

Translate RTs into control points Assign states

Then go build the controller

State Op field Eq Next IR PC en sei Ops Exec A B E Mem Ex Src ALU S Mem R W M Write-Back R-M Wr Dst 0000 7????? 0001 1 1 1 1 1 1 1 NW M Write-Back R-M Wr Dst 0001 BEQ x 0010 1 <td< th=""><th>(N</th><th colspan="10">(Mostly) Detailed Control Specs (missing⇒0)</th></td<>	(N	(Mostly) Detailed Control Specs (missing⇒0)													
ODOD ??????? ? ODOI 1 0001 BEQ x 011 111 0001 R-type x 010 111 0001 W x 000 1 0001 W x 100 x 1 0011 xxxxxx 1 0000 1 1 x 0 R 0100 xxxxxx x 0000 1 0 1 1 0 0101 xxxxxx x 0000 1 0 0 1 0 0100 xxxxxx x 1000 1 0 1 0 1 0 1000 xxxxxx x 1000 1 0 1 0 1 0 1000 xxxxxx x 1000 1<		State	Op field	Eq	Next	IR	PC	ام	Ops A B E	Ex	BC Src ALLIS	Mem R W M	Writ R-M	e-Ba	Ck Det
BEC O001 XXXXX O000 1 <th1< th=""> <th1< th=""> 1 <th< th=""><th></th><th>0000</th><th>าาาาา</th><th>2</th><th>0001</th><th>1</th><th></th><th>501</th><th>-</th><th></th><th>SIC ALC S</th><th></th><th>TX-IVI</th><th></th><th>Dat</th></th<></th1<></th1<>		0000	าาาาา	2	0001	1		501	-		SIC ALC S		TX-IVI		Dat
0001 R-type x 0100 (111) -all same in Marce machine 0001 ORI x 0110 (111) -all same in Marce machine 0001 SW 1010 (111) 111) -all same in Marce machine 0001 SW 1011 (111) 111) -all same in Marce machine 0001 SW 1011 (111) 111) Setting control signals: not much different han SC! 0011 xxxxxx x 0000 1 0 x 0 x 0101 xxxxxx x 0000 1 0 1 fun 1 0 0101 xxxxxx x 0000 1 0 0 1 0 0R 0100 xxxxxx x 0000 1 0 0 1 0 0R 0100 xxxxxx x 0000 1 0 1 0 1 0 0R 0101 1 0 1 0 1 0 1 0		0001	BEQ	x	0011	Ċ			111	t					
0001 ORI x 0110 111 111		0001	R-type	х	0100				111	N					
0001 LW x 1000 111 111 Setting control signals: not much different han SC! 0001 SW 1011 111 111 Setting control signals: not much different han SC! 0011 xxxxxx 0000 1 0 x 0 x 0 x 0 x 0 x 0 x 0 x 0 x 0 x 0 x 0 x 0 x 0 x 0 x 0 x 0 x 0 x 0 1 1 0 1 1 0 1 1 0 1 1 0 1 1 0 1 1 0 1 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 1 1 0 1 1 1		0001	ORI	х	0110				111		-all same in N	oore machi	ne		
0001 SW x 1011 111 much different han SC! 001 xxxxxx 0 0000 1 0 x 0 x x 0 x 001 xxxxxx 1 0000 1 1 x 0 x x 0 x R 0100 xxxxxx x 0000 1 0 1 fun 1 0 1 1 0101 xxxxxx x 0000 1 0 0 1 1 0 1 1 0110 xxxxxx x 0000 1 0 0 1 1 0 1 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0		0001	LW	х	1000				111	17	Setting	control :	sign	als:	not
