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Abstract—Many applications utilize deeply embedded sensors 

and actuators that are tightly coupled with the physical 
environment in order to perform their functionality. Sensor, 
actuators and embedded computation resources used for 
implementing such systems usually exhibit regular local 
configurations, while the global structure of the subsystems is 
either not fixed a priori and can change at runtime or is not 
known. Examples include systems that use many randomly 
distributed sensing boards, each one having a fixed structure of 
computation resources and sensing devices, to autonomously 
detect events and take proper actions. 

This paper discusses the requirements of the aforementioned 
systems, their advantages and the issues involved in developing 
them. Specifically we focus on dynamic adaptation of the system 
as a particular feature of such systems. This feature is discussed 
in depth in a collaborative and dynamically adaptive object 
tracking system that has been built in our lab as the experimental 
framework of this study. We exploit reconfigurable hardware 
devices embedded in a number of networked cameras in order to 
achieve our goal. We justify the need for dynamic adaptation of 
the system through scenarios and applications. Experimental 
results on a set of scenes advocate the fact that our system works 
effectively for different scenario of events through 
reconfiguration. Comparing results with non-adaptive 
implementations verify the fact that our approach improves 
system’s robustness to scene variations and outperforms the 
traditional implementations. 
 

Index Terms— Adaptive Tracking, Feature Selection, 
Networked Embedded Systems, Reconfigurable Computing, 
Tiered Resource Architecture. 
 

I. INTRODUCTION 

M any applications rely on distributed sensing of events, 
an example of which is a class of applications called 

unsupervised detection of spatio-temporal events. Instances of 
this class of applications include environmental monitoring, 
and traffic management and control. Traditionally, sensor 
nodes used in such applications, solely serve as data 
acquisition units that transfer the perceived information to 
processing stations. Utilizing sensor nodes with embedded 

computation resources allows the system to –at least partially- 
collocate the data acquisition and processing, which in turn 
improves system energy dissipation, scalability and 
robustness. In addition, it can enhance system performance for 
various implementations that exhibit non-negligible 
communication overhead [4]. 

One approach to developing networked embedded system 
uses similar sensor nodes for data acquisition and local 
processing. While having similar sensor nodes facilitates 
many development issues, network performance can be 
significantly improved by utilizing heterogeneous sensor 
nodes. Sensor nodes can vary in many different aspects 
including embedded processing power, communication 
overhead, power dissipation and the modality of the signal 
they sense. Moreover, heterogeneous sensor nodes can be 
deployed to form a tiered architecture, which allows 
intelligent utilization of proper resources for performing each 
of system tasks. This in turn results in significant system 
energy dissipation and performance improvements [6]. 

Figure 1 illustrates a tiered network of embedded sensors 
that has been built as part of this work. The system’s 
application is to intelligently track some distinguished objects 
using its tiered architecture of resources. It employs many 
cheap and constrained acoustic sensors (micro-nodes) called 
motes1 [3] in its second tier of resources. Motes are deployed 
in an ad-hoc manner and have a short-range wireless radio that 
can be used for sending/receiving data to/from their close 
neighbors. Motes run on the battery and hence, it is essential 
for them to dissipate little amount of energy to save their 
batteries and increase their lifetime. Therefore, motes radio is 
restricted to communicate to close neighbors at specific points 
of time.  

 

 

There are a few vision sensors (cameras) with more 
powerful computation resources, including reconfigurable 
hardware devices [36], mounted on panel corners.  Cameras 
serve as first-tier network resources (macro-nodes) and their 
reconfigurable computation resources can be dynamically 
altered to better accommodate the particular task assigned to 
them. The location of the vision sensors on the panels is fixed. 
The communication media on the panel is a local area network 
and the resources do not run on the battery. The system 
exhibits a locally regular structure, since the configuration of 
resources on each panel (and higher tiers of the system) is 
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Figure 1. A tiered architecture combining engineered subsystems and ad-hoc global deployment. 

determined. However, from a global point of view the 
structure of the entire system does not follow a predetermined 
pattern, due to the ad-hoc deployment of sensors in the field. 
The ideas and approaches presented in this paper are 
explained using this platform, however they are more general 
and applicable to other similar networked embedded systems. 

Next section describes the research challenges arising in 
such a platform, which serves as an overview of various 
research topics addressed in the course of this project. A 
survey of other research efforts related to these challenges is 
presented in Section 3. We proceed to focus on a particular 
challenge in our system, namely dynamically adapting the 
system to environment changes thru hardware reconfiguration 
and parameterization. This issue is discussed in depth in the 
rest of this paper.  A simplified version of the general system 
framework and its application is presented in Section 4. This 
version of the system performs collaborative target tracking 
thru hardware reconfiguration. In Section 5, we present the 
image-processing algorithms that are required for the 
implemented tracking application. In addition, the effect of 
environment changes on these algorithms and hence, the need 
for system adaptability is explained in this section. Section 6 
discusses the issues involved in implementing these 
algorithms in our platform. Experimental results including 
algorithms implementation and their performance for some 
scenes, are presented in Section 7. Finally, Section 8 outlines 
the conclusions and future directions of this work. 

II. RESEARCH CHALLENGES 
There are a number of key research challenges that arise in 

a tiered network of heterogeneous sensors and computation 
resources. This section briefly overviews some of these issues 

and proposed techniques with respect to the aforementioned 
platform; however the statements and discussions are valid for 
any distributed network of embedded devices with 
reconfigurable resources. 

To meet the severe and dynamic constraints imposed on 
networks of embedded sensors, the nodes of the networks 
need to collaborate to achieve time and location information 
[5]. With heterogeneous and distributed systems, new 
challenges arise to schedule tasks among distributed resources 
and to preserve power of the network to prolong the life of the 
network. Finally, a new paradigm of reconfiguration in a 
network environment needs to be addressed. 

Time synchronization and localization, two key services, 
need to be provided to the network. Synchronization of the 
network’s clocks allows for the fusion of sensor data. It 
increases the effectiveness of coordinated actuation and 
prolongs the life of the network by allowing power efficient 
duty cycling. Traditional synchronization involves sending 
time-stamped packets to a receiver, allowing the receiver to 
coordinates itself with the sender. Many sources of unknown, 
non-deterministic latency between the timestamp and its 
reception can introduce error, however.  

Thus reference broadcast synchronization has been 
proposed [15]. Nodes send reference beacons to their 
neighbors, whose arrival time acts as a point of reference for 
comparing clocks. A receiver does not coordinate with its 
sender, but instead multiple receivers coordinate among 
themselves. Hence, the latency incurred has no effect on the 
quality of the time synchronization. Further modifications 
have been made to adapt reference broadcast synchronization 
to multiple hop networks. The strategy is as follows. Some 
nodes broadcast synchronization pulses. Receivers within 
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range synchronize themselves using these pulses. Nodes that 
receive more than one pulse have the ability to relate the time 
in one range to the time in another range. 

