
Paper ID (to be inserted here)

1

RECONFIGURATION IN NETWORK OF EMBEDDED SYSTEMS:
CHALLENGES AND ADAPTIVE TRACKING CASE STUDY

Soheil Ghiasi, Ani Nahapetian, Hyun J. Moon, and Majid Sarrafzadeh

Abstract—Many applications utilize deeply embedded sensors

and actuators that are tightly coupled with the physical
environment in order to perform their functionality. Sensor,
actuators and embedded computation resources used for
implementing such systems usually exhibit regular local
configurations, while the global structure of the subsystems is
either not fixed a priori and can change at runtime or is not
known. Examples include systems that use many randomly
distributed sensing boards, each one having a fixed structure of
computation resources and sensing devices, to autonomously
detect events and take proper actions.

This paper discusses the requirements of the aforementioned
systems, their advantages and the issues involved in developing
them. Specifically we focus on dynamic adaptation of the system
as a particular feature of such systems. This feature is discussed
in depth in a collaborative and dynamically adaptive object
tracking system that has been built in our lab as the experimental
framework of this study. We exploit reconfigurable hardware
devices embedded in a number of networked cameras in order to
achieve our goal. We justify the need for dynamic adaptation of
the system through scenarios and applications. Experimental
results on a set of scenes advocate the fact that our system works
effectively for different scenario of events through
reconfiguration. Comparing results with non-adaptive
implementations verify the fact that our approach improves
system’s robustness to scene variations and outperforms the
traditional implementations.

Index Terms— Adaptive Tracking, Feature Selection,
Networked Embedded Systems, Reconfigurable Computing,
Tiered Resource Architecture.

I. INTRODUCTION

M any applications rely on distributed sensing of events,
an example of which is a class of applications called

unsupervised detection of spatio-temporal events. Instances of
this class of applications include environmental monitoring,
and traffic management and control. Traditionally, sensor
nodes used in such applications, solely serve as data
acquisition units that transfer the perceived information to
processing stations. Utilizing sensor nodes with embedded

computation resources allows the system to –at least partially-
collocate the data acquisition and processing, which in turn
improves system energy dissipation, scalability and
robustness. In addition, it can enhance system performance for
various implementations that exhibit non-negligible
communication overhead [4].

One approach to developing networked embedded system
uses similar sensor nodes for data acquisition and local
processing. While having similar sensor nodes facilitates
many development issues, network performance can be
significantly improved by utilizing heterogeneous sensor
nodes. Sensor nodes can vary in many different aspects
including embedded processing power, communication
overhead, power dissipation and the modality of the signal
they sense. Moreover, heterogeneous sensor nodes can be
deployed to form a tiered architecture, which allows
intelligent utilization of proper resources for performing each
of system tasks. This in turn results in significant system
energy dissipation and performance improvements [6].

Figure 1 illustrates a tiered network of embedded sensors
that has been built as part of this work. The system’s
application is to intelligently track some distinguished objects
using its tiered architecture of resources. It employs many
cheap and constrained acoustic sensors (micro-nodes) called
motes1 [3] in its second tier of resources. Motes are deployed
in an ad-hoc manner and have a short-range wireless radio that
can be used for sending/receiving data to/from their close
neighbors. Motes run on the battery and hence, it is essential
for them to dissipate little amount of energy to save their
batteries and increase their lifetime. Therefore, motes radio is
restricted to communicate to close neighbors at specific points
of time.

There are a few vision sensors (cameras) with more
powerful computation resources, including reconfigurable
hardware devices [36], mounted on panel corners. Cameras
serve as first-tier network resources (macro-nodes) and their
reconfigurable computation resources can be dynamically
altered to better accommodate the particular task assigned to
them. The location of the vision sensors on the panels is fixed.
The communication media on the panel is a local area network
and the resources do not run on the battery. The system
exhibits a locally regular structure, since the configuration of
resources on each panel (and higher tiers of the system) is

Manuscript received July 21, 2003. This work was supported in part by the
U.S. Defense Advanced Research Project Agency (DARPA) under contract
F33615-01-C-1906-P00001.

Soheil Ghiasi, Ani Nahapetian, Hyun J. Moon and Majid Sarrafzadeh are
with the Computer Science Department, University of California (UCLA), Los
Angeles, CA 90095 USA (phone: 310-794-5616; fax: 310-794-5056,
e-mail: {soheil,ani,hjmoon,majid}@cs.ucla.edu).

1 Motes also contain sensors of other modalities such as magnetometer and
accelerometer, however acoustic sensors are used for this project.

Paper ID (to be inserted here)

2

Figure 1. A tiered architecture combining engineered subsystems and ad-hoc global deployment.

determined. However, from a global point of view the
structure of the entire system does not follow a predetermined
pattern, due to the ad-hoc deployment of sensors in the field.
The ideas and approaches presented in this paper are
explained using this platform, however they are more general
and applicable to other similar networked embedded systems.

Next section describes the research challenges arising in
such a platform, which serves as an overview of various
research topics addressed in the course of this project. A
survey of other research efforts related to these challenges is
presented in Section 3. We proceed to focus on a particular
challenge in our system, namely dynamically adapting the
system to environment changes thru hardware reconfiguration
and parameterization. This issue is discussed in depth in the
rest of this paper. A simplified version of the general system
framework and its application is presented in Section 4. This
version of the system performs collaborative target tracking
thru hardware reconfiguration. In Section 5, we present the
image-processing algorithms that are required for the
implemented tracking application. In addition, the effect of
environment changes on these algorithms and hence, the need
for system adaptability is explained in this section. Section 6
discusses the issues involved in implementing these
algorithms in our platform. Experimental results including
algorithms implementation and their performance for some
scenes, are presented in Section 7. Finally, Section 8 outlines
the conclusions and future directions of this work.

II. RESEARCH CHALLENGES
There are a number of key research challenges that arise in

a tiered network of heterogeneous sensors and computation
resources. This section briefly overviews some of these issues

and proposed techniques with respect to the aforementioned
platform; however the statements and discussions are valid for
any distributed network of embedded devices with
reconfigurable resources.

To meet the severe and dynamic constraints imposed on
networks of embedded sensors, the nodes of the networks
need to collaborate to achieve time and location information
[5]. With heterogeneous and distributed systems, new
challenges arise to schedule tasks among distributed resources
and to preserve power of the network to prolong the life of the
network. Finally, a new paradigm of reconfiguration in a
network environment needs to be addressed.

Time synchronization and localization, two key services,
need to be provided to the network. Synchronization of the
network’s clocks allows for the fusion of sensor data. It
increases the effectiveness of coordinated actuation and
prolongs the life of the network by allowing power efficient
duty cycling. Traditional synchronization involves sending
time-stamped packets to a receiver, allowing the receiver to
coordinates itself with the sender. Many sources of unknown,
non-deterministic latency between the timestamp and its
reception can introduce error, however.

Thus reference broadcast synchronization has been
proposed [15]. Nodes send reference beacons to their
neighbors, whose arrival time acts as a point of reference for
comparing clocks. A receiver does not coordinate with its
sender, but instead multiple receivers coordinate among
themselves. Hence, the latency incurred has no effect on the
quality of the time synchronization. Further modifications
have been made to adapt reference broadcast synchronization
to multiple hop networks. The strategy is as follows. Some
nodes broadcast synchronization pulses. Receivers within

Paper ID (to be inserted here)

3

range synchronize themselves using these pulses. Nodes that
receive more than one pulse have the ability to relate the time
in one range to the time in another range.

Providing fine-grained localization to ad-hoc deployed
nodes is the next key service. Localization allows nodes to
determine their position either globally or relative to the other
nodes in the network. It also allows the network to act as a
positioning system. Localization allows for an ad hoc
deployment of systems, since the nodes can localize
themselves on a scale with the node density, independent of
the environment. The localization method developed in our
project works as follows. An acoustic “chirp” is emitted by
the sender along with an RF message stating the time the
“chirp” was emitted. By comparing time of the “chirp”
detection and the actual time of emission, the time of flight
can be calculated and hence the distance between the two
nodes [14].

Reconfigurable hardware resources are those that can be
dynamically altered to execute a particular task more
efficiently. These devices can be exploited to provide both
runtime flexibility and real time performance for high-level
application. These two features, namely runtime flexibility
and real time performance, are not simultaneously achievable
by traditional pure software or hardware implementations.
Utilizing dynamic hardware reconfiguration in network
applications is another challenge of the system and is the
focus of this paper.