BEC 0011 XXXXX 0 0000 1 0 x 0 1 0 1 0 1 0 1 0 1 0 1 1 1 0 1 1 1 1 1 1 1 1 1 1 1 <th1< th=""> 1 <t< td=""><td></td><td>0001</td><td>SW</td><td>х</td><td>1011</td><td></td><td></td><td>1</td><td>111</td><td>Į.</td><td>much di</td><td>fferent</td><td>thar</td><td>n SC</td><td>)!</td></t<></th1<>		0001	SW	х	1011			1	111	Į.	much di	fferent	thar	n SC)!
0011 xxxxxx 1 0000 1 1 x 0 1 1 0 1 1 0 1 0 1 1 0 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 <th1< th=""> 1 <th< td=""><td>BEO:</td><td>0011</td><td>xxxxxx</td><td>0</td><td>0000</td><td></td><td>1</td><td>0</td><td>\square</td><td></td><td></td><td></td><td>х</td><td>0</td><td>х</td></th<></th1<>	BEO:	0011	xxxxxx	0	0000		1	0	\square				х	0	х
R. 0100 xxxxxx x 0101 0 1 0 1 function 1 0 1 1 0 1 1 0 1 1 0 1 1 0 1 1 0 1 1 0 1 0 1 1 0 1 1 0 1 1 0 1 1 0 1 1 0 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 <th1< th=""></th1<>		0011	XXXXXX	1	0000		1	1					х	0	х
0101 xxxxxx xxxxx 0000 1 0 0 1 1 0R1 0110 xxxxx xxxxx 0111 0 0 0 1 1 0110 xxxxxx x 0111 0 0 0 1 1 1 0 1 1 0 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 <td>R:</td> <td>0100</td> <td>XXXXXX</td> <td>х</td> <td>0101</td> <td></td> <td></td> <td></td> <td></td> <td>0</td> <td>1 fun 1</td> <td></td> <td></td> <td></td> <td></td>	R:	0100	XXXXXX	х	0101					0	1 fun 1				
Other Unito XXXXXX x VIII1 0 0 or 1 0 1 1 0 1 1 0 1 <th1< th=""> <th1< th=""> <th1< th=""> <th1< th=""></th1<></th1<></th1<></th1<>		0101	XXXXXX	Х	0000		1	0					0	1	1
U111 XXXXXX X U000 1 0 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 1 0 1 1 0 1 1 0 1 1 0 1 1 0 1 1 0 1 1 0 1 1 0 1 1 0 1 1 0 1 1 1 0 1 1 1 0 1 1 1 0 1 <th1< th=""> 1 <th< td=""><td>URi:</td><td>0110</td><td>XXXXXX</td><td>х</td><td>0111</td><td></td><td></td><td></td><td></td><td>0</td><td>0 or 1</td><td></td><td></td><td></td><td><u> </u></td></th<></th1<>	URi:	0110	XXXXXX	х	0111					0	0 or 1				<u> </u>
Link Link <thlink< th=""> Link Link <thl< td=""><td>1.100</td><td>1000</td><td>XXXXXX</td><td>X</td><td>10000</td><td>-</td><td>1</td><td>U</td><td></td><td>1</td><td>0 - 1 - 1</td><td></td><td>0</td><td>1</td><td>U</td></thl<></thlink<>	1.100	1000	XXXXXX	X	10000	-	1	U		1	0 - 1 - 1		0	1	U
1001 XXXXXX 1010 1 1 1 1 1 0 1 1 <th1< th=""> 0 <th< td=""><td>LW.</td><td>1000</td><td>XXXXXXX</td><td>x</td><td>1001</td><td></td><td></td><td></td><td></td><td>Ľ</td><td>U add I</td><td>1 0 1</td><td></td><td></td><td></td></th<></th1<>	LW.	1000	XXXXXXX	x	1001					Ľ	U add I	1 0 1			
sw: 1011 xxxxx x 1100 1 0 add 1		1001	*****	x	0000		1	0					1	1	0
	SW:	1011	XXXXXXX	x	1100		<u> </u>	0		1	0 add 1		<u> </u>		<u> </u>
1100 xxxxx x 0000 1 0 0 1 0		1100	XXXXXXX	x	0000		1	0		Ľ	o duu i	0 1 0			