Providing fine-grained localization to ad-hoc deployed 
nodes is the next key service. Localization allows nodes to 
determine their position either globally or relative to the other 
nodes in the network. It also allows the network to act as a 
positioning system. Localization allows for an ad hoc 
deployment of systems, since the nodes can localize 
themselves on a scale with the node density, independent of 
the environment. The localization method developed in our 
project works as follows. An acoustic “chirp” is emitted by 
the sender along with an RF message stating the time the 
“chirp” was emitted. By comparing time of the “chirp” 
detection and the actual time of emission, the time of flight 
can be calculated and hence the distance between the two 
nodes [14].  

Reconfigurable hardware resources are those that can be 
dynamically altered to execute a particular task more 
efficiently. These devices can be exploited to provide both 
runtime flexibility and real time performance for high-level 
application. These two features, namely runtime flexibility 
and real time performance, are not simultaneously achievable 
by traditional pure software or hardware implementations. 
Utilizing dynamic hardware reconfiguration in network 
applications is another challenge of the system and is the 
focus of this paper. 

Utilizing heterogeneous distributed resources and numerous 
pieces of application computations creates a new challenge, 
which is often referred to as “computation and resource 
management”. New scheduling challenges arise, when dealing 
with reconfigurable distributed systems that have not been 
addressed by the classical scheduling literature. There are two 
competing goals when it comes to task scheduling on 
distributed resources. The first is to increase the throughput of 
the system and the second is the preserve the life of the system 
by decreasing the power consumption.  

Consider the model of a directed acyclic graph (DAG), 
where nodes represent tasks and edges represent their 
dependencies. Scheduling these tasks onto heterogeneous 
reconfigurable resources to minimize make span involves 
consideration of the reconfiguration cost they would incur, 
along with how this cost could be amortized over multiple 
tasks. Currently there exists literature that examines 
scheduling of independent tasks and tasks with dependencies 
on different resources, but none of which considers paying a 
reconfiguration cost. Most of the well-known DAG 
scheduling algorithms rely on the knowledge of the critical 
path, and hence a polynomial algorithm for finding it. This is 
not the case with heterogeneous resources, especially when 
the cost varies depending on the reconfiguration schedule of 
the resources. 

The scheduling of tasks onto heterogeneous resources is not 
only an issue for distributed systems. The intrinsically parallel 
vision applications can be executed on both reconfigurable 
and general-purpose processor embedded in efficient in-

network processing sensors. The scheduling of the basic 
blocks of the applications boils down to the same problem of 
scheduling onto heterogeneous resources with reconfigurable 
costs.  

Finally, there is the challenge of minimizing power 
consumption. Prolonging the network life span is directly 
dependent on the power consumption. This issue should be 
addressed at different levels of the hierarchy. For example, 
scheduling research continues to focus on minimizing the 
power consumption of the reconfigurable distributed systems 
while still maintaining their high throughput. By taking 
advantage of the timing slack of the basic blocks of the 
application, non-critical nodes can be executed on less power 
consuming resources [22]. 

III. RELATED WORKS 
The presented project combines a number of different 

research areas. Many research efforts have been carried out to 
address challenges similar to those presented in the previous 
section. This section summarizes some of such works, which 
usually focus on a particular aspect of the system issues. 
Therefore, related works have been implicitly divided into 
three main categories: sensor network services, resource 
management and task scheduling and finally hardware 
reconfiguration. 

There is an enormous amount of literature discussing 
embedded and distributed sensor networks, their architectures, 
algorithms, and applications. Authors in [7], present a good 
survey of existing works on sensor network related topics. 
These topics vary from sensing task to network applications, 
communication architectures, protocols and algorithms. Pottie 
et al. present a motivating article for utilizing heterogeneous 
resources in a sensor network [8]. They argue that a layered 
networking and processing architecture is suitable for many 
applications. Furthermore, A number of other works study 
distributed and cooperative detection of events [10, 9], an 
essential component of our framework.  

Accurate time synchronization and fine-grain localization 
are two key services required for sensor data fusion. Many 
previous efforts have been addressing these two issues. For 
example, a fine-grain localization scheme that can provide 
location information for a similar experimental testbed with 
accuracy of about a few centimeters is presented in [13]. 
Researchers in [14] present a localization method based on 
acoustic and multi-modal ranging. This technique is 
implemented in the course of the current project at hand. [15, 
16] present a new time synchronization methodology that 
synchronizes receivers of a packet with each other as opposed 
to traditional approach of synchronizing a sender with a 
number of receivers. This technique is also integrated into our 
framework.  

Another important issue that is often addressed by research 
community is network energy consumption, which is directly 
affecting system availability and lifetime. Various research 
efforts try to conserve system energy at different layers of 
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network architecture. For example, two sample works by 
Schurger et al. address energy optimization and its 
implications in sensor networks [11, 12]. 

Dynamic hardware reconfiguration is a relatively novel 
issue and has not been addressed extensively before. [23] is a 
good survey paper on different aspects of reconfigurable 
computing including applications. On the other hand, existing 
literature usually focus on reconfigurable devices dedicated to 
perform a particular job, while, reconfigurable resources 
employed in a network can be shared among different tasks 
and applications. The notion of sharing a reconfigurable 
resource thru network creates new dimensions to the problem. 
[21] proposes a software architecture for a networked system 
that utilizes vision sensors with embedded reconfigurable 
devices. In addition, some efforts are made to extend the 
virtual machine idea to reconfigurable hardware platforms. 
Such ideas are inspired by Java language and strive to develop 
the proper framework for network reconfiguration [27, 28]. 

Researches in [17, 18] present the idea of dynamic 
hardware plugins for improving network routers. Their work 
is considered one of the first working systems that utilize 
runtime hardware reconfiguration. Hardware reconfiguration 
incurs a delay on the order of 100 milliseconds. Since this 
delay is not tolerable for many applications, many research 
efforts have been carried out to reduce the runtime 
reconfiguration delay [19, 20, 24, 25, 26]. 

The third and last main category of related works addresses 
the resource management and task scheduling issue. The 
problem of scheduling tasks onto resources has been widely 
explored. The problem can be generally stated as follows. 
Given n tasks and m resources schedule the tasks onto the 
resources to minimize the makespan. Makespan is the time in 
which all the tasks complete their processing. The assumption 
is that the execution is not preemptive, that is the tasks must 
run on the resources to their completion. The tasks to schedule 
can either be independent of each other, where they can all be 
executed in parallel, or they may have precedence constraints 
that impose an ordering on the scheduling.  

The area of independent task scheduling consists of two 
main explorations. The first is scheduling of tasks onto 
homogeneous resources. [29] initially proposed a 2-
approximation algorithm, which is simply arbitrary list 
scheduling. List scheduling is the scheduling of tasks placed 
in an ordered list. Various improvements have been made to 
the algorithm, as given in [34]. [34] presents a 3/2-
approximation algorithm with time complexity of O(n.log(n)), 
which iteratively uses Jackson’s rule. 

Scheduling of independent tasks onto heterogeneous 
resources is more closely mapped to our problem at hand. 
Linear programming solutions are commonly used in this area. 
There is a distinction between related and unrelated 
heterogeneous resources in this area of research. Unrelated 
resources have no relation between their processing times, 
whereas related resources can process tasks within factor of 
each other. In the case of unrelated resources where the 
number of resources is a constant, [30] proposes an ε-

approximation solution with time complexity O(nm(nm/ ε)m-1) 
utilizing a dynamic programming approach. [35] formulates 
the problem as a 0-1 integer linear programming problem. 
After LP relaxation, he proves that at most m-1 jobs will be 
scheduled on more than one resource. Thus, these tasks can 
then be scheduled with an exhaustive search. This proves to 
be a 2-approximation algorithm. [33] also gives a fully 
polynomial-time 2-approximation scheme based on a linear 
programming approach, but the fractionalized jobs are 
scheduled using generalized assignment techniques. Recently, 
[31] have put forth a combination of dynamic programming of 
long tasks and linear programming of short tasks to achieve an 
ε -approximation scheme with time complexity n(m/e)^O(m).  

Along with the work on independent task scheduling, there 
is much research in the area of precedence constrained task 
scheduling. Task dependencies are represented using directed 
acyclic graphs (DAGs). DAG scheduling to minimize 
makespan is an NP-complete problem except for a few special 
cases. There are many issues to consider when examining the 
DAG scheduling literature. The first is whether the 
communication cost is to be considered. The second is 
whether the structure of the graph and the computational costs 
are arbitrary or restricted.  The number of processors and their 
connectivity are also issues. An in depth survey of various 
heuristics for each of these variations can be found in [32]. 

Although scheduling of tasks, independent and precedence 
constrained, has been explored before, the work on scheduling 
of tasks that incur a reconfiguration cost, both on homogenous 
and heterogeneous resources, is relatively new [60]. 

IV. ADAPTIVE TRACKING CASE STUDY 
A sample application of the aforementioned systems is 

intruder detection and object tracking on which we focus in 
the rest of this paper. We present a simplified version of the 
sensor network presented in section 1, tailored to this 
particular application.  The system has been built in our lab as 
part of this research effort. Furthermore, we discuss the 
utilization of hardware reconfigurable resources embedded in 
the vision sensors to provide both real time performance and 
dynamic adaptability to environment variations for the 
tracking application. The application and system presented in 
this section are special cases of the general framework and 
hence, they highlight the significance of such systems by 
stressing a particular research challenge, i.e., utilizing 
dynamic hardware reconfiguration in networks of sensors. 

A. System Framework 
The hardware framework for our system is comprised of 
several components including: IQeye3 cameras provided by 
IQinVision [36], pan-tilt units to enable the actuation of the 
cameras, a small portable computer serving as the main 
controller, and a network that connects the cameras and the 
controller and allows them to communicate and collaborate. 
Figure 2 illustrates a simple view of the system framework. 
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… 
Initiate Motion Detection on camera 1; 
if (result == moving_object_detected) 
   Initiate object tracking on camera 1; 
if (result == object out of field of view) 
   Pan/Tilt or do other  
   actuation controls; 
if (camera 1 needs help) 
   Have other idle cameras help it  
   by initiating proper algorithms  
   on them; 
… 

Initiate algorithm X

Algorithm Y output 

Camera 1 
Algorithm X output 

Scene Data 

I/O controller 

FPGA 

Processor 

Motion Detection 

Feature Selection 

Image Restoration 

Implementation 
Database 

etc. 

… 
do { 
  receive controller’s message; 
  fetch the proper algorithm from 
     the implementation db and 
     reconfigure the FPGA using it. 
  Execute the proper software to 
     process data locally. 
  Send algorithm output back to the 
    controller; 
} while (1); //forever 

Network Int. 

 

 

Figure 2. An overview of the tracking system architecture: Each camera has a set of the required configurations 
available. The controller communicates with the cameras via an implemented message passing scheme and can initiate 
the proper algorithm on each camera, organizing the collaboration among cameras.  

An IQeye3 camera, as a “smart” vision sensor with embedded 
computation resources, allows input image data acquisition 
and processing to be collocated in the camera, which 
minimizes network communication overhead and facilitates 
scalability. The processing resources embedded in each 
camera include a Xilinx Virtex 1000E FPGA and a 250 MIPS 
PowerPC CPU. In addition, there is 4 MB of Flash RAM and 
16 MB of SDRAM on each camera. Each IQeye3 camera 
gives full access to raw real-time image data streams and the 
general-purpose processor can be used for customization since 
a large “C” development library is available to application 
developers. Full networking functionality is provided by each 
IQeye3 camera through an Ethernet connection. It can 
communicate using TCP, UDP, and IP. 
The IQeye3 camera can send and receive 230 Kbps over a 9-
pin RS232C serial port. By supporting such communication 
standards, the IQeye3 cameras can be placed in various 
environments; while the raw and/or processed captured 
images can be accessed remotely. In our system, each IQeye3 
camera is mounted on a pan-tilt unit, which is directly 
controlled by the corresponding camera via its RS232C serial 
interface. A pan-tilt actuation unit can be controlled using 
simple commands that specify the pan/tilt 
angle/speed/acceleration. Figure 3 illustrates the need for 
actuation control when an object moves out of the field of 
view on camera. The flow of commands from a camera to its 
corresponding pan-tilt unit is demonstrated. 

Figure 2 demonstrates our system with two cameras and the 
main controller. The main supervisory controller resides on an 
ordinary small computer and acts as the centralized governing 
unit of the system by maintaining the current state, processing 
internal and external triggers, and coordinating the 
collaboration among the cameras. When the main controller 
receives data from one of the IQeye3 camera clients over the 
network, it deterministically selects the appropriate actions 
that should be taken by each camera (e.g. reconfiguring an 
embedded FPGA by swapping in a different algorithm from 
the database). This is performed by sending a message to the 
designated camera. Cameras have a database of different 
algorithms locally available. Therefore, they can retrieve the 
proper implementation according to the controller’s message. 
The two blocks close to the main controller and the lower 
IQeye3 camera in Figure 2 outline the functionality of the 
main controller along with the idea of “implemented 
algorithms database” and reconfiguration at the sensor node. 

B. System Application 
The sample application implemented on the framework is to 

continuously detect and track a moving object that is within 
the field of view of a camera (Figure 2). We assume that the 
object is always moving across the camera and hence, KLT 
tracking scheme [37, 38, 39] can effectively track the motions. 
However, various parameterization and dynamic adaptations 
have to be performed in order to make the system robust to 
variations in light, objects’ shape and location, etc. 
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Controlling motors thru 
proprietary interface 

Controlling commands thru 
serial RS232C interface 

Pan/Tilt unit  
Control Box 

Figure 3. Each camera is mounted on a pan/tilt unit (PTU). When the object moves out of the field of view of the camera, it 
sends controlling commands to the PTU thru its serial interface. Consequently, PTU moves the camera in order to be able 
to track the object. 