Utilizing heterogeneous distributed resources and numerous
pieces of application computations creates a new challenge,
which is often referred to as “computation and resource
management”. New scheduling challenges arise, when dealing
with reconfigurable distributed systems that have not been
addressed by the classical scheduling literature. There are two
competing goals when it comes to task scheduling on
distributed resources. The first is to increase the throughput of
the system and the second is the preserve the life of the system
by decreasing the power consumption.

Consider the model of a directed acyclic graph (DAG),
where nodes represent tasks and edges represent their
dependencies. Scheduling these tasks onto heterogeneous
reconfigurable resources to minimize make span involves
consideration of the reconfiguration cost they would incur,
along with how this cost could be amortized over multiple
tasks. Currently there exists literature that examines
scheduling of independent tasks and tasks with dependencies
on different resources, but none of which considers paying a
reconfiguration cost. Most of the well-known DAG
scheduling algorithms rely on the knowledge of the critical
path, and hence a polynomial algorithm for finding it. This is
not the case with heterogeneous resources, especially when
the cost varies depending on the reconfiguration schedule of
the resources.

The scheduling of tasks onto heterogeneous resources is not
only an issue for distributed systems. The intrinsically parallel
vision applications can be executed on both reconfigurable
and general-purpose processor embedded in efficient in-

network processing sensors. The scheduling of the basic
blocks of the applications boils down to the same problem of
scheduling onto heterogeneous resources with reconfigurable
costs.

Finally, there is the challenge of minimizing power
consumption. Prolonging the network life span is directly
dependent on the power consumption. This issue should be
addressed at different levels of the hierarchy. For example,
scheduling research continues to focus on minimizing the
power consumption of the reconfigurable distributed systems
while still maintaining their high throughput. By taking
advantage of the timing slack of the basic blocks of the
application, non-critical nodes can be executed on less power
consuming resources [22].

III. RELATED WORKS
The presented project combines a number of different

research areas. Many research efforts have been carried out to
address challenges similar to those presented in the previous
section. This section summarizes some of such works, which
usually focus on a particular aspect of the system issues.
Therefore, related works have been implicitly divided into
three main categories: sensor network services, resource
management and task scheduling and finally hardware
reconfiguration.

There is an enormous amount of literature discussing
embedded and distributed sensor networks, their architectures,
algorithms, and applications. Authors in [7], present a good
survey of existing works on sensor network related topics.
These topics vary from sensing task to network applications,
communication architectures, protocols and algorithms. Pottie
et al. present a motivating article for utilizing heterogeneous
resources in a sensor network [8]. They argue that a layered
networking and processing architecture is suitable for many
applications. Furthermore, A number of other works study
distributed and cooperative detection of events [10, 9], an
essential component of our framework.

Accurate time synchronization and fine-grain localization
are two key services required for sensor data fusion. Many
previous efforts have been addressing these two issues. For
example, a fine-grain localization scheme that can provide
location information for a similar experimental testbed with
accuracy of about a few centimeters is presented in [13].
Researchers in [14] present a localization method based on
acoustic and multi-modal ranging. This technique is
implemented in the course of the current project at hand. [15,
16] present a new time synchronization methodology that
synchronizes receivers of a packet with each other as opposed
to traditional approach of synchronizing a sender with a
number of receivers. This technique is also integrated into our
framework.

Another important issue that is often addressed by research
community is network energy consumption, which is directly
affecting system availability and lifetime. Various research
efforts try to conserve system energy at different layers of

Paper ID (to be inserted here)

4

network architecture. For example, two sample works by
Schurger et al. address energy optimization and its
implications in sensor networks [11, 12].

Dynamic hardware reconfiguration is a relatively novel
issue and has not been addressed extensively before. [23] is a
good survey paper on different aspects of reconfigurable
computing including applications. On the other hand, existing
literature usually focus on reconfigurable devices dedicated to
perform a particular job, while, reconfigurable resources
employed in a network can be shared among different tasks
and applications. The notion of sharing a reconfigurable
resource thru network creates new dimensions to the problem.
[21] proposes a software architecture for a networked system
that utilizes vision sensors with embedded reconfigurable
devices. In addition, some efforts are made to extend the
virtual machine idea to reconfigurable hardware platforms.
Such ideas are inspired by Java language and strive to develop
the proper framework for network reconfiguration [27, 28].

Researches in [17, 18] present the idea of dynamic
hardware plugins for improving network routers. Their work
is considered one of the first working systems that utilize
runtime hardware reconfiguration. Hardware reconfiguration
incurs a delay on the order of 100 milliseconds. Since this
delay is not tolerable for many applications, many research
efforts have been carried out to reduce the runtime
reconfiguration delay [19, 20, 24, 25, 26].

The third and last main category of related works addresses
the resource management and task scheduling issue. The
problem of scheduling tasks onto resources has been widely
explored. The problem can be generally stated as follows.
Given n tasks and m resources schedule the tasks onto the
resources to minimize the makespan. Makespan is the time in
which all the tasks complete their processing. The assumption
is that the execution is not preemptive, that is the tasks must
run on the resources to their completion. The tasks to schedule
can either be independent of each other, where they can all be
executed in parallel, or they may have precedence constraints
that impose an ordering on the scheduling.

The area of independent task scheduling consists of two
main explorations. The first is scheduling of tasks onto
homogeneous resources. [29] initially proposed a 2-
approximation algorithm, which is simply arbitrary list
scheduling. List scheduling is the scheduling of tasks placed
in an ordered list. Various improvements have been made to
the algorithm, as given in [34]. [34] presents a 3/2-
approximation algorithm with time complexity of O(n.log(n)),
which iteratively uses Jackson’s rule.

Scheduling of independent tasks onto heterogeneous
resources is more closely mapped to our problem at hand.
Linear programming solutions are commonly used in this area.
There is a distinction between related and unrelated
heterogeneous resources in this area of research. Unrelated
resources have no relation between their processing times,
whereas related resources can process tasks within factor of
each other. In the case of unrelated resources where the
number of resources is a constant, [30] proposes an ε-

approximation solution with time complexity O(nm(nm/ ε)m-1)
utilizing a dynamic programming approach. [35] formulates
the problem as a 0-1 integer linear programming problem.
After LP relaxation, he proves that at most m-1 jobs will be
scheduled on more than one resource. Thus, these tasks can
then be scheduled with an exhaustive search. This proves to
be a 2-approximation algorithm. [33] also gives a fully
polynomial-time 2-approximation scheme based on a linear
programming approach, but the fractionalized jobs are
scheduled using generalized assignment techniques. Recently,
[31] have put forth a combination of dynamic programming of
long tasks and linear programming of short tasks to achieve an
ε -approximation scheme with time complexity n(m/e)^O(m).

Along with the work on independent task scheduling, there
is much research in the area of precedence constrained task
scheduling. Task dependencies are represented using directed
acyclic graphs (DAGs). DAG scheduling to minimize
makespan is an NP-complete problem except for a few special
cases. There are many issues to consider when examining the
DAG scheduling literature. The first is whether the
communication cost is to be considered. The second is
whether the structure of the graph and the computational costs
are arbitrary or restricted. The number of processors and their
connectivity are also issues. An in depth survey of various
heuristics for each of these variations can be found in [32].

Although scheduling of tasks, independent and precedence
constrained, has been explored before, the work on scheduling
of tasks that incur a reconfiguration cost, both on homogenous
and heterogeneous resources, is relatively new [60].

IV. ADAPTIVE TRACKING CASE STUDY
A sample application of the aforementioned systems is

intruder detection and object tracking on which we focus in
the rest of this paper. We present a simplified version of the
sensor network presented in section 1, tailored to this
particular application. The system has been built in our lab as
part of this research effort. Furthermore, we discuss the
utilization of hardware reconfigurable resources embedded in
the vision sensors to provide both real time performance and
dynamic adaptability to environment variations for the
tracking application. The application and system presented in
this section are special cases of the general framework and
hence, they highlight the significance of such systems by
stressing a particular research challenge, i.e., utilizing
dynamic hardware reconfiguration in networks of sensors.

A. System Framework
The hardware framework for our system is comprised of
several components including: IQeye3 cameras provided by
IQinVision [36], pan-tilt units to enable the actuation of the
cameras, a small portable computer serving as the main
controller, and a network that connects the cameras and the
controller and allows them to communicate and collaborate.
Figure 2 illustrates a simple view of the system framework.

