable VHDL description of your processor based on your pre-lab design. Do 

not include the video display logic until you have verified your processor design through 
simulation.    

 
b) Write a test bench program to functionally simulate your design. You will verify your design 

using the Fibonacci sequence test program that you translated in the pre-lab. In your 
simulation, you should trace all the signals in the entity of your processor as well as 
important registers and control signals.  Save some of the traces for your final report. 
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c) Demonstrate your functional simulation to your TA and have this TA sign a separate 
verification sheet. This must be completed by the end of the second Lab 5 meeting date. 

 
Part L2 – Synthesis to the Xilinx library and downloading to the Spartan-3 board  (100 points) 
a) Write a synthesizable VHDL description of your video display logic and add it to your 

processor model. You will need to modify the top-level entity to include the video control 
signals. 

 
b) Synthesize the design for the Spartan-3 board.     
 
c) Download your synthesized design to a Spartan-3 board and demonstrate your processor to 

your TA. The TA should sign a separate verification sheet if your design works. This must be 
done by the end of your third Lab 5 meeting date. 

 
Part L3 – Lab Report  (60 points) 
Submit a consistent report of your design and its simulation, synthesis and operation. The 
following items are required. 

a) Machine language program using your unique op code assignment. 
b) List of data resources used in your design, registers, ALU blocks, buses, etc. 
c) VHDL code listings actually used for the synthesis and simulation. 
d) Test bench code and simulation results including sample traces of some control signals 
e) Schematics of typical pieces of the final synthesis results printed from Amplify. 
f) Separate signed verification sheets for the pre-lab and Parts L1 and L2 as described 

above 
g) Conclusions 

 
Hints
 
In order to facilitate the debugging and synthesis of your VHDL model you should follow the 
guidelines given below: 
 
1. Think before you write the VHDL code.  For every VHDL construct that you use, make sure 

you know what it is likely to produce in hardware.  Do not write redundant code. 
 
2. Keep the VHDL model simple.  You can accomplish a lot by just "if-then-else" or case 

statements.  You don't need fancy loop, generate statements, and procedures for this exercise. 
 
3. Remember that wait statements infer registers.  Use them carefully. 
 
4. Model the various signals using the appropriate data types.  Do not use types unthinkingly.  

If a signal (bus) is expected to be of a certain size, make sure you model that using a subtype 
or integer range type. 

 
5. The control unit is the crucial aspect of your design.  After you draw the state diagram, spend 

some time thinking about it and discussing it with your partner.  Make sure all the control 
signals that you need are there and are assigned correctly in each clock cycle. 
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6. Write behavioral code as far as possible. Let the tool do the synthesis for you.  That means 
don't try to design individual registers, multiplexers, etc. from basic gates and flip-flops.  

 
7. Be careful not to infer level-sensitive latches unintentionally. Check the report files to make 

sure that you have not inferred any latches. 
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APPENDIX 
 
Fibonacci number generator test program  
; Calculate the Fibonacci sequence between 0 and 0x7fff.  
; First show the sequence in ascending order, then descending order, etc. in endless loop 
; The program uses some RAM locations for specific variables: 
; RAM addresses: 0x80 Low Fibonacci number 
; 0x81 High Fibonacci number 
 0x82 New Fibonacci number or saturated value 
; 0xFF Latest Fibonacci number stored in PR (display) register 
 

RAM 
Address

 
 Hex Code

 
Label

 
Instruction

 
Comment

0  ST: Ldi ; load 0 into AC 
1 0x0000   ; immediate data 
2   Sw 0x80 ; store first Fib. number 
3   Sw 0xFF ; display 0 on PR 
4   Ldi ; load 1 into AC 
5 0x0001   ; immediate data 
6   Sw 0x81 ; store second Fib. number 
7   Sw 0xFF ; display 1 on PR 
8  UP: Lw 0x80 ; get low Fib. number 
9   Adds 0x81 ; AC gets Low + High (w/ sat) 
A   Sw 0x82 ; Store result 
B   Ldi ; load 0x7FFF into AC 
C 0x7FFF   ; immediate data 
D   Sub 0x82 ; AC gets 0x7FFF – result 
E   Jmpz 0x16 ; if result = 0x7FFF, jump to DN 
F   Lw 0x81 ; shift Fib. numbers 
10   Sw 0x80 ; Low gets previous High 
11   Lw 0x82 ; get new Fib. number 
12   Sw 0x81 ; High gets new Fib. number 
13   Sw 0xFF ; Display new Fib. number 
14   Jmp 0x8 ; jump back to UP 
15    ; memory location not used 
16  DN: Lw 0x81 ; AC gets High 
17   Sw 0xFF ; display next Fib. number  
18   Subs 0x80 ; AC gets High – Low 
19   Sw 0x82 ; store new Fib. number 
1A   Jmpz 0x0 ; if new Fib. = 0, jump to ST 
1B   Lw 0x80 ; shift Fib. numbers 
1C   Sw 0x81 ; High gets previous Low 
1D   Lw 0x82 ; get new Fib. number 
1E   Sw 0x80 ; Low gets new Fib. number 
1F   Jmp 0x16 ; jump back to DN 
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