If the object leaves the field of view of one camera, the 
camera should pan or tilt to maintain the object within its field 
of view or it should hand off control to another camera. 
Depending on the light, focus and other parameters, different 
algorithms are used to maximize the tracking performance. 

When the entire system initializes, cameras establish a 
connection with the main supervisory controller on the PC. 
First camera assumes control initially and continuously runs 
feature selection algorithm on its embedded FPGA. Feature 
selection algorithm selects points in the scene that are 
appropriate for tracking. Sharp corners and local intensity 
variations in an image usually form good features. The 
selected features are passed to the KLT tracking algorithm to 
track their motion in consequent images. The tracking 
algorithm has to meet the real time performance constraint.  

Feature tracking has to perform some computations for each 
selected feature and hence, the algorithm latency increases 
with the number of selected features. If the number of selected 
features is more than a certain upper bound, the algorithm will 
be so slow that it cannot meet the real time performance 
constraint. Furthermore, accuracy will be compromised if the 
number of selected features is not large enough. Therefore, it 
is desired that the number of selected features be within a 
certain range. 

However, as the objects in the scene, distance of the object 
to the camera, light conditions, lens focus and other 
parameters change, the number of selected features varies. For 
example, two runs of the algorithm on a scene with two 
different lighting conditions will lead to selecting less number 
of features for the darker scene. Our implementation can 
detect such conditions and can adapt itself in order to 
compensate the effect of variations in the scene and 
environment. Therefore, it is ensured that the number of 
selected features, and hence both latency and tracking 
accuracy, are kept within a certain range. This is accomplished 
through reconfiguration and parameterization of the 

algorithms running on the embedded FPGA. 
Furthermore, when a moving object moves close to the 

edge of the image, the camera detects this situation and sends 
a message to the pan-tilt unit to take the appropriate action to 
keep the moving object within its field of view. At a certain 
point, the pan-tilt unit will no longer be able to pan or tilt 
further and the moving object will move completely out of the 
field of view of the camera. The camera has to surrender 
complete control of the scene and another camera will be 
forced to monitor the scene. In this situation, the camera that 
can no longer monitor the scene notifies the main controller 
by sending a message indicating the position where the 
moving object is located. The main controller then decides 
which camera should gain control and sends the proper 
camera a message indicating where the object is. As a result, 
the camera issues commands to move the pan-tilt unit so that 
the moving object is in the field of view of the camera. Figure 
2 outlines the architecture and application of the system. A 
sample pseudo code running on the controller and a high-level 
block diagram of each camera have been demonstrated. 

In such a manner, the moving object is vigilantly tracked 
using multiple cameras. The use of reconfigurability in our 
system leads to the proper tradeoff between tracking quality 
and latency. Moreover, it improves the system robustness to 
changes in the scene such as lighting and moving objects 
variations. Note that by use of the “hands off” approach, the 
cameras can collaborate in tracking an object. The object will 
be continuously tracked as long as the object is within the 
field of view of a camera. 

V. VISION ALGORITHMS OVERVIEW 
In this section, we present two algorithms that are required 

for enhancing the image quality and tracking the motions, i.e. 
image restoration and feature selection. First, we outline the 
algorithms’ underlying idea and functionality and then, we 
describe their sensitivity to the changes in the scene. Finally, 
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Feature selection algorithm consists of carefully choosing 
the points in the image, which can be easily tracked 
throughout a series of images.  Corner points of an object, 
where intensity changes noticeably, are considered as good 
feature points.  The tracking stage looks in a small patch 
around the location of a feature in the preceding frame, in 
order to find its new location after possible motion. This 
process is repeated for all selected features. Therefore, the 
latency of tracking phase linearly grows with the number of 
selected features. On the other hand, due to various factors 
including variations in the intensity of two consecutive frames 
and noise, some features might be lost during tracking. 
Therefore, a minimum number of features are required to 
guarantee an accurate tracking. Hence, despite ever-changing 
parameters of the scene, controlling the number of selected 
features is required.  

details of the FPGA implementation in our system will be 
discussed. 

A. Feature Selection 
In this work, we assume that the object is moving across the 

camera. Therefore, from camera point of view, the object in 
each frame is moved by a constant displacement compared to 
its immediately preceding frame. KLT tracking scheme [37, 
38, 39], has been developed to track the objects that comply 
with the aforementioned motion. Note that this scheme cannot 
track rotations or size variations (when the object moves 
towards or away from the camera and its size changes from 
camera point of view).  

KLT tracking scheme is carried out in two stages. In the 
first stage, called feature selection, a number of trackable 
points in the images are selected. These points, called features, 
show significant intensity changes compared to their 
neighboring pixels. Feature points are passed on to the second 
stage, feature tracking, in order to find their location in the 
consequent images. In our system, we have implemented the 
feature selection stage on the FPGA2 and feature tracking is 
currently performed on the PowerPC embedded in the IQeye3 
cameras. 

In summary, the feature selection algorithm performs the 
following operations for all of image pixels [40]: 

 
1. Calculate gx and gy, the intensity gradients in the x 

and y directions for all pixels of the image. This is 
done by computing the Gaussian and Gaussian 
derivative kernel as well as convolving these kernels 
in the horizontal and vertical directions.  

 

2. Sum the gradients in the surrounding window of each 
pixel in order to compute the Z matrix, where 

dx
ggg

ggg
Z

W
yyx

yxx∫∫ 










= 2

2

 

3. Compute λ1 and λ2, the eigenvalues of the Z matrix. 
Let λ1 = min (λ1, λ2).  λ1 represents the trackability of 
the pixel. 

4. Given λ as the threshold value, If λ1 > λ then declare 
the pixel as a feature. 

 
Figure 4 demonstrates the output of feature selection 

algorithm executed on a selected region of sample images. For 
example in the left image, a rectangular region around the 
walking girl has been chosen for selecting features. Note that 
the choice of two different threshold values has lead to 
selecting different number of features in two images. Features 
are denoted by black squares with white centers in the left 
image, and by red squares in the right image. 

 

 

The number of selected features reduces with the increase 
of λ and vice versa. Therefore, points that are selected with 
higher values of λ are considered better features. Note that 
such features are also selected with small values of λ. These 
points are usually easier to track in consequent images. They 
exhibit significant intensity variation compared to their 
neighboring pixels.  

Based on the main steps of the algorithm, it is easy to 
observe the effect of the changes in the scene on the number 
of selected features. Intuitively, increasing/decreasing the 
intensity value of the image pixels should increase/decrease 
the number of selected features with a constant λ. In reality, 

Figure 4. Sample outputs of feature selection algorithm run on a 
selected portion of the images. Features are denoted by black 
squares with white centers in the left image, and by filled dark 
squares in the right image. 