Paper ID (to be inserted here)

5
Camera 2

Controller Moving Object Initiate Algorithm Y

…
Initiate Motion Detection on camera 1;
if (result == moving_object_detected)
 Initiate object tracking on camera 1;
if (result == object out of field of view)
 Pan/Tilt or do other
 actuation controls;
if (camera 1 needs help)
 Have other idle cameras help it
 by initiating proper algorithms
 on them;
…

Initiate algorithm X

Algorithm Y output

Camera 1
Algorithm X output

Scene Data

I/O controller

FPGA

Processor

Motion Detection

Feature Selection

Image Restoration

Implementation
Database

etc.

…
do {
 receive controller’s message;
 fetch the proper algorithm from
 the implementation db and
 reconfigure the FPGA using it.
 Execute the proper software to
 process data locally.
 Send algorithm output back to the
 controller;
} while (1); //forever

Network Int.

Figure 2. An overview of the tracking system architecture: Each camera has a set of the required configurations
available. The controller communicates with the cameras via an implemented message passing scheme and can initiate
the proper algorithm on each camera, organizing the collaboration among cameras.

An IQeye3 camera, as a “smart” vision sensor with embedded
computation resources, allows input image data acquisition
and processing to be collocated in the camera, which
minimizes network communication overhead and facilitates
scalability. The processing resources embedded in each
camera include a Xilinx Virtex 1000E FPGA and a 250 MIPS
PowerPC CPU. In addition, there is 4 MB of Flash RAM and
16 MB of SDRAM on each camera. Each IQeye3 camera
gives full access to raw real-time image data streams and the
general-purpose processor can be used for customization since
a large “C” development library is available to application
developers. Full networking functionality is provided by each
IQeye3 camera through an Ethernet connection. It can
communicate using TCP, UDP, and IP.
The IQeye3 camera can send and receive 230 Kbps over a 9-
pin RS232C serial port. By supporting such communication
standards, the IQeye3 cameras can be placed in various
environments; while the raw and/or processed captured
images can be accessed remotely. In our system, each IQeye3
camera is mounted on a pan-tilt unit, which is directly
controlled by the corresponding camera via its RS232C serial
interface. A pan-tilt actuation unit can be controlled using
simple commands that specify the pan/tilt
angle/speed/acceleration. Figure 3 illustrates the need for
actuation control when an object moves out of the field of
view on camera. The flow of commands from a camera to its
corresponding pan-tilt unit is demonstrated.

Figure 2 demonstrates our system with two cameras and the
main controller. The main supervisory controller resides on an
ordinary small computer and acts as the centralized governing
unit of the system by maintaining the current state, processing
internal and external triggers, and coordinating the
collaboration among the cameras. When the main controller
receives data from one of the IQeye3 camera clients over the
network, it deterministically selects the appropriate actions
that should be taken by each camera (e.g. reconfiguring an
embedded FPGA by swapping in a different algorithm from
the database). This is performed by sending a message to the
designated camera. Cameras have a database of different
algorithms locally available. Therefore, they can retrieve the
proper implementation according to the controller’s message.
The two blocks close to the main controller and the lower
IQeye3 camera in Figure 2 outline the functionality of the
main controller along with the idea of “implemented
algorithms database” and reconfiguration at the sensor node.

B. System Application
The sample application implemented on the framework is to

continuously detect and track a moving object that is within
the field of view of a camera (Figure 2). We assume that the
object is always moving across the camera and hence, KLT
tracking scheme [37, 38, 39] can effectively track the motions.
However, various parameterization and dynamic adaptations
have to be performed in order to make the system robust to
variations in light, objects’ shape and location, etc.

Paper ID (to be inserted here)

6

Controlling motors thru
proprietary interface

Controlling commands thru
serial RS232C interface

Pan/Tilt unit
Control Box

Figure 3. Each camera is mounted on a pan/tilt unit (PTU). When the object moves out of the field of view of the camera, it
sends controlling commands to the PTU thru its serial interface. Consequently, PTU moves the camera in order to be able
to track the object.

If the object leaves the field of view of one camera, the
camera should pan or tilt to maintain the object within its field
of view or it should hand off control to another camera.
Depending on the light, focus and other parameters, different
algorithms are used to maximize the tracking performance.

When the entire system initializes, cameras establish a
connection with the main supervisory controller on the PC.
First camera assumes control initially and continuously runs
feature selection algorithm on its embedded FPGA. Feature
selection algorithm selects points in the scene that are
appropriate for tracking. Sharp corners and local intensity
variations in an image usually form good features. The
selected features are passed to the KLT tracking algorithm to
track their motion in consequent images. The tracking
algorithm has to meet the real time performance constraint.

Feature tracking has to perform some computations for each
selected feature and hence, the algorithm latency increases
with the number of selected features. If the number of selected
features is more than a certain upper bound, the algorithm will
be so slow that it cannot meet the real time performance
constraint. Furthermore, accuracy will be compromised if the
number of selected features is not large enough. Therefore, it
is desired that the number of selected features be within a
certain range.

However, as the objects in the scene, distance of the object
to the camera, light conditions, lens focus and other
parameters change, the number of selected features varies. For
example, two runs of the algorithm on a scene with two
different lighting conditions will lead to selecting less number
of features for the darker scene. Our implementation can
detect such conditions and can adapt itself in order to
compensate the effect of variations in the scene and
environment. Therefore, it is ensured that the number of
selected features, and hence both latency and tracking
accuracy, are kept within a certain range. This is accomplished
through reconfiguration and parameterization of the

algorithms running on the embedded FPGA.
Furthermore, when a moving object moves close to the

edge of the image, the camera detects this situation and sends
a message to the pan-tilt unit to take the appropriate action to
keep the moving object within its field of view. At a certain
point, the pan-tilt unit will no longer be able to pan or tilt
further and the moving object will move completely out of the
field of view of the camera. The camera has to surrender
complete control of the scene and another camera will be
forced to monitor the scene. In this situation, the camera that
can no longer monitor the scene notifies the main controller
by sending a message indicating the position where the
moving object is located. The main controller then decides
which camera should gain control and sends the proper
camera a message indicating where the object is. As a result,
the camera issues commands to move the pan-tilt unit so that
the moving object is in the field of view of the camera. Figure
2 outlines the architecture and application of the system. A
sample pseudo code running on the controller and a high-level
block diagram of each camera have been demonstrated.

In such a manner, the moving object is vigilantly tracked
using multiple cameras. The use of reconfigurability in our
system leads to the proper tradeoff between tracking quality
and latency. Moreover, it improves the system robustness to
changes in the scene such as lighting and moving objects
variations. Note that by use of the “hands off” approach, the
cameras can collaborate in tracking an object. The object will
be continuously tracked as long as the object is within the
field of view of a camera.

V. VISION ALGORITHMS OVERVIEW
In this section, we present two algorithms that are required

for enhancing the image quality and tracking the motions, i.e.
image restoration and feature selection. First, we outline the
algorithms’ underlying idea and functionality and then, we
describe their sensitivity to the changes in the scene. Finally,

Paper ID (to be inserted here)

7

Feature selection algorithm consists of carefully choosing
the points in the image, which can be easily tracked
throughout a series of images. Corner points of an object,
where intensity changes noticeably, are considered as good
feature points. The tracking stage looks in a small patch
around the location of a feature in the preceding frame, in
order to find its new location after possible motion. This
process is repeated for all selected features. Therefore, the
latency of tracking phase linearly grows with the number of
selected features. On the other hand, due to various factors
including variations in the intensity of two consecutive frames
and noise, some features might be lost during tracking.
Therefore, a minimum number of features are required to
guarantee an accurate tracking. Hence, despite ever-changing
parameters of the scene, controlling the number of selected
features is required.

details of the FPGA implementation in our system will be
discussed.

A. Feature Selection
In this work, we assume that the object is moving across the

camera. Therefore, from camera point of view, the object in
each frame is moved by a constant displacement compared to
its immediately preceding frame. KLT tracking scheme [37,
38, 39], has been developed to track the objects that comply
with the aforementioned motion. Note that this scheme cannot
track rotations or size variations (when the object moves
towards or away from the camera and its size changes from
camera point of view).

KLT tracking scheme is carried out in two stages. In the
first stage, called feature selection, a number of trackable
points in the images are selected. These points, called features,
show significant intensity changes compared to their
neighboring pixels. Feature points are passed on to the second
stage, feature tracking, in order to find their location in the
consequent images. In our system, we have implemented the
feature selection stage on the FPGA2 and feature tracking is
currently performed on the PowerPC embedded in the IQeye3
cameras.

In summary, the feature selection algorithm performs the
following operations for all of image pixels [40]:

1. Calculate gx and gy, the intensity gradients in the x

and y directions for all pixels of the image. This is
done by computing the Gaussian and Gaussian
derivative kernel as well as convolving these kernels
in the horizontal and vertical directions.

2. Sum the gradients in the surrounding window of each
pixel in order to compute the Z matrix, where

dx
ggg

ggg
Z

W
yyx

yxx∫∫ 










= 2

2

3. Compute λ1 and λ2, the eigenvalues of the Z matrix.
Let λ1 = min (λ1, λ2). λ1 represents the trackability of
the pixel.

4. Given λ as the threshold value, If λ1 > λ then declare
the pixel as a feature.

Figure 4 demonstrates the output of feature selection

algorithm executed on a selected region of sample images. For
example in the left image, a rectangular region around the
walking girl has been chosen for selecting features. Note that
the choice of two different threshold values has lead to
selecting different number of features in two images. Features
are denoted by black squares with white centers in the left
image, and by red squares in the right image.

The number of selected features reduces with the increase
of λ and vice versa. Therefore, points that are selected with
higher values of λ are considered better features. Note that
such features are also selected with small values of λ. These
points are usually easier to track in consequent images. They
exhibit significant intensity variation compared to their
neighboring pixels.

Based on the main steps of the algorithm, it is easy to
observe the effect of the changes in the scene on the number
of selected features. Intuitively, increasing/decreasing the
intensity value of the image pixels should increase/decrease
the number of selected features with a constant λ. In reality,

Figure 4. Sample outputs of feature selection algorithm run on a
selected portion of the images. Features are denoted by black
squares with white centers in the left image, and by filled dark
squares in the right image.

2 Our implementation is based on [50].

Paper ID (to be inserted here)

8

brighter/darker lighting can create such a case. Therefore,
different number of features will be selected for a particular
scene under different lighting conditions. Furthermore, the
number of selected features heavily depends on the objects in
the scene. A particular threshold value will select less number
of features on a round object with a few sharp corners
compared to a complex object with many sharp corners and
intensity variations. In addition, other parameters such as lens
focus and the number of objects in the scene can affect the
number of selected features.

Figure 5. A sample image, its low pass, and high pass filtered
versions are shown, respectively3. Note that the low pass filter
removes quick variations in intensity and blurs out sharp edges,
while the high pass filter preserves these elements. The feature tracking stage of the KLT tracking method

locks onto the selected features and strives to locate them in
the next upcoming frame. Note that this is performed with the
assumption that the two consecutive images differ only by a
small displacement factor. The tracked features will be tracked
again in the future upcoming frames. Therefore, the
displacement, motion direction, velocity and other information
about the motion can be inferred.

A common implementation of image filters places an

imaginary 3x3 window with filter coefficients, over a pixel in
the original image and calculates the new value of this pixel in
the filtered image using its old intensity value and those of the
neighboring pixels. Figure 6 demonstrates the idea of such an
implementation. The coefficients used in the window, specify
the type of filtering operation that the filter performs.
Intuitively, positive coefficients take average of close pixels to
calculate the new value of a pixel, and therefore blur sharp
edges. Therefore, they make low-pass filters while negative
coefficients for neighboring pixels highlight the difference of
the center pixel with its adjacent pixels and create a high pass
filter (Figure 6). Usually, the total value of all nine
coefficients is one, in order to keep the total intensity of the
image intact.

B. Image Restoration
Image restoration is a commonly used algorithm in image

acquisition or processing for recovery of degraded images.
Atmospheric turbulence, defocusing or motion of objects can
be reasons of degradation. Restoration process recovers lost
information of images by such degradation [53, 54, 55]. The
following degradation model holds in a large number of
applications [49]:

 The process of applying a filter on a pixel is repeated for all
of the pixels in the image. Moreover, for some applications,
the image is filtered many times until the residual value (the
normalized amount of change between two consecutive
images) is less than a given threshold. Experiments have
shown that a certain number of iterations on the image, exhibit
satisfactory quality for most of the scenes [49].

),(**),(),(jixjidjiy =
where x(i, j) and y(i, j) denote the original and observed

degraded image respectively. d(i, j) represents the impulse
response of the degradation system, and ** stands for two-
dimensional (2D) discrete linear convolution. The goal of
image restoration is to estimate x(i, j) given y(i, j) and d(i, j),
however one of the main difficulties in performing an ideal
image restoration is that the degradation model is not
completely known. In other words, d(i, j) is not exactly
defined/known at the receiver. Therefore, it might not be able
to completely reconstruct the image.

In our system, applying image restoration (or any other
proper filter) before feature selection can enhance the image
quality by sharpening the edges, and improve the quality of
the selected features. Iterative application of the filter on the
image requires the entire image to be accessible throughout
the process. Conventional hardware implementations
constantly retrieve the image from an attached memory unit
and store the result back, however this is not possible in our
constraint platform. In our system, the entire image is not
available to the restoration module due to real time incoming
stream of the scene data, which is not flow controllable.
Therefore, we had to adapt the functionality of image
restoration to our constrained platform. This will be
thoroughly discussed in the next section.

Noise signal injected into the image usually exhibits quick
variations and hence, is considered high frequency signal.
Therefore, common realizations of noise-removal filters
implement a low-pass filter, which allows the image signal to
pass and filters out the high-frequency noise. A low-pass filter
has no effect on low frequency image data (pixels with small
variations compared to neighboring pixels) and removes the
high frequency elements of the signal. As a result, the sharp
edges of an image passed through a low-pass filter become
blurred while the solid textures remain intact. On the other
hand, blurred and defocused images have to be passed through
a high pass filter in order to be restored. The high pass filter
restores such images by sharpening and/or preserving their
edges. Figure 5 demonstrates a simple image and the result
after applying a low pass and a high pass filter on it. Note that
the high pass filter preserves the sharp edges, while the low
pass filter blurs them out [57].

VI. HARDWARE IMPLEMENTATIONS
In this section, we describe our system constraints and the

modifications we had to make to the original algorithms in
order to fit them to our platform. Moreover, we discuss the
system adaptability issue and discuss its implications on

3 http://astronomy.swin.edu.au/~pbourke/analysis/imagefilter/

Paper ID (to be inserted here)

9

hardware implementation. Throughout the paper, we assume
that IQeye3 cameras, as discussed in Section 2, are the

experimental platform of our system.

A. Platform Constraints
As described in Section 2, IQeye3 camera is the vision

sensor used in our platform. Three major components of
IQeye3 are the imager, embedded FPGA chip and PowerPC.
The imager continuously captures scenes and injects a real-
time stream of image pixels into FPGA. The incoming stream
of information is not flow controllable and runs at 24 MHz.
The design residing on the FPGA (called the image processing
pipeline in Figure 8.a) performs several operations on the
incoming stream such as image correction, windowing and
down sampling. Finally, a DMA unit residing on the FPGA
stores the processed scene data in the main memory. Any
program running on the PowerPC can access the memory and
scene data through regular software function calls. For
example, a sample application running on the processor
embedded in the camera implements an embedded web server
that compresses the image data into jpeg format and exports
the jpeg file through HTTP connection. Figure 8.a visualizes
the path that each pixel goes through in order to become
available to software programs running on the processor.

Within this environment and platform, applications
implemented on the FPGA need to meet a number of
constraints. The most important issue is the timing constraint
of the design, because the imager continuously generates real-
time stream of image pixels and injects the flow into the
FPGA. The applications implemented on the FPGA have to
process the input stream and generate the corresponding
output at the same rate to avoid congestion. This forces many

designs to perform their intended computations with the small
on-chip memory, because using the off-chip memory units

will impose additional latency, which might not be tolerable
for some designs. Consequently, we have implemented a
modified version of the required algorithms that work with the
limited available on-chip memory.

∑
=

=
8

0

'
0 .

i
ii PrP

r8 r7 r6

r5 r0 r4

r3 r2 r1

1 1 1

1 8 1

1 1 1

-10 -1

0 8 0

-10 -1

A sample low pass filter A sample high pass filter

Figure 6. A filter is applied on a pixel by replacing its value with a weighted combination of its old value and its neighboring
pixels. A low pass filter typically has positive coefficients, while a high pass filter has negative coefficients for neighboring
pixels. Coefficients can be normalized to keep the total intensity of the image intact.

Furthermore, there is a basic design running on the FPGA
at all times. This design performs basic necessary image
manipulation functions such as windowing and packetizing.
Any application being mapped onto the FPGA has to integrate
with this design and has to cope with its communication
standards and data formats. Therefore, the algorithms cannot
be used in their original form and have to be adapted to our
constrained platform.

For example, the aforementioned basic FPGA design
processes the image stream in Bayer pattern [56]. Therefore,
any other application has to comply with this constraint and
perform its computation using Bayer pattern; or convert the
Bayer pattern to any other desired format, perform the
computation and convert the stream back to Bayer pattern.
These two major constraints, namely limited amount of on-
chip memory and complying with system existing
format/standard conventions, impose significant overhead in
implementing new designs on the system.

B. Implementations
In this subsection, we discuss the issues involved in

implementing the required algorithms, i.e., feature selection
and image restoration, on our constrained platform. In general,
implementing an application on the IQeye3 camera is
composed of hardware and software development. Each of
these two portions of the design, require a particular

Paper ID (to be inserted here)

10

development style and tool chain in order to be able to run the
application on the camera. Figure 7 illustrates the block
diagram and the required tool chain for developing an
executable application for the camera. Software development
process, which is shown on the right column of the Figure 7,
is similar to an ordinary software development flow except
that the compiler and linker are tailored to the particular
camera platform. Similarly, for hardware design development
the process shown on the left column of Figure 7 has to be
followed.

For all of our hardware implementations, design
specifications have been done using a combination of RTL
and behavioral VHDL. ModelSim VHDL simulator [58] has
been used for simulation and debugging of designs.
Architectural Synthesis has been carried out using Synplify
Pro from Synplicity [59], which is one of the popular FPGA
synthesis tools. The result of synthesis has been saved as an
EDF file.

The generated EDF format has been passed to physical
synthesis stage. The physical synthesis stage, including
clustering, mapping, placement, and routing has been done
using Xilinx ISE package. All tools have been targeted for our
embedded FPGA devices (Xilinx Virtex1000E). Finally, The
FPGA chips embedded in the cameras have been programmed
using the generated configuration files. Therefore, all of the
designs are physically implemented on our platform and
experiments are performed with actual scenes to verify the

designs functionality and performance in action.
1) Feature Selection

Feature selection algorithm has been implemented on the same
platform in a previous work [40, 50]. This implementation
only needs to store two rows of the image data on-chip before
deciding whether a pixel is a feature or not. The algorithm
performs local computations in a 3x3 window around a pixel
and compares the result with a fixed threshold for determining
features. The value of threshold used in this implementation
has to be specified at design time. Then, the design undergoes

conventional architectural and physical synthesis phases and
the resulting FPGA configuration stream is mapped onto the
FPGA embedded in the camera.

Software development
process & tool chain

Hardware development
process & tool chain

IQeye3.sys: The file containing both complied software
and binary FPGA image that is loaded onto the camera.

Proprietary utility for
hw/sw code integration

Designers have to
follow some specific
coding style in order
to run their code on

proprietary OS.Design specification
has to be integrated

with pre-existing
proprietary hardware

modules.

 Executable
binary code

Proprietary linker

 Object code

 C

.bit format

.edf format

 VHDL

Library of
software
routines

Software routines
implemented in C

Proprietary compiler

Design Specification
in Behavioral VHDL

Place and Route
by Xilinx ISE®

High level Synthesis
using Synplify Pro®

Figure 7. The process of developing a software and/or a hardware application for executing on IQeye3 camera, and the
corresponding tool chain are illustrated.

While this implementation works well in practice, it does
not have any control on the number of selected features.
Moreover, the value of threshold cannot be altered easily. The
feature selection’s threshold has been implemented as a
constant, which should be specified at design time. Therefore,
altering the threshold forces the designer to repeat the entire
design flow, which can take up to 30 minutes and is not
tolerable for real time applications.

Various parameters such as objects’ shape, scene light and
lens focus can affect the number of selected features. As
mentioned before, the selected features are passed to the
tracking phase. The latency of the tracking grows, while its
accuracy drops, with the increase of feature count. Therefore,
the number of selected features has to be controlled in order to

Paper ID (to be inserted here)

11

maintain a proper tradeoff between tracking latency and its
accuracy.

We have started from the implementation in [50] and have
modified the original design such that the threshold value can
be controlled by a program running on camera PowerPC at
runtime. Specifically we have developed registers that can be
read/written by a software program running on the PowerPC.
The hardware design has also been modified to read its
threshold value from the register, without losing its
synchronous operation with other parts of the basic design.
Note that, the software program can alter the register contents
at any time during processing of a frame and therefore, the
design has to be able to handle asynchronous incoming events.

Our implementation can dynamically tune the feature
selection algorithm running on the FPGA. According to the
algorithm, if the threshold used in feature selection is too low
for a particular scene, we get too many features and if the
threshold is too high, we get too few features. Therefore,
given a target number of features desired, we increase the
threshold if we get features more than the target and decrease
if we get less.

Note that the actual feature selection performs its
computations on the FPGA and exhibits real time
performance. The threshold controlling entity is a small
program running on the camera PowerPC, which counts the
number of selected features and controls the threshold value
accordingly.

2) Image Restoration

Image restoration has a variety of implementations and
iterative method is a widely used one. The purpose is to
estimate the original image given the degraded image.
Common restoration methods perform operations on the entire
image iteratively. Following each iteration, the normalized
difference between current and immediately preceding image,
called residual value, is calculated. Iterations are stopped
when the restored image converges with insignificant residual
ε [49].

As discussed in Subsection 4.1, our constrained platform
does not allow the entire image to be stored on the FPGA. On
the other hand, accessing the off-chip memory iteratively will

impose additional latency on the algorithm, which is not
affordable because of the real time performance constraint of
system applications.

We have made several modifications to adapt the original
method to our environment. Firstly, instead of globally
iterating over the entire image, we iterate over local windows,
where the size of window can be from 3x3 to the entire image.
As the window gets smaller, the restoration quality drops
since the center pixel does not have any information about
pixels out of the restoration window. However, this enables
processing of image stream using a small-sized storage.

Figure 8.a illustrates the path that each image pixel goes
through to be processed in our system cameras. Image sensor
converts the scene into a non flow-controllable stream of
pixels flowing into the FPGA. The proprietary image
processing pipeline implemented on the FPGA performs
various computations on the incoming flow of pixels and
finally stores the result in the system memory, where the
software applications running on the camera processor
(PowerPC) can access it.

The image restoration algorithm has been implemented as
one of the stages in the pipeline (Figure 6.b). Therefore, it
does not have access to the entire image pixels at any point of
time (assuming no off-chip data communication). Note that
image pixels are revealed to the system starting from upper
left corner of the image flowing to the right. When a row is
finished, the flow of pixels moves down a row and again start
from left to right. As Figure 6.b visualizes, the amount of
memory required for implementing a 3x3 restoration window
is a bit larger than two rows of the image. The FPGA devices
embedded in the system cameras have enough BlockRAMs
available to store two rows of the image on-chip. Therefore,
the restoration algorithm can be performed without any off-
chip communication.

In general, for a restoration window of size nxn, ((n-1).rows
+ n) pixels need to be stored on the chip. Each FPGA device
contains a certain number of logic blocks and BlockRAMs.
Hence, the window size cannot grow beyond physical
limitations of the target FPGA. For example, our system’s
embedded FPGA (Xilinx Virtex1000E) allows the window
size to grow up to 15 for processing the widest images. The

a) b)

n

Proprietary image
processing pipeline

I/O controller
and interface

Processor
(PowerPC)

System Memory
Image
Sensor

FPGA height

• • •
• • •

• • •
• • •

restoration window (3×3)

n

n
n c

n n

n
n
n

width

Figure 8. a) Block diagram of the camera illustrating the path each image pixel goes through in order to be processed. The
image processing pipeline residing on the FPGA is not disclosed due to copyright issues. b) Restoration window implemented
as one of the blocks in image processing pipeline. Pixels stream in starting from the upper left corner of the image.

Paper ID (to be inserted here)

12

maximum width of images in our system is 1280 pixels.
In addition, we have unrolled local iterations of the

algorithm on a 3x3 window a priori, and therefore, the current
implementation performs an equivalent but more efficient
computation for restoration of each pixel. Current
implementation performs a single step evaluation of each
window in order to calculate the new value of the center pixel,
as opposed to iterating over the window. Table 1 summarizes
the area improvement of the unrolled implementation
compared to the original implementation, which iterates 40
times over each pixel.

Researchers in [49] have studied tradeoffs of restoration
performance and quality with changes in restoration window
size. According to their work, 3x3 restoration windows reflect
reasonable restoration quality for many applications. The
restoration algorithm used in this work, implements a high
pass filter with 2 and -0.125 as coefficients for center and
neighboring pixels, respectively.

Varying the restoration window size, leads to accuracy-
memory requirement tradeoff. Small restoration windows
need smaller on-chip storage, however their quality is not as
good as larger restoration windows. On the other hand, larger
windows improve the restoration quality at the price of higher
memory requirement. Note that memory requirement inversely
correlates with the system performance.

Implemented Design Block RAMs CLBs

Basic design + Feature
selection 51 out of 96 (53%) 9170 out of 24576

(37%)

Basic design + Feature
selection + Original
image restoration

66 out of 96 (68%) 12278 out of
24576 (49%)

Basic design + Feature
selection + Unrolled

image restoration
64 out of 96 (66%) 9454 out of 24576

(38%)

Table 1. The breakdown of hardware resources used by different
portions of the designs. Note that the unrolled version of image
restoration frees up 2% of block RAMS and 11% of CLBs for
Xilinx1000E device.

VII. EXPERIMENTS
In this section, we present the framework and results of our

experiments. First, we describe the platform and designs used
in conducting the experiments. We address the issue of
dynamic system adaptation to the environment variations in
this section. Then, we present the results of our approach for a
number of scenes and compare them with a traditional non-
adaptive system results.

A. Experimental Setup
We have implemented the feature selection and image

restoration algorithms (discussed in Sections 3 and 4) on
IQeye3 cameras. The threshold value in the feature selection
algorithm can be dynamically adjusted through a software

program running on the PowerPC of the camera.
Furthermore, the implemented image restoration algorithm

can be dynamically disabled or enabled through system
reconfiguration. If the quality of the image is not good
enough, then the FPGA will be reconfigured to enable the
image restoration before feature selection. The quality of
images can be determined by examining the value of the
threshold in feature selection for selecting a certain number of
features. Lower threshold values correspond to lower quality
features and blurred corners. On the other hand, image
restoration can alter the original image if it is not degraded to
some degree. Therefore, we need to disable it for cases that
the image quality is reasonable.

B. Experimental Results
In the following sets of experiments, we examine the effect

of our proposed techniques. The first two sets of experiments
demonstrate the quality of automatically adjusted threshold
compared to the original fixed threshold feature selection.
The third experiment shows how image restoration can affect
the performance of feature selection. In all experiments,
automatically adjusted threshold targets for 150 features with
10% tolerance range, i.e. the number of selected features
should be in the (135-165) range.

One example, where dynamically adaptive feature selection
finds its use, is in the environments with variations in lighting.
This applies to outdoor places where the natural lighting
changes throughout the time. Another example is indoor
scenes under various lighting conditions. For the first set of
experiments, we varied the lighting condition in the laboratory
and observed the results of the feature selection application.

Figures 9.a, 10.a and 11.a show the result of feature
selection with fixed threshold, called FS-FIX, for an object
under three different lighting conditions. Figure 9.b, 10.b and
11.b show the results of feature selection with automatically
adjusted threshold, called FS-AUTO, for the same object and
lighting conditions.

Figures 9.a and 9.b show the result of both FS-FIX and FS-
AUTO under normal lighting. Both implementations select
about 150 features (with 10% tolerance). Figure 10.a and 10.b
illustrate the same object under similar lighting, which is
brighter than the previous settings used in Figure 9. Extra
brightness causes edges and corners to have greater intensity
difference from their adjacent pixels, therefore a larger
number of points are chosen as features. Figure 10.a shows
many unnecessary features chosen whose count is 1150. This
is too many compared to the target feature count, 150.
FS-AUTO increases the threshold value from 512 to 1552 and
chooses 150 features in Figure 10.b. It selects features at
almost same locations as in Figure 9.b even after the
significant change in brightness.

Figures 11.a and 11.b are taken under dark lighting. The
object is observable by eyes, but FS-FIX is unable to find any
features, since the intensity variations are not large enough for
the fixed threshold value. However, FS-AUTO successfully
decreases the threshold value from 512 to 160 and finds 156

Paper ID (to be inserted here)

13

features. Locations of features are almost same as Figures 9.b
and 10.b.

The aforementioned set of experiment verifies the
efficiency of our approach in implementing a system robust to
lighting variations through dynamic adaptation of the system.
However, the advantage of our implementation is not limited
to handling lighting variations. We have carried out another
set of experiments to show that this technique can assist in
handling other realistic scenarios, such as object’s shape
variations and multiple object cases.

Figures 12.a and 13.a show two different objects that have
been processed by FS-FIX to select some features on them. As
expected, FS-FIX has no control over the number of selected
features. Therefore, the number of selected features on a
round object, such as a computer mouse shown in Figure 12.a,
is not large enough, while this number on a complex object
with many sharp corners is too large. In fact, FS-FIX chooses
42 features in Figure 12.a, which is far less than our target,
150. Similarly, it selects 572 features in Figure 13.a, which is
almost 4 times more the desired number of features.

Figures 12.b and 13.b illustrate the same objects shown in
Figures 12.a and 13.a, however these objects are processed by
FS-AUTO. The object in Figure 12.b is round and does not
have enough sharp corners, however, FS-AUTO successfully
decreases the threshold value until it selects 154 features with
a new threshold value of 300. Extra features are observed at
the left end of the object. Feature tracking algorithm can
utilize this additional information for better tracking. The
object in Figure 13.b is a toy car that has many colorful parts
and sharp edges, which are potentially good candidates for
features. As presented earlier, FS-FIX uses a fixed threshold
value for selecting features and it selects 572 features.
Unnecessarily many features are observed around the wheel
and wire part of the object in Figure 13.a.
FS-AUTO adjusts the threshold value to select fewer features.
It selects 152 features with a new threshold value of 912
(Figure 13.b).

As discussed above, FS-AUTO is able to select proper
number of features for any type or number of objects. It
certainly is a better solution than FS-FIX, which works only
for limited type or number of objects, but it cannot solely
handle all possible cases. One example is where multiple
objects are present in a single scene. Therefore, the camera
lens can be focused on only one of them. Under this situation,
most of the features will be placed on one well-focused object
and the rest of the objects will not be tracked.

Figure 14.a demonstrates such a situation where the puppy
doll that is close to the camera is better focused than the
mouse located farther from the camera. FS-AUTO cannot
select any features on the mouse. This is generally a hard
problem to solve. However, by employing image restoration,
the problem is alleviated to some degree. In Figure 14.b, FS-
AUTO selects features on the same scene as Figure 14.a,
however the image is first restored using the implemented
image restoration algorithm. Restoration enhances the clarity
of the edges and corners of both objects. After applying the

image restoration algorithm, features are selected on the
mouse as well as the puppy. Moreover, the number of features
is balanced on the two objects. Note that the choice of
enabling or disabling the image restoration algorithm is made
on the fly and the system dynamically adapts itself to
environment changes.

Figures 15.a and 15.b clearly demonstrate the effect of
image restoration on feature selection results. In Figure 15.a,
the lens is not well focused on the object. Although FS-AUTO
can adjust its threshold to select the required number of
features, features do not show satisfactory quality. The low
threshold value used for selecting the features highlights this
fact. Figure 15.b shows the result of the same algorithm after
dynamically enabling the image restoration before selecting
the features in the image. Image restoration enhances the
image quality by sharpening the edges. Therefore, the
threshold value for selecting the same number of features on
the restored image is larger. Hence, the features’ quality has
been enhanced and features with larger intensity difference
compared to their adjacent pixels have been selected.

Note that sharp and clear images do not need to be restored
before being passed to feature selection algorithm. Failure to
do so might degrade the image quality by adding noise to the
image and can create fake features in the image. Therefore,
the system should be reconfigured to enable or disable image
restoration based on the requirements. In our system, we can
dynamically enable or disable this module before selecting the
features.