Microprogram Control Specification												
	μPC	Taken	NextIR	PC	Ops	ما	Exec	Me	m Sr A	1115	Write-Ba	M-P Wr Det
	0000	?	inc	1					51 7	20 5		WHY WI DSt
	0001	х	load				11					
BEQ	0011	0	zero		1	0		\uparrow				
	0011	1	zero		1	1	<u> </u>		1	£		
R:	0100	x	zero		1	0		0	1	run i		0 1 1
ORi:	0110	x	inc	⊢		-		0	0	or 1		
	0111	х	zero		1	0						0 1 0
LW:	1000	х	inc					1	0	add 1		
	1001	х	inc								101	
	1010	х	zero		1	0						1 1 0
SW:	1011	х	inc					1	0	add 1		
	1100	х	zero		1	0					0 1 0	
I			1				1					1

Multicycle Control Summary

What's the same as SC:

• Setting of control signals, generally

What's different from SC:

- Must handle intermediate registers
- New concept: states
- · Need way to get from one state to another
 - Traditional FSM Controller
 - Jump table
 - Microcode

Announcements

- Midterm coming up next Wednesday (11/9)
- You can pick up your graded hw
- HW #4 (chapter 5) is posted on class webpage
 As usual, due Friday (11/11) at 5pm.
 - Try to finish it before the mid-term.
- I will be out of town next Monday (11/7)
 - Christophe will be here to teach the class
 - Mid-term review, problem solving, and questions
- Additional office hours before the test
 - Wednesday (11/9) 11am-1pm

End of Midterm Material

For the midterm, you need to know up to this slide

• Know:

- Single cycle datapath/control
- Multiple cycle datapath
- Multiple cycle control, traditional FSM
- Multiple cycle control, micro-sequencing - This is actually in the CD (section 5.7 of the book)
- Reading: Up to and including Ch. 5

Microprogramming

Microprogramming is a convenient method for implementing structured control state diagrams:

- Random logic replaced by microPC sequencer and ROM
- + Each line of ROM called a $\mu instruction:$
- contains sequencer control + values for control points
- limited state transitions: (jump table) branch to zero, next sequential.
 - branch to µinstruction address from dispatch ROM

Horizontal µCode: one control bit in µInstruction for every control line in datapath (like what we've done before) Vertical µCode: groups of control-lines coded together in µInstruction (e.g. possible ALU dest) (new!)

- Control design reduces to Microprogramming

 Part of the design process is to develop a "language" that describes
 - control and is easy for humans to understand

Designing a Microinstruction Set

- 1) Start with list of control signals
- 2) Group signals together that make sense (vs. random): called "fields"
- 3) Place fields in some logical order (e.g., ALU operation & ALU operands first and microinstruction sequencing last)
- 4) To minimize the width, encode operations that will never be used at the same time vertical
- 5) Create a symbolic legend for the microinstruction format, showing name of field values and how they set the control signals
 - Use computers to design computers

Again: Alternative multicycle datapath (book) Goal here: Horizontal -> Vertical Microcode PCSrc PCW ALL MemW RegW RegDs Idea Le << 2 FY ALL ExtOp MemtoReg ALUSelB

1&2) Star	t with l	ist of control	signals, grouped into fields
Signal name	Effect и	hen deasserted	Effect when asserted
ALUSeIA	1st ALU	operand = PC	1st ALU operand = Reg[rs]
RegWrite	None		Reg. is written
MemtoReg	Reg. wri	te data input = ALl	J Reg. write data input = memory
🗧 RegDst 👘	Reg. des	t. no. = rt	Reg. dest. no. = rd
RemRead	None		Memory at address is read,
2			MDR <= Mem[addr]
🛱 MemWrite	None		Memory at address is written
orD 🝳	Memory	address = PC	Memory address = S
RWrite	None		IR <= Memory
😽 PCWrite	None		PC <= PCSource
PCWriteCor	nd None		IF ALUzero then PC <= PCSource
PCSource	PCSourc	ce = ALU	PCSource = ALUout
ExtOp	Zero Ext	ended	Sign Extended
Signal nam	e Value	Fffect	
ALUOp	00	ALU adds	
5	01	ALU subtracts	
O	10	ALU does function	n code
1. M	11	ALU does logical (OR
ALUSelB	00	2nd ALU input = 4	1
<u>a</u>	01	2nd ALU input = I	Reg[rt]
14	10	2nd ALU input = 6	extended, shift left 2
1	11	2nd ALU input = e	extended

Field Name	Widt	h	Control Signals Set
	row		
ALU Control	4	2	ALUOp
SRC1	2	1	ALUSeIA
SRC2	5	3	ALUSeIB, ExtOp
ALU Destination	3	2	RegWrite, MemtoReg, RegDst
Memory	3	2	MemRead, MemWrite, IorD
Memory Registe	r 1	1	IRWrite
PCWrite Control	3	2	PCWrite, PCWriteCond, PCSource
Sequencing	3	2	AddrCtl
Total width	24	15	bits

On you	r own tin	ne: what c	lo these fiel	dnames mean?
Destinatio	on:			
Code	Name	RegWrite	MemToReg	RegDest
00		0	Х	X
01	rd ALU	1	0	1
10	rt ALU	1	0	0
11	rt MEM	1	1	0
SRC2:				
Code	Name	ALUSeIB	ExtOp	
000		Х	Х	
001	4	00	х	
010	rt	01	х	
011	ExtShft	10	1	
100	Extend	11	1	
111	Extend0	11	0	

Legac	y Software and Microprogramming
IBM bet	company on 360 Instruction Set Architecture (ISA):
single	instruction set for many classes of machines
• (8-b	pit to 64-bit)
Stuart T compa	ucker stuck with job of what to do about software atibility
 If m	nicroprogramming could easily do same instruction set on many
diff	ferent microarchitectures, then why couldn't multiple
mic	proprograms do multiple instruction sets on the same
mic	proarchitecture?
• Coi	ned term "emulation": instruction set interpreter in microcode
for	non-native instruction set
 Ver	y successful: in early years of IBM 360 it was hard to know
whe	ether old instruction set or new instruction set was more
free	quently used