 
2 Our implementation is based on [50]. 
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brighter/darker lighting can create such a case. Therefore, 
different number of features will be selected for a particular 
scene under different lighting conditions. Furthermore, the 
number of selected features heavily depends on the objects in 
the scene. A particular threshold value will select less number 
of features on a round object with a few sharp corners 
compared to a complex object with many sharp corners and 
intensity variations. In addition, other parameters such as lens 
focus and the number of objects in the scene can affect the 
number of selected features. 

   
 
Figure 5. A sample image, its low pass, and high pass filtered 
versions are shown, respectively3. Note that the low pass filter 
removes quick variations in intensity and blurs out sharp edges, 
while the high pass filter preserves these elements.  The feature tracking stage of the KLT tracking method 

locks onto the selected features and strives to locate them in 
the next upcoming frame. Note that this is performed with the 
assumption that the two consecutive images differ only by a 
small displacement factor. The tracked features will be tracked 
again in the future upcoming frames. Therefore, the 
displacement, motion direction, velocity and other information 
about the motion can be inferred. 

 
A common implementation of image filters places an 

imaginary 3x3 window with filter coefficients, over a pixel in 
the original image and calculates the new value of this pixel in 
the filtered image using its old intensity value and those of the 
neighboring pixels. Figure 6 demonstrates the idea of such an 
implementation. The coefficients used in the window, specify 
the type of filtering operation that the filter performs. 
Intuitively, positive coefficients take average of close pixels to 
calculate the new value of a pixel, and therefore blur sharp 
edges. Therefore, they make low-pass filters while negative 
coefficients for neighboring pixels highlight the difference of 
the center pixel with its adjacent pixels and create a high pass 
filter (Figure 6). Usually, the total value of all nine 
coefficients is one, in order to keep the total intensity of the 
image intact.  

B. Image Restoration 
Image restoration is a commonly used algorithm in image 

acquisition or processing for recovery of degraded images.  
Atmospheric turbulence, defocusing or motion of objects can 
be reasons of degradation. Restoration process recovers lost 
information of images by such degradation [53, 54, 55].  The 
following degradation model holds in a large number of 
applications [49]: 

 The process of applying a filter on a pixel is repeated for all 
of the pixels in the image. Moreover, for some applications, 
the image is filtered many times until the residual value (the 
normalized amount of change between two consecutive 
images) is less than a given threshold. Experiments have 
shown that a certain number of iterations on the image, exhibit 
satisfactory quality for most of the scenes [49].  

),(**),(),( jixjidjiy =  
where x(i, j) and y(i, j) denote the original and observed 

degraded image respectively. d(i, j) represents the impulse 
response of the degradation system, and ** stands for two-
dimensional (2D) discrete linear convolution.  The goal of 
image restoration is to estimate x(i, j) given y(i, j) and d(i, j), 
however one of the main difficulties in performing an ideal 
image restoration is that the degradation model is not 
completely known. In other words, d(i, j) is not exactly 
defined/known at the receiver. Therefore, it might not be able 
to completely reconstruct the image. 

In our system, applying image restoration (or any other 
proper filter) before feature selection can enhance the image 
quality by sharpening the edges, and improve the quality of 
the selected features. Iterative application of the filter on the 
image requires the entire image to be accessible throughout 
the process. Conventional hardware implementations 
constantly retrieve the image from an attached memory unit 
and store the result back, however this is not possible in our 
constraint platform. In our system, the entire image is not 
available to the restoration module due to real time incoming 
stream of the scene data, which is not flow controllable. 
Therefore, we had to adapt the functionality of image 
restoration to our constrained platform. This will be 
thoroughly discussed in the next section. 

Noise signal injected into the image usually exhibits quick 
variations and hence, is considered high frequency signal. 
Therefore, common realizations of noise-removal filters 
implement a low-pass filter, which allows the image signal to 
pass and filters out the high-frequency noise. A low-pass filter 
has no effect on low frequency image data (pixels with small 
variations compared to neighboring pixels) and removes the 
high frequency elements of the signal. As a result, the sharp 
edges of an image passed through a low-pass filter become 
blurred while the solid textures remain intact. On the other 
hand, blurred and defocused images have to be passed through 
a high pass filter in order to be restored. The high pass filter 
restores such images by sharpening and/or preserving their 
edges. Figure 5 demonstrates a simple image and the result 
after applying a low pass and a high pass filter on it. Note that 
the high pass filter preserves the sharp edges, while the low 
pass filter blurs them out [57]. 

VI. HARDWARE IMPLEMENTATIONS 
In this section, we describe our system constraints and the 

modifications we had to make to the original algorithms in 
order to fit them to our platform. Moreover, we discuss the 
system adaptability issue and discuss its implications on 

 
3 http://astronomy.swin.edu.au/~pbourke/analysis/imagefilter/ 
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hardware implementation. Throughout the paper, we assume 
that IQeye3 cameras, as discussed in Section 2, are the 

experimental platform of our system. 

A. Platform Constraints 
As described in Section 2, IQeye3 camera is the vision 

sensor used in our platform. Three major components of 
IQeye3 are the imager, embedded FPGA chip and PowerPC.  
The imager continuously captures scenes and injects a real-
time stream of image pixels into FPGA.  The incoming stream 
of information is not flow controllable and runs at 24 MHz. 
The design residing on the FPGA (called the image processing 
pipeline in Figure 8.a) performs several operations on the 
incoming stream such as image correction, windowing and 
down sampling.  Finally, a DMA unit residing on the FPGA 
stores the processed scene data in the main memory. Any 
program running on the PowerPC can access the memory and 
scene data through regular software function calls. For 
example, a sample application running on the processor 
embedded in the camera implements an embedded web server 
that compresses the image data into jpeg format and exports 
the jpeg file through HTTP connection. Figure 8.a visualizes 
the path that each pixel goes through in order to become 
available to software programs running on the processor. 

Within this environment and platform, applications 
implemented on the FPGA need to meet a number of 
constraints. The most important issue is the timing constraint 
of the design, because the imager continuously generates real-
time stream of image pixels and injects the flow into the 
FPGA. The applications implemented on the FPGA have to 
process the input stream and generate the corresponding 
output at the same rate to avoid congestion.  This forces many 

designs to perform their intended computations with the small 
on-chip memory, because using the off-chip memory units 

will impose additional latency, which might not be tolerable 
for some designs. Consequently, we have implemented a 
modified version of the required algorithms that work with the 
limited available on-chip memory. 
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A sample low pass filter  A sample high pass filter  

Figure 6. A filter is applied on a pixel by replacing its value with a weighted combination of its old value and its neighboring 
pixels.  A low pass filter typically has positive coefficients, while a high pass filter has negative coefficients for neighboring 
pixels. Coefficients can be normalized to keep the total intensity of the image intact. 

Furthermore, there is a basic design running on the FPGA 
at all times. This design performs basic necessary image 
manipulation functions such as windowing and packetizing. 
Any application being mapped onto the FPGA has to integrate 
with this design and has to cope with its communication 
standards and data formats. Therefore, the algorithms cannot 
be used in their original form and have to be adapted to our 
constrained platform.  

For example, the aforementioned basic FPGA design 
processes the image stream in Bayer pattern [56]. Therefore, 
any other application has to comply with this constraint and 
perform its computation using Bayer pattern; or convert the 
Bayer pattern to any other desired format, perform the 
computation and convert the stream back to Bayer pattern. 
These two major constraints, namely limited amount of on-
chip memory and complying with system existing 
format/standard conventions, impose significant overhead in 
implementing new designs on the system. 

B. Implementations 
In this subsection, we discuss the issues involved in 

implementing the required algorithms, i.e., feature selection 
and image restoration, on our constrained platform. In general, 
implementing an application on the IQeye3 camera is 
composed of hardware and software development. Each of 
these two portions of the design, require a particular 
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development style and tool chain in order to be able to run the 
application on the camera. Figure 7 illustrates the block 
diagram and the required tool chain for developing an 
executable application for the camera. Software development 
process, which is shown on the right column of the Figure 7, 
is similar to an ordinary software development flow except 
that the compiler and linker are tailored to the particular 
camera platform. Similarly, for hardware design development 
the process shown on the left column of Figure 7 has to be 
followed. 

For all of our hardware implementations, design 
specifications have been done using a combination of RTL 
and behavioral VHDL. ModelSim VHDL simulator [58] has 
been used for simulation and debugging of designs. 
Architectural Synthesis has been carried out using Synplify 
Pro from Synplicity [59], which is one of the popular FPGA 
synthesis tools. The result of synthesis has been saved as an 
EDF file. 

The generated EDF format has been passed to physical 
synthesis stage. The physical synthesis stage, including 
clustering, mapping, placement, and routing has been done 
using Xilinx ISE package. All tools have been targeted for our 
embedded FPGA devices (Xilinx Virtex1000E). Finally, The 
FPGA chips embedded in the cameras have been programmed 
using the generated configuration files. Therefore, all of the 
designs are physically implemented on our platform and 
experiments are performed with actual scenes to verify the 

designs functionality and performance in action. 
1) Feature Selection 

Feature selection algorithm has been implemented on the same 
platform in a previous work [40, 50].  This implementation 
only needs to store two rows of the image data on-chip before 
deciding whether a pixel is a feature or not. The algorithm 
performs local computations in a 3x3 window around a pixel 
and compares the result with a fixed threshold for determining 
features. The value of threshold used in this implementation 
has to be specified at design time. Then, the design undergoes 

conventional architectural and physical synthesis phases and 
the resulting FPGA configuration stream is mapped onto the 
FPGA embedded in the camera. 

Software development 
process & tool chain  

Hardware development 
process & tool chain  

IQeye3.sys: The file containing both complied software 
and binary FPGA image that is loaded onto the camera. 

Proprietary utility for 
hw/sw code integration 

Designers have to 
follow some specific 
coding style in order 
to run their code on 

proprietary OS.Design specification 
has to be integrated 

with pre-existing 
proprietary hardware 

modules.  

 Executable 
binary code 

Proprietary linker 

 Object code 

 C 

.bit format 

.edf format 

 VHDL 

Library of 
software  
routines  

Software routines 
implemented in C 

Proprietary compiler 

Design Specification 
in Behavioral VHDL 

Place and Route 
by Xilinx ISE® 

High level Synthesis 
using Synplify Pro® 

Figure 7. The process of developing a software and/or a hardware application for executing on IQeye3 camera, and the 
corresponding tool chain are illustrated. 

While this implementation works well in practice, it does 
not have any control on the number of selected features. 
Moreover, the value of threshold cannot be altered easily. The 
feature selection’s threshold has been implemented as a 
constant, which should be specified at design time. Therefore, 
altering the threshold forces the designer to repeat the entire 
design flow, which can take up to 30 minutes and is not 
tolerable for real time applications. 

Various parameters such as objects’ shape, scene light and 
lens focus can affect the number of selected features. As 
mentioned before, the selected features are passed to the 
tracking phase. The latency of the tracking grows, while its 
accuracy drops, with the increase of feature count. Therefore, 
the number of selected features has to be controlled in order to 
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maintain a proper tradeoff between tracking latency and its 
accuracy. 

We have started from the implementation in [50] and have 
modified the original design such that the threshold value can 
be controlled by a program running on camera PowerPC at 
runtime. Specifically we have developed registers that can be 
read/written by a software program running on the PowerPC. 
The hardware design has also been modified to read its 
threshold value from the register, without losing its 
synchronous operation with other parts of the basic design. 
Note that, the software program can alter the register contents 
at any time during processing of a frame and therefore, the 
design has to be able to handle asynchronous incoming events. 

Our implementation can dynamically tune the feature 
selection algorithm running on the FPGA.  According to the 
algorithm, if the threshold used in feature selection is too low 
for a particular scene, we get too many features and if the 
threshold is too high, we get too few features.  Therefore, 
given a target number of features desired, we increase the 
threshold if we get features more than the target and decrease 
if we get less.  

Note that the actual feature selection performs its 
computations on the FPGA and exhibits real time 
performance. The threshold controlling entity is a small 
program running on the camera PowerPC, which counts the 
number of selected features and controls the threshold value 
accordingly. 

 
2) Image Restoration 

Image restoration has a variety of implementations and 
iterative method is a widely used one.  The purpose is to 
estimate the original image given the degraded image.  
Common restoration methods perform operations on the entire 
image iteratively. Following each iteration, the normalized 
difference between current and immediately preceding image, 
called residual value, is calculated. Iterations are stopped 
when the restored image converges with insignificant residual 
ε [49].   

As discussed in Subsection 4.1, our constrained platform 
does not allow the entire image to be stored on the FPGA. On 
the other hand, accessing the off-chip memory iteratively will 

impose additional latency on the algorithm, which is not 
affordable because of the real time performance constraint of 
system applications.  

We have made several modifications to adapt the original 
method to our environment.  Firstly, instead of globally 
iterating over the entire image, we iterate over local windows, 
where the size of window can be from 3x3 to the entire image.  
As the window gets smaller, the restoration quality drops 
since the center pixel does not have any information about 
pixels out of the restoration window.  However, this enables 
processing of image stream using a small-sized storage. 

Figure 8.a illustrates the path that each image pixel goes 
through to be processed in our system cameras. Image sensor 
converts the scene into a non flow-controllable stream of 
pixels flowing into the FPGA. The proprietary image 
processing pipeline implemented on the FPGA performs 
various computations on the incoming flow of pixels and 
finally stores the result in the system memory, where the 
software applications running on the camera processor 
(PowerPC) can access it.  