Figure Number Threshold Feature count

9.a 512 (Fixed) 152
9.b 465 148
10.a 512 (Fixed) 1150
10.b 1552 150
11.a 512 (Fixed) 0
11.b 160 156
12.a 512 (Fixed) 42
12.b 300 154
13.a 512 (Fixed) 572
13.b 912 152
14.a 290 164
14.b 664 162
15.a 1279 146
15.b 2083 148

Table 2. Feature selection threshold value and feature count for
figures presented in experimental results section.

Table 2 summarizes the number of selected features and the
utilized threshold value for selecting those features for images

Paper ID (to be inserted here)

14

presented in this section. The enhanced performance of FS-
AUTO compared to FS-FIXED in terms of number of selected
features is evident. Furthermore, the effect of image
restoration on the threshold value used in FS-AUTO can be
observed. Note that applying image restoration on the blurry
image shown in Figure 15.a sharpens its edges and corners
(see Figure 15.b) and increases the required threshold in FS-
AUTO. This in turn corresponds to features that are easier to
track in the feature tracking stage. This has been highlighted
in the last two rows of Table 2.

VIII. CONCLUSION AND FUTURE DIRECTIONS
In this paper, we presented the idea of dynamic system

reconfiguration in order to be able to adapt to the external
events. A collaborative tracking system has been built and
presented as the experimental framework for verifying the
idea. Experimental results show that the idea is effective in
practice and the system can function in a wide range of
working conditions.

Particularly, we have implemented automatic adjustment of
threshold value in feature selection algorithm, and dynamic
enabling of image restoration for enhancing the image quality.
These techniques have been integrated into our system
framework. It has been shown that our approach is effective
for dynamically adapting to various lighting and lens focus
conditions in practice.

Future works include the integration of tracking phase of
the KLT feature-tracking method into our current system,
enhancing the collaboration schemes and applying the system
reconfiguration idea to other applications or application
domains.

REFERENCES
[1] D. Tennenhouse, "Proactive Computing," Communications of the ACM,

May 2000, vol. 43, no. 5, pp. 59–66.
[2] M. Weiser, “The Computer for the 21st Century”, Scientific American,

Sept. 1991, vol. 265, no. 3, pp. 94–104.
[3] J. Hill, R. Szewczyk, A. Woo, S. Hollar, D. Culler, K. Pister, "System

Architecture Directions for Networked Sensors", in Proc. Architectural
Support for Programming Languages and Operating Systems
(ASPLOS), pp. 93-104, 2000.

[4] D. Estrin et. al., "Embedded, Everywhere: A Research Agenda for
Networked Systems of Embedded Computers," Committee on
Networked Systems of Embedded Computers, Computer Science and
Telecommunications Board, National Research Council, Washington,
DC, 2001.

[5] D. Estrin, R. Govindan, J.S. Heidemann, S. Kumar, "Next Century
Challenges: Scalable Coordination in Sensor Networks", Mobile
Computing and Networking, pp. 263-270, 1999.

[6] H. Wang, D. Estrin, L. Girod, "Preprocessing in a Tiered Sensor
Network for Habitat Monitoring", in EURASIP JASP special issue of
sensor networks, Vol. 2003, No. 4, pp. 392-401, March 15, 2003.

[7] I. F. Akyildiz, W. Su, Y. Sankarasubramaniam, E. Cayirci, "Wireless
sensor networks: a survey", Computer Networks, Vol. 38, No. 4, pp.
393-422, 2002.

[8] G. J. Pottie, W. J. Kaiser, "Wireless integrated network sensors",
Communications of the ACM, Vol. 43, No. 5, pp. 51-58, 2000.

[9] R. Viswanathan, P. K. Varshney, "Distributed Detection with Multiple
Sensors, Part I:Fundamentals", Proceedings of the IEEE, Vol. 85, No. 1,
pp. 54-63, 1997.

[10] J. Agre, L. Clare, "An Integrated Architecture for Cooperative Sensing
Networks", IEEE Computer Magazine, Vol. 33, No. 5, pp.106-108, May
2000.

[11] Curt Schurgers, Gautam Kulkarni, Mani B. Srivastava, "Distributed On-
Demand Address Assignment in Wireless Sensor Networks", IEEE
Transactions on Parallel and Distributed Systems, Vol.13, No.10, pp.
1056-1065, Oct. 2002.

[12] Curt Schurgers, Vlasios Tsiatsis, Saurabh Ganeriwal, Mani B.
Srivastava, "Optimizing Sensor Networks in the Energy-Latency-
Density Design Space," IEEE Transactions on Mobile Computing,
Vol.1, No.1, pp. 70-80, Jan.-March 2002.

[13] A. Savvides, C.-C. Han, M. B. Srivastava, "Dynamic fine-grained
localization in ad-hoc networks of sensors", in Proc. 7th Annual
ACM/IEEE International Conference on Mobile Computing and
Networking (MobiCom ’01), pp. 166-179, July 2001.

[14] L. Girod, D. Estrin, "Robust range estimation using acoustic and
multimodal sensing", In Proceedings of the IEEE/RSJ International
Conference on Intelligent Robots and Systems (IROS 2001), October
2001.

[15] J. Elson, L. Girod, D. Estrin, "Fine-grained network time
synchronization using reference broadcasts", in Proc. 5th Symposium on
Operating Systems Design and Implementation (OSDI 2002), December
2002.

[16] J. Elson, D. Estrin, "Time Synchronization for Wireless Sensor
Networks", Proceedings of the 2001 International Parallel and
Distributed Processing Symposium (IPDPS): Workshop on Parallel and
Distributed Computing Issues in Wireless and Mobile Computing, April
2001.

[17] E.L. Horta, J.W. Lockwood, D.E. Taylor, D. Parlour, "Dynamic
Hardware Plugins in an FPGA with Partial Run-time Reconfiguration",
Design Automation Conference (DAC), June 2002.

[18] D.E. Taylor, J.S. Turner, J.W. Lockwood, "Dynamic Hardware Plugins
(DHP): Exploiting Reconfigurable Hardware for High-Performance
Programmable Routers", IEEE OPENARCH 2001: 4th IEEE Conference
on Open Architectures and Network Programming, 2001.

[19] S. Ghiasi, M. Sarrafzadeh, "Optimal Reconfiguration Sequence
Management", Asia South Pacific Design Automation Conference
(ASPDAC), January 2003.

[20] Z. Li, K. Compton, S. Hauck, "Configuration Cache Management
Techniques for FPGAs", IEEE Symposium on FPGAs for Custom
Computing Machines, pp. 22-36, 2000.

[21] R. Kumar, S. Ghiasi, M. Srivastava, "Dynamic Adaptation of Networked
Reconfigurable Systems", Workshop on Software Support for
Reconfigurable Systems (SSRS), February 2003.

[22] S. Ghiasi, K. Nguyen, E. Bozorgzadeh, M. Sarrafzadeh, "On
Computation and Resource Management in an FPGA-based Computing
Environment", A poster in International Symposium on Field-
Programmable Gate Arrays (FPGA), February 2003.

[23] K. Compton, S. Hauck, "Reconfigurable Computing: A Survey of
Systems and Software", ACM Computing Surveys, Vol. 34, No. 2. pp.
171-210. June 2002.

[24] K. Compton, Z. Li, J. Cooley, S. Knol, S. Hauck, "Configuration
Relocation and Defragmentation for Run-time Reconfigurable
Computing", IEEE Transactions on VLSI Systems, Vol. 10, No. 3, pp.
209-220, June 2002.

[25] Z. Li, S. Hauck, “Configuration Compression for Virtex FPGAs”, IEEE
Symposium on FPGAs for Custom Computing Machines, 2001.

[26] Z. Li, S. Hauck, "Configuration Prefetching Techniques for Partial
Reconfigurable Coprocessor with Relocation and Defragmentation",
ACM/SIGDA Symposium on Field-Programmable Gate Arrays, pp. 187-
195, 2002.

[27] Y. Ha, P. Schaumont, L. Rijnders, S.Vernalde, F. Potargent, M. Engels,
and H. De Man, "A scalable Architecture to Support Networked
Reconfiguration", Proceedings of IEEE ProRISC, pp. 677-683,
November 1999.

[28] Y. Ha, P. Schaumont, M. Engels, S. Vernalde, F. Potargent, L. Rijnders,
H. De Man, "A Hardware Virtual Machine for the Networked
Reconfiguration", 11th IEEE International Workshop on Rapid System
Prototyping(RSP), 2000.

[29] R.L. Graham, “Bounds on Multiprocessing Timing Anomalies”, SIAM J.
Applied Math., Vol. 17, pp. 416-426, 1969.

Paper ID (to be inserted here)

15

[30] E. Horowitz, S. Sahni, “Exact and Approximate Algorithms for
Scheduling Nonidentical Processors”, Journal of the Assosiation for
Computing Machinery, Vol 23, pp. 317-327, 1976.

[31] K. Jansen, L. Porkolab, “Improved Approximation Schemes for
Scheduling Unrelated Parallel Machines”, Proceeding of the 31st Annual
ACM Symposium on the Theory of Computing (STOC 99), pp. 408-417,
1999.

[32] Y. K. Kwok, I. Ahmad, “Static Scheduling Algorithms for Allocating
Directed Tasks Graphs to Multiprocessors”, ACM Computing Surveys,
Vol. 31, pp. 406-471, 1999.

[33] J.K. Lenstra, D.B. Shmoys, E. Tardos, “Approximation Algorithms for
Scheduling Unrelated Parallel Machines”, Mathematical Programming,
Vol. 46, pp. 259-271, 1990.

[34] E. Nowicki, c. Smutnicki, “An Approximation Algorithm for a Single-
Machine Scheduling Problem with Release Times and Delivery Times”,
Discrete Applied Math., Vol. 48, pp. 69-79, 1994.

[35] C. N. Potts, “Analysis of a Linear Programming Heuristic for Scheduling
Unrelated Parallel Machines”, Discrete Applied Math., Vol. 10, pp. 155-
164, 1985.

[36] IQinVision Online Documentations, IQinVision Inc.,
http://www.iqinvision.com.

[37] B. Lucas, T. Kanade, “An Iterative Image Registration Technique with
an Application to Stereo Vision”, International Joint Conference on
Artificial Intelligence, pp. 674-679, 1981

[38] C. Tomasi, T. Kanade, “Detection and Tracking of Point Features”,
Carnegie Mellon University Technical Report CMU-CS-91-132, April
1991.

[39] J. Shi, C. Tomasi, “Good Features to Track”, IEEE Conference on
Computer Vision and Pattern Recognition, pages 593-600, 1994

[40] A. Benedetti, P. Perona, “Real-time 2-D Feature Detection on a
Reconfigurable Computer”, IEEE Conference on Computer Vision and
Pattern Recognition, June 1998, Santa Barbara, CA.

[41] P. Athanas, L. Abbott, "Addressing the Computational Requirements of
Image Processing with a Custom Computing Machine: An Overview", in
Proceedings of the 2nd Workshop on Reconfigurable Architectures,
April 1995, Santa Barbara, CA.

[42] X. Feng, P. Perona, “Real Time Motion Detection System and Scene
Segmentation”, CDS TR CDS98-004, Caltech, 1998

[43] M. Sarrafzadeh, A.K. Katsaggelos, S.P. Kumar, in “Parallel
Architectures for Iterative Image Restoration”, Kluwer Academic, M.
Bayoumi editor, 1991.

[44] K. Melhorn, F. Preparata, “Area-Time Optimal VLSI Integer Multiplier
with Minimum Computation Time”, Information and Control, Vol. 58,
pp. 137-156, 1983.

[45] G. Bilardi, M. Sarrafzadeh, “Optimal VLSI Circuits for Discrete Fourier
Transform”, Advances in Computing Research, Vol. 4, pp. 87-101, 1987.

[46] D.J. Li, L. Jiang, T. Isshiki, H. Kunieda, “New VLSI Array Processor
Design for Image Window Operations”, IEEE Transactions on Circuits
and Systems, Vol. 46, No. 5, pp. 635-640, May 1999.

[47] S. Ghiasi, H.J. Moon, M. Sarrafzadeh, “Collaborative and
Reconfigurable Object Tracking”, Engineering of Reconfigurable
Systems and Algorithms, 2003

[48] F. Cuzzolin, A. Bissacco, R. Frezza, S. Soatto, “Towards Unsupervised
Detection of Actions in Clutter”, Proc. of the Asilomar Conference on
Signals, Systems and Computers, 2002.

[49] S. Ogrenci Memik, A. K. Katsaggelos, M. Sarrafzadeh, “FPGA
Implementation and Analysis of an Iterative Image Restoration
Algorithm”. IEEE Transactions on Computers, vol. 52, no.3, March
2003.

[50] M. Maire, “Design and Implementation of a Realtime Visual Feature
Tracking System on a Programmable Video Camera”, Technical Report,
California Institute of Technology, 2002.

[51] Xilinx Online Documentations, Xilinx Inc., http://www.xilinx.com.
[52] H.C. Andrews, B.R. Hunt, "Digital Image Restoration". Prentice Hall,

1977.
[53] H.J. Trussel, B.R. Hunt, "Improved Methods of Maximum A Posteriori

Restoration", IEEE Transactions On Computers, Vol. 28, 1979.
[54] J. Biemond, J. Rieske, J.J. Gerbrands, "A Fast Kalman Filter for Images

Degraded by Both Blur and Noise", IEEE Transactions on Acoustics,
Speech, and Signal Processing, 1983.

[55] A.K. Katsaggelos, "Iterative Image Restoration Algorithms", Optical
Eng., Vol. 28, pp. 735-748, July 1989.

[56] B. Fortner, T.E. Meyer, T. Meyer, “Number by Colors: A Guide to
Using Color to Understand Technical Data”, Springer Verlag, 1997.

[57] J. C. Russ, “The Image Processing Handbook”, CRC Press, 1999.
[58] ModelSim® product manual, Model Technology Inc. ,

http://www.model.com.
[59] Synplify Pro® product manual, Synplicity Inc.,

http://www.sinplicity.com.
[60] Ani Nahapetian, Soheil Ghiasi, Majid Sarrafzadeh, "Task Scheduling on

Heterogeneous Resources with Heterogeneous Reconfiguration Costs",
International Conference on Parallel and Distributed Computing and
Systems, November 2003.

http://www.iqinvision.com/
http://www.xilinx.com/
http://www.model.com/
http://www.sinplicity.com/

Paper ID (to be inserted here)

16

Figure 9.b. 148 features are selected by automatic
threshold adjustment (FS-AUTO) under normal lighting.

Figure 9.a. 152 features are selected by fixed threshold
(FS-FIX) under default lighting conditions.

Figure 10.b. 150 features are selected by automatic
threshold adjustment (FS-AUTO) under bright lighting.

Figure 10.a. 1150 features are selected by fixed threshold
(FS-FIX) under bright lighting.

Figure 11.a. No feature is selected by fixed threshold (FS-
FIX) under dark lighting.

Figure 11.b. 156 features are selected by automatic
threshold adjustment (FS-AUTO) under dark lighting.

Paper ID (to be inserted here)

17

Figure 12.b. FS-AUTO selects 152 features on the object
shown in Figure 10.a.

Figure 12.a. 42 features are selected on a simple object
with FS-FIX.

Figure 13.b. FS-AUTO selects 152 features on the object
shown in Figure 11.a.

Figure 13.a. 572 features are selected on an object with
sharp edges, using FS-FIX.

Figure 14.b. Applying image restoration before feature
selection enhances the image quality by sharpening the
edges and distributes the selected features on both objects.

Figure 14.a. FS-AUTO selects all of features on one of the
objects (puppy in this example).

Paper ID (to be inserted here)

18

Figure 15.a. Selected features using automatically
threshold adjustment (FS-AUTO) without image
restoration

Figure 15.b. Image restoration sharpens the edges and
corners. Therefore, FS-AUTO selects better (selected with
larger threshold) features.

	Reconfiguration in Network of Embedded Systems: Challenges and Adaptive Tracking Case Study
	INTRODUCTION
	Research Challenges
	Related Works
	Adaptive Tracking Case Study
	System Framework
	System Application

	Vision Algorithms Overview
	Feature Selection
	Image Restoration

	Hardware Implementations
	Platform Constraints
	Implementations
	Feature Selection
	Image Restoration

	Experiments
	Experimental Setup
	Experimental Results

	conclusion and Future Directions