Microprogramming in IBM 360									
M30	M40	M50	M65						
8	16	32	64						
50	52	85	87						
4	4	2.75	2.75						
CCROS	TCROS	BCROS	BCROS						
750	625	500	200						
1500	2500	2000	750						
Rental fee (\$K/month) 4 7 15 35									
	M30 8 50 4 CCROS 750 1500 4	M30 M40 8 16 50 52 4 4 CCROS TCROS 750 625 1500 2500 4 7	M30 M40 M50 8 16 32 50 52 85 4 4 2.75 CCROS TCROS BCROS 750 625 500 1500 2500 2000 4 7 15						

VLSI & Microprogramming

By late seventies

- technology assumption about ROM & RAM speed became • invalid
- . micromachines became more complicated
 - to overcome slower ROM, micromachines were pipelined complex instruction sets led to the need for subroutine and call •
 - stacks in ucode •
 - need for fixing bugs in control programs was in conflict with read-only nature of $\ensuremath{\mathsf{uROM}}$
 - · VAX instruction set had 400-500 kb of control store!
- . introduction of caches and buffers, especially for instructions, made multiple-cycle execution of reg-reg instructions unattractive

Modern Usage

Microprogramming is far from extinct

Played a crucial role in micros of the Eighties

- Motorola 68K series
- Intel 386 and 486

Microcode is present in most modern CISC micros in an assisting role (e.g. AMD Athlon, Intel Pentium-4)

- Most instructions are executed directly, i.e., with hard-wired control
- Infrequently-used and/or complicated instructions invoke the microcode engine

Patchable microcode common for post-fabrication bug fixes, e.g. Intel Pentiums load mcode patches at bootup

Microprogramming Pros and Cons

Ease of design

Flexibility

- Easy to adapt to changes in organization, timing, technology
- Can make changes late in design cycle, or even in the field

Can implement very powerful instruction sets (just more control memory)

Generality

- Can implement multiple instruction sets on same machine.
 - Can tailor instruction set to application.

Compatibility

• Many organizations, same instruction set

Costly to implement

Slow

Thought: Microprogramming one inspiration for RISC

- If simple instruction could execute at very high clock rate...
- If you could even write compilers to produce microinstructions...
- If most programs use simple instructions and addressing modes...
- If microcode is kept in RAM instead of ROM so as to fix bugs ...
- If same memory used for control memory could be used instead as cache for "macroinstructions"...
- Then why not skip instruction interpretation by a microprogram and simply compile directly into lowest language of machine? (microprogramming is overkill when ISA matches datapath 1-1)

Summary (1 of 3)

Disadvantages of the Single Cycle Processor

- Long cycle time
- Cycle time is too long for all instructions except the Load

Multiple Cycle Processor:

- Divide the instructions into smaller steps
- Execute each step (instead of the entire instruction) in one cycle

Partition datapath into equal size chunks to minimize cycle time

~10 levels of logic between latches

Summary (cont'd) (2 of 3) Control is specified by finite state diagram

Specialize state-diagrams easily captured by microsequencer

- simple increment & "branch" fields
- datapath control fields

Control design reduces to Microprogramming Control is more complicated with:

- complex instruction sets
- restricted datapaths (see the book)

Simple Instruction set and powerful datapath \Rightarrow simple

- could try to reduce hardware (see the book)
- rather go for speed => many instructions at once!

Summary (3 of 3)

Microprogramming is a fundamental concept

- implement an instruction set by building a very simple processor and interpreting the instructions
- essential for very complex instructions and when few register transfers are possible

Control design reduces to Microprogramming

Design of a Microprogramming language

Start with list of control signals

- Group signals together that make sense (vs. random): called "fields"
- Place fields in some logical order (e.g., ALU operation & ALU operands first and microinstruction sequencing last)
- $\ensuremath{\,^\circ}$ To minimize the width, encode operations that will never be used at the same time
- Create a symbolic legend for the microinstruction format, showing name of field values and how they set the control signals

Where to get more information?

- Multiple Cycle Controller: Appendix C of your text book.
- Microprogramming: Section 5.5 of your text book.
- D. Patterson, "Microprogramming", Scientific American, March 1983.
- D. Patterson and D. Ditzel, "The Case for the Reduced Instruction Set Computer," Computer Architecture News 8, 6 (October 15, 1980)