The image restoration algorithm has been implemented as 
one of the stages in the pipeline (Figure 6.b). Therefore, it 
does not have access to the entire image pixels at any point of 
time (assuming no off-chip data communication). Note that 
image pixels are revealed to the system starting from upper 
left corner of the image flowing to the right. When a row is 
finished, the flow of pixels moves down a row and again start 
from left to right. As Figure 6.b visualizes, the amount of 
memory required for implementing a 3x3 restoration window 
is a bit larger than two rows of the image. The FPGA devices 
embedded in the system cameras have enough BlockRAMs 
available to store two rows of the image on-chip. Therefore, 
the restoration algorithm can be performed without any off-
chip communication. 

In general, for a restoration window of size nxn, ((n-1).rows 
+ n) pixels need to be stored on the chip. Each FPGA device 
contains a certain number of logic blocks and BlockRAMs. 
Hence, the window size cannot grow beyond physical 
limitations of the target FPGA. For example, our system’s 
embedded FPGA (Xilinx Virtex1000E) allows the window 
size to grow up to 15 for processing the widest images. The 
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Figure 8. a)  Block diagram of the camera illustrating the path each image pixel goes through in order to be processed. The 
image processing pipeline residing on the FPGA is not disclosed due to copyright issues. b) Restoration window implemented 
as one of the blocks in image processing pipeline. Pixels stream in starting from the upper left corner of the image.  
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maximum width of images in our system is 1280 pixels. 
In addition, we have unrolled local iterations of the 

algorithm on a 3x3 window a priori, and therefore, the current 
implementation performs an equivalent but more efficient 
computation for restoration of each pixel. Current 
implementation performs a single step evaluation of each 
window in order to calculate the new value of the center pixel, 
as opposed to iterating over the window. Table 1 summarizes 
the area improvement of the unrolled implementation 
compared to the original implementation, which iterates 40 
times over each pixel. 

Researchers in [49] have studied tradeoffs of restoration 
performance and quality with changes in restoration window 
size. According to their work, 3x3 restoration windows reflect 
reasonable restoration quality for many applications. The 
restoration algorithm used in this work, implements a high 
pass filter with 2 and -0.125 as coefficients for center and 
neighboring pixels, respectively. 

Varying the restoration window size, leads to accuracy-
memory requirement tradeoff. Small restoration windows 
need smaller on-chip storage, however their quality is not as 
good as larger restoration windows. On the other hand, larger 
windows improve the restoration quality at the price of higher 
memory requirement. Note that memory requirement inversely 
correlates with the system performance.  

 
Implemented Design Block RAMs CLBs 

Basic design + Feature 
selection 51 out of 96 (53%) 9170 out of 24576 

(37%) 

Basic design + Feature 
selection + Original 
image restoration 

66 out of 96 (68%) 12278 out of 
24576 (49%) 

Basic design + Feature 
selection + Unrolled 

image restoration 
64 out of 96 (66%) 9454 out of 24576 

(38%) 

 
Table 1. The breakdown of hardware resources used by different 
portions of the designs. Note that the unrolled version of image 
restoration frees up 2% of block RAMS and 11% of CLBs for 
Xilinx1000E device. 

VII. EXPERIMENTS 
In this section, we present the framework and results of our 

experiments. First, we describe the platform and designs used 
in conducting the experiments. We address the issue of 
dynamic system adaptation to the environment variations in 
this section. Then, we present the results of our approach for a 
number of scenes and compare them with a traditional non-
adaptive system results. 

A. Experimental Setup 
We have implemented the feature selection and image 

restoration algorithms (discussed in Sections 3 and 4) on 
IQeye3 cameras. The threshold value in the feature selection 
algorithm can be dynamically adjusted through a software 

program running on the PowerPC of the camera.  
Furthermore, the implemented image restoration algorithm 

can be dynamically disabled or enabled through system 
reconfiguration. If the quality of the image is not good 
enough, then the FPGA will be reconfigured to enable the 
image restoration before feature selection. The quality of 
images can be determined by examining the value of the 
threshold in feature selection for selecting a certain number of 
features. Lower threshold values correspond to lower quality 
features and blurred corners. On the other hand, image 
restoration can alter the original image if it is not degraded to 
some degree. Therefore, we need to disable it for cases that 
the image quality is reasonable. 

B. Experimental Results 
In the following sets of experiments, we examine the effect 

of our proposed techniques.  The first two sets of experiments 
demonstrate the quality of automatically adjusted threshold 
compared to the original fixed threshold feature selection.  
The third experiment shows how image restoration can affect 
the performance of feature selection.  In all experiments, 
automatically adjusted threshold targets for 150 features with 
10% tolerance range, i.e. the number of selected features 
should be in the (135-165) range.  

One example, where dynamically adaptive feature selection 
finds its use, is in the environments with variations in lighting.  
This applies to outdoor places where the natural lighting 
changes throughout the time. Another example is indoor 
scenes under various lighting conditions.  For the first set of 
experiments, we varied the lighting condition in the laboratory 
and observed the results of the feature selection application.   

Figures 9.a, 10.a and 11.a show the result of feature 
selection with fixed threshold, called FS-FIX, for an object 
under three different lighting conditions. Figure 9.b, 10.b and 
11.b show the results of feature selection with automatically 
adjusted threshold, called FS-AUTO, for the same object and 
lighting conditions.  

Figures 9.a and 9.b show the result of both FS-FIX and FS-
AUTO under normal lighting. Both implementations select 
about 150 features (with 10% tolerance).  Figure 10.a and 10.b 
illustrate the same object under similar lighting, which is 
brighter than the previous settings used in Figure 9.  Extra 
brightness causes edges and corners to have greater intensity 
difference from their adjacent pixels, therefore a larger 
number of points are chosen as features.  Figure 10.a shows 
many unnecessary features chosen whose count is 1150.  This 
is too many compared to the target feature count, 150.   
FS-AUTO increases the threshold value from 512 to 1552 and 
chooses 150 features in Figure 10.b. It selects features at 
almost same locations as in Figure 9.b even after the 
significant change in brightness. 

Figures 11.a and 11.b are taken under dark lighting.  The 
object is observable by eyes, but FS-FIX is unable to find any 
features, since the intensity variations are not large enough for 
the fixed threshold value.  However, FS-AUTO successfully 
decreases the threshold value from 512 to 160 and finds 156 
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features.  Locations of features are almost same as Figures 9.b 
and 10.b. 

The aforementioned set of experiment verifies the 
efficiency of our approach in implementing a system robust to 
lighting variations through dynamic adaptation of the system. 
However, the advantage of our implementation is not limited 
to handling lighting variations. We have carried out another 
set of experiments to show that this technique can assist in 
handling other realistic scenarios, such as object’s shape 
variations and multiple object cases. 

Figures 12.a and 13.a show two different objects that have 
been processed by FS-FIX to select some features on them. As 
expected, FS-FIX has no control over the number of selected 
features. Therefore, the number of selected features on a 
round object, such as a computer mouse shown in Figure 12.a, 
is not large enough, while this number on a complex object 
with many sharp corners is too large. In fact, FS-FIX chooses 
42 features in Figure 12.a, which is far less than our target, 
150.  Similarly, it selects 572 features in Figure 13.a, which is 
almost 4 times more the desired number of features. 

Figures 12.b and 13.b illustrate the same objects shown in 
Figures 12.a and 13.a, however these objects are processed by 
FS-AUTO. The object in Figure 12.b is round and does not 
have enough sharp corners, however, FS-AUTO successfully 
decreases the threshold value until it selects 154 features with 
a new threshold value of 300.  Extra features are observed at 
the left end of the object.  Feature tracking algorithm can 
utilize this additional information for better tracking. The 
object in Figure 13.b is a toy car that has many colorful parts 
and sharp edges, which are potentially good candidates for 
features. As presented earlier, FS-FIX uses a fixed threshold 
value for selecting features and it selects 572 features. 
Unnecessarily many features are observed around the wheel 
and wire part of the object in Figure 13.a.   
FS-AUTO adjusts the threshold value to select fewer features.  
It selects 152 features with a new threshold value of 912 
(Figure 13.b). 

As discussed above, FS-AUTO is able to select proper 
number of features for any type or number of objects.  It 
certainly is a better solution than FS-FIX, which works only 
for limited type or number of objects, but it cannot solely 
handle all possible cases.  One example is where multiple 
objects are present in a single scene. Therefore, the camera 
lens can be focused on only one of them.  Under this situation, 
most of the features will be placed on one well-focused object 
and the rest of the objects will not be tracked.   

Figure 14.a demonstrates such a situation where the puppy 
doll that is close to the camera is better focused than the 
mouse located farther from the camera.  FS-AUTO cannot 
select any features on the mouse.  This is generally a hard 
problem to solve.  However, by employing image restoration, 
the problem is alleviated to some degree.  In Figure 14.b, FS-
AUTO selects features on the same scene as Figure 14.a, 
however the image is first restored using the implemented 
image restoration algorithm.  Restoration enhances the clarity 
of the edges and corners of both objects.  After applying the 

image restoration algorithm, features are selected on the 
mouse as well as the puppy. Moreover, the number of features 
is balanced on the two objects. Note that the choice of 
enabling or disabling the image restoration algorithm is made 
on the fly and the system dynamically adapts itself to 
environment changes. 

Figures 15.a and 15.b clearly demonstrate the effect of 
image restoration on feature selection results. In Figure 15.a, 
the lens is not well focused on the object. Although FS-AUTO 
can adjust its threshold to select the required number of 
features, features do not show satisfactory quality. The low 
threshold value used for selecting the features highlights this 
fact. Figure 15.b shows the result of the same algorithm after 
dynamically enabling the image restoration before selecting 
the features in the image. Image restoration enhances the 
image quality by sharpening the edges. Therefore, the 
threshold value for selecting the same number of features on 
the restored image is larger. Hence, the features’ quality has 
been enhanced and features with larger intensity difference 
compared to their adjacent pixels have been selected.  

Note that sharp and clear images do not need to be restored 
before being passed to feature selection algorithm. Failure to 
do so might degrade the image quality by adding noise to the 
image and can create fake features in the image. Therefore, 
the system should be reconfigured to enable or disable image 
restoration based on the requirements. In our system, we can 
dynamically enable or disable this module before selecting the 
features. 

 
 
Figure Number Threshold Feature count 

9.a 512 (Fixed) 152 
9.b 465 148 
10.a 512 (Fixed) 1150 
10.b 1552 150 
11.a 512 (Fixed) 0 
11.b 160 156 
12.a 512 (Fixed) 42 
12.b 300 154 
13.a 512 (Fixed) 572 
13.b 912 152 
14.a 290 164 
14.b 664 162 
15.a 1279 146 
15.b 2083 148 

 
Table 2. Feature selection threshold value and feature count for 
figures presented in experimental results section. 

Table 2 summarizes the number of selected features and the 
utilized threshold value for selecting those features for images 
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presented in this section. The enhanced performance of FS-
AUTO compared to FS-FIXED in terms of number of selected 
features is evident. Furthermore, the effect of image 
restoration on the threshold value used in FS-AUTO can be 
observed. Note that applying image restoration on the blurry 
image shown in Figure 15.a sharpens its edges and corners 
(see Figure 15.b) and increases the required threshold in FS-
AUTO. This in turn corresponds to features that are easier to 
track in the feature tracking stage. This has been highlighted 
in the last two rows of Table 2. 

VIII. CONCLUSION AND FUTURE DIRECTIONS 
In this paper, we presented the idea of dynamic system 

reconfiguration in order to be able to adapt to the external 
events. A collaborative tracking system has been built and 
presented as the experimental framework for verifying the 
idea. Experimental results show that the idea is effective in 
practice and the system can function in a wide range of 
working conditions.  

Particularly, we have implemented automatic adjustment of 
threshold value in feature selection algorithm, and dynamic 
enabling of image restoration for enhancing the image quality. 
These techniques have been integrated into our system 
framework. It has been shown that our approach is effective 
for dynamically adapting to various lighting and lens focus 
conditions in practice. 

Future works include the integration of tracking phase of 
the KLT feature-tracking method into our current system, 
enhancing the collaboration schemes and applying the system 
reconfiguration idea to other applications or application 
domains. 
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Figure 9.b. 148 features are selected by automatic 
threshold adjustment (FS-AUTO) under normal lighting. 

Figure 9.a. 152 features are selected by fixed threshold 
(FS-FIX) under default lighting conditions. 

  

  
  
Figure 10.b. 150 features are selected by automatic 
threshold adjustment (FS-AUTO) under bright lighting. 

Figure 10.a. 1150 features are selected by fixed threshold 
(FS-FIX) under bright lighting. 

  
 

 
 

 
Figure 11.a. No feature is selected by fixed threshold (FS-
FIX) under dark lighting. 

Figure 11.b. 156 features are selected by automatic 
threshold adjustment (FS-AUTO) under dark lighting. 
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Figure 12.b. FS-AUTO selects 152 features on the object 
shown in Figure 10.a. 
 

Figure 12.a. 42 features are selected on a simple object 
with FS-FIX. 
 

  
  

Figure 13.b. FS-AUTO selects 152 features on the object 
shown in Figure 11.a. 

Figure 13.a. 572 features are selected on an object with 
sharp edges, using FS-FIX. 

  

  
  

Figure 14.b. Applying image restoration before feature 
selection enhances the image quality by sharpening the 
edges and distributes the selected features on both objects. 

Figure 14.a. FS-AUTO selects all of features on one of the 
objects (puppy in this example).  
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Figure 15.a. Selected features using automatically 
threshold adjustment (FS-AUTO) without image 
restoration 

Figure 15.b. Image restoration sharpens the edges and 
corners. Therefore, FS-AUTO selects better (selected with 
larger threshold) features. 
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