
1

© John Owens / UCD 2003

EEC 170: Computer ArchitectureEEC 170: Computer Architecture

MulticycleMulticycle Control / Control /
MicroprogrammingMicroprogramming

Summary of Multicycle DatapathSummary of Multicycle Datapath

Differences from single cycle:Differences from single cycle:
• All intermediate results -> intermediate registers

• Logical RTL -> more complex physical RTL

• Possible reuse of hardware (as in book)

Goal:Goal:
• Not all instructions take same amount of time

•Savings from shorter instructions

• Costs:
•More hardware (intermediate registers, control)
• Imbalance between cycles

This is only an intermediate representation!This is only an intermediate representation!

PC

N
ex

t
PC

O
pe

ra
nd

Fe
tc

h

In
st

ru
ct

io
n

Fe
tc

h

nP
C_

se
l

IR

Reg
File Ex

t
AL

U Re
g.

Fi

le

M
em

Ac
ce

ss

D
at

a
M

em

Re
su

lt
 S

to
re

Re
gD

st
Re

gW
r

M
em

W
r

M
em

Rd

S

M

M
em

To
Re

g

Eq
ua

l

AL
U

ct
r

AL
U

Sr
c

Ex
tO

p

A

B

E

Example Multicycle DatapathExample Multicycle Datapath

Critical Path?Critical Path?

Control State

Next State
Logic

Output Logic

inputs (conditions)

outputs (control points)

State X

Register Transfer
Control Points

Depends on Input

Our Control ModelOur Control Model

State => set up control logic for Register TransferState => set up control logic for Register Transfer
State + Inputs => next stateState + Inputs => next state
Transfer occurs upon exiting state (same clock edge)Transfer occurs upon exiting state (same clock edge)

IR <= MEM[PC]

R-type

A <= R[rs]
B <= R[rt]

S <= A fun B

R[rd] <= S
PC <= PC + 4

S <= A or ZX

R[rt] <= S
PC <= PC + 4

ORi

S <= A + SX

R[rt] <= M
PC <= PC + 4

M <= MEM[S]

LW

S <= A + SX

MEM[S] <= B
PC <= PC + 4

BEQ
PC <=

Next(PC,Equal)

SW

“instruction fetch”

“decode / operand fetch”

Ex
ec

ut
e

M
em

or
y

W
ri

te
-b

ac
k

Control Spec for multicycle procControl Spec for multicycle proc

State

6

4

11

next
State

op

Equal

control points

state op cond
next
state control points

Truth Table

datapath State

Traditional FSM ControllerTraditional FSM Controller

NextState = f(state,
op, conditions)

2

datapath + state diagram ⇒ control)datapath + state diagram ⇒ control)

Translate Translate RTsRTs into control pointsinto control points
Assign statesAssign states

Then go build the controllerThen go build the controller

IR <= MEM[PC]

R-type

A <= R[rs]
B <= R[rt]

S <= A fun B

R[rd] <= S
PC <= PC + 4

S <= A or ZX

R[rt] <= S
PC <= PC + 4

ORi

S <= A + SX

R[rt] <= M
PC <= PC + 4

M <= MEM[S]

LW

S <= A + SX

MEM[S] <= B
PC <= PC + 4

BEQ

PC <=
Next(PC,Equal)

SW

“instruction fetch”

“decode”

imem_rd, IRen

ALUfun, Sen

RegDst,
RegWr,
PCen

Aen, Ben,
Een

Ex
ec

ut
e

M
em

or
y

W
ri

te
-b

ac
k

Mapping Register Transfers to Control PointsMapping Register Transfers to Control Points

IR <= MEM[PC]

R-type

A <= R[rs]
B <= R[rt]

S <= A fun B

R[rd] <= S
PC <= PC + 4

S <= A or ZX

R[rt] <= S
PC <= PC + 4

ORi

S <= A + SX

R[rt] <= M
PC <= PC + 4

M <= MEM[S]

LW

S <= A + SX

MEM[S] <= B
PC <= PC + 4

BEQ

PC <= Next(PC)

SW

“instruction fetch”

“decode”

0000

0001

0100

0101

0110

0111

1000

1001

1010

00111011

1100

Ex
ec

ut
e

M
em

or
y

W
ri

te
-b

ac
k

Assigning StatesAssigning States

00000000 ???????????? ?? 00010001 11
00010001 BEQBEQ xx 00110011 1 1 1 1 1 1
00010001 RR--typetype xx 01000100 1 1 1 1 1 1
00010001 ORIORI xx 01100110 1 1 11 1 1
00010001 LWLW xx 10001000 1 1 11 1 1
00010001 SWSW xx 10111011 1 1 11 1 1

00110011 xxxxxxxxxxxx 00 00000000 1 01 0 x 0 xx 0 x
00110011 xxxxxxxxxxxx 11 00000000 1 11 1 x 0 xx 0 x
01000100 xxxxxxxxxxxx xx 01010101 0 1 fun 10 1 fun 1
01010101 xxxxxxxxxxxx xx 00000000 1 01 0 0 1 10 1 1
01100110 xxxxxxxxxxxx xx 01110111 0 0 or 10 0 or 1
01110111 xxxxxxxxxxxx xx 00000000 1 01 0 0 1 00 1 0
10001000 xxxxxxxxxxxx xx 10011001 1 0 add 11 0 add 1
10011001 xxxxxxxxxxxx xx 10101010 1 0 11 0 1
1010 1010 xxxxxxxxxxxx xx 00000000 1 01 0 1 1 01 1 0
10111011 xxxxxxxxxxxx xx 11001100 1 0 add 11 0 add 1
11001100 xxxxxxxxxxxx xx 00000000 1 01 0 0 1 00 1 0

State Op field Eq Next IR PC Ops Exec Mem Write-Back
en sel A B E Ex Src ALU S R W M R-M Wr Dst

R:

ORi:

LW:

SW:

-all same in Moore machine

BEQ:

(Mostly) Detailed Control Specs (missing⇒0)(Mostly) Detailed Control Specs (missing⇒0)

Setting control signals: not
much different than SC!

sequencer
control

datapath control

micro-PC
sequencer

microinstruction

Controller DesignController Design
The state diagrams that define the controller for an The state diagrams that define the controller for an

instruction set processor are highly structuredinstruction set processor are highly structured
Use this structure to construct a simple Use this structure to construct a simple

““microsequencermicrosequencer””
Control reduces to programming this very simple Control reduces to programming this very simple

devicedevice
• ⇒ microprogramming

• Goal: Simpler
implementation!

op-code

Map ROM

Counter

zero
inc
load

0000
i

i+1

i

Example: Jump-CounterExample: Jump-Counter

zero inc load

None of above: Do nothing
(for wait states)

3

IR <= MEM[PC]

R-type

A <= R[rs]
B <= R[rt]

S <= A fun B

R[rd] <= S
PC <= PC + 4

S <= A or ZX

R[rt] <= S
PC <= PC + 4

ORi

S <= A + SX

R[rt] <= M
PC <= PC + 4

M <= MEM[S]

LW

S <= A + SX

MEM[S] <= B
PC <= PC + 4

BEQ

PC <= Next(PC)

SW

“instruction fetch”

“decode”

0000

0001

0100

0101

0110

0111

1000

1001

1010

00111011

1100

inc

load

zero zero
zero

zero

zero

inc inc inc inc

inc

Ex
ec

ut
e

M
em

or
y

W
ri

te
-b

ac
k

Using a Jump CounterUsing a Jump Counter

op-code

Map ROM

Micro-PC

Z I L
datapath control

taken

Our MicrosequencerOur Microsequencer

Zero
Increment
Load

-> Simpler than next stateStores “Load”

MicroprogramMicroprogram Control SpecificationControl Specification

00000000 ?? incinc 11
00010001 xx loadload 1 11 1

00110011 00 zerozero 1 01 0
00110011 11 zerozero 1 11 1
01000100 xx incinc 0 1 fun 10 1 fun 1
01010101 xx zerozero 1 01 0 0 1 10 1 1
01100110 xx incinc 0 0 or 10 0 or 1
01110111 xx zerozero 1 01 0 0 1 00 1 0
10001000 xx incinc 1 0 add 11 0 add 1
10011001 xx incinc 1 0 11 0 1
1010 1010 xx zerozero 1 01 0 1 1 01 1 0
10111011 xx incinc 1 0 add 11 0 add 1
11001100 xx zerozero 1 01 0 0 1 00 1 0

µPC Taken NextIR PC Ops Exec Mem Write-Back
en sel A B Ex Sr ALU S R W M M-R Wr Dst

R:

ORi:

LW:

SW:

BEQ

Opcode

microPC

1

µAddress
Select
Logic

Adder

ROM

Mux

0
012

R-type 000000 0100
BEQ 000100 0011
ori 001101 0110
LW 100011 1000
SW 101011 1011

Adding the Dispatch ROMAdding the Dispatch ROM
SequencerSequencer--based controlbased control

• Called “microPC” or “µPC” vs. state register

Control ValueControl Value Effect Effect
00 (00 (ZeroZero)) Next Next µµaddress = 0address = 0
01 (01 (LoadLoad)) Next Next µµaddress =address =

dispatch ROM dispatch ROM
10 (10 (IncInc)) Next Next µµaddress =address =

µµaddress + 1address + 1

ROM:ROM:

This controller is powerful!This controller is powerful!
Example: What to do if memory is not ready?Example: What to do if memory is not ready?

PC

Instruction
Memory

Inst. Reg

addr

data

IR_en

InstMem_rd

IM_wait

Example: Controlling MemoryExample: Controlling Memory

op-code

Map ROM

Micro-PC

Z I L Stall = !ZIL

datapath
control

taken

IR <= MEM[PC]

R-type

A <= R[rs]
B <= R[rt]

S <= A fun B

R[rd] <= S
PC <= PC + 4

S <= A or ZX

R[rt] <= S
PC <= PC + 4

ORi

S <= A + SX

R[rt] <= M
PC <= PC + 4

M <= MEM[S]

LW

S <= A + SX

MEM[S] <= B

BEQ
PC <=

Next(PC)

SW

“instruction fetch”

“decode / operand fetch”

Ex
ec

ut
e

M
em

or
y

W
ri

te
-b

ac
k

~wait wait

~wait wait

PC <= PC + 4

~wait wait

Controller handles non-ideal memoryController handles non-ideal memory

4

Multicycle Control SummaryMulticycle Control Summary

WhatWhat’’s the same as SC:s the same as SC:
• Setting of control signals, generally

WhatWhat’’s different from SC:s different from SC:
• Must handle intermediate registers

• New concept: states

• Need way to get from one state to another

•Traditional FSM Controller
•Jump table
•Microcode

AnnouncementsAnnouncements

•• Midterm coming up next Wednesday (11/9)Midterm coming up next Wednesday (11/9)
•• You can pick up your graded hwYou can pick up your graded hw
•• HW #4 (chapter 5) is posted on class webpageHW #4 (chapter 5) is posted on class webpage

• As usual, due Friday (11/11) at 5pm.

• Try to finish it before the mid-term.

•• I will be out of town next Monday (11/7)I will be out of town next Monday (11/7)
• Christophe will be here to teach the class

• Mid-term review, problem solving, and questions

•• Additional office hours before the testAdditional office hours before the test
• Wednesday (11/9) 11am-1pm

End of Midterm MaterialEnd of Midterm Material

For the midterm, you need to know up to this For the midterm, you need to know up to this
slideslide
• Know:

•Single cycle datapath/control
•Multiple cycle datapath
•Multiple cycle control, traditional FSM
•Multiple cycle control, micro-sequencing

– This is actually in the CD (section 5.7 of the book)

• Reading: Up to and including Ch. 5

sequencer
control

micro-PC µ-sequencer:
fetch,dispatch,
sequential

Dispatch
ROM

Opcode

Inputs
µ-Code ROM

To DataPath

DecodeDecode

datapath control

microinstruction (µ)

MicroprogrammingMicroprogramming

Microprogramming is a fundamental conceptMicroprogramming is a fundamental concept
• implement an instruction set by building a very simple processor and interpreting

the instructions

• essential for very complex instructions and when few register transfers are possible

• overkill when ISA matches datapath 1-1

MicroprogrammingMicroprogramming
Microprogramming is a convenient method for implementing Microprogramming is a convenient method for implementing

structured control state diagrams:structured control state diagrams:
• Random logic replaced by microPC sequencer and ROM

• Each line of ROM called a µinstruction:
contains sequencer control + values for control points

• limited state transitions: (jump table)
branch to zero, next sequential,
branch to µinstruction address from dispatch ROM

Horizontal Horizontal µµCode: one control bit in Code: one control bit in µµInstruction for every Instruction for every
control line in control line in datapathdatapath (like what we(like what we’’ve done before)ve done before)

Vertical Vertical µµCode: groups of controlCode: groups of control--lines coded together in lines coded together in
µµInstruction (e.g. possible ALU Instruction (e.g. possible ALU destdest)) (new!)(new!)

Control design reduces to MicroprogrammingControl design reduces to Microprogramming
• Part of the design process is to develop a “language” that describes

control and is easy for humans to understand

Main
Memory

execution
unit

control
memory

CPU

ADD
SUB
AND

DATA

.

.

.

User program
plus Data

this can change!

AND microsequence

e.g., Fetch Instr
Fetch Operand(s)
Calculate OR
Save Answer(s)

one of these is
mapped into one
of these

“Macroinstruction” Interpretation“Macroinstruction” Interpretation

5

Designing a Microinstruction SetDesigning a Microinstruction Set

1) Start with list of control signals1) Start with list of control signals
2) Group signals together that make sense (vs. 2) Group signals together that make sense (vs.

random): called random): called ““fieldsfields””
3) Place fields in some logical order 3) Place fields in some logical order

(e.g., ALU operation & ALU operands first and(e.g., ALU operation & ALU operands first and
microinstruction sequencing last)microinstruction sequencing last)

4) To minimize the width, encode operations that 4) To minimize the width, encode operations that
will never be used at the same time will never be used at the same time -- verticalvertical

5) Create a symbolic legend for the microinstruction 5) Create a symbolic legend for the microinstruction
format, showing name of field values and how they format, showing name of field values and how they
set the control signalsset the control signals
• Use computers to design computers

Ideal
Memory

WrAdr

Din

RAdr

32

32

32

Dout

MemWr

32

A
LU

32

32

ALUOp

ALU
Control

32

IRWr

Instruction R
eg

32

Reg File

Ra

Rw

busW

Rb

5

5

32

busA

32busB

RegWr

Rs

Rt
M

ux

0

1

Rt

Rd

PCWr

ALUSelA

Mux 01

RegDst

M
ux

0

1

32

PC

MemtoReg

Extend

ExtOp

M
ux

0

1
32

0

1

2

3

4

16Imm 32

<< 2

ALUSelB

M
ux

1

0

32

Zero

Zero
PCWrCond PCSrc

32

IorD

M
em

D
ata R

eg

A
LU

 O
ut

B

A

Again: Alternative multicycle datapath (book)Again: Alternative multicycle datapath (book)

Goal here: Horizontal Goal here: Horizontal --> Vertical Microcode> Vertical Microcode

Signal nameSignal name Effect when Effect when deasserteddeasserted Effect when assertedEffect when asserted
ALUSelAALUSelA 1st ALU operand = PC1st ALU operand = PC 1st ALU operand = 1st ALU operand = Reg[rsReg[rs]]
RegWriteRegWrite NoneNone Reg. is written Reg. is written
MemtoRegMemtoReg Reg. write data input = ALUReg. write data input = ALU Reg. write data input = memory Reg. write data input = memory
RegDstRegDst Reg. Reg. destdest. no. = . no. = rtrt Reg. Reg. destdest. no. = rd. no. = rd
MemReadMemRead NoneNone Memory at address is read, Memory at address is read,

MDR <= MDR <= Mem[addrMem[addr]]
MemWriteMemWrite NoneNone Memory at address is written Memory at address is written
IorDIorD Memory address = PCMemory address = PC Memory address = SMemory address = S
IRWriteIRWrite NoneNone IR <= MemoryIR <= Memory
PCWritePCWrite NoneNone PC <= PC <= PCSourcePCSource
PCWriteCondPCWriteCond NoneNone IF IF ALUzeroALUzero then PC <= then PC <= PCSourcePCSource
PCSourcePCSource PCSourcePCSource = ALU = ALU PCSourcePCSource = = ALUoutALUout
ExtOpExtOp Zero ExtendedZero Extended Sign Extended Sign Extended

Si
ng

le
 B

it
C

on
tr

ol

Signal name Value Effect
ALUOp 00 ALU adds

01 ALU subtracts
10 ALU does function code
11 ALU does logical OR

ALUSelB 00 2nd ALU input = 4
01 2nd ALU input = Reg[rt]
10 2nd ALU input = extended,shift left 2
11 2nd ALU input = extendedM

ul
tip

le
 B

it
C

on
tr

ol

1&2) Start with list of control signals, grouped into fields1&2) Start with list of control signals, grouped into fields Compression of FieldsCompression of Fields
Only look at Only look at writebackwriteback control signals:control signals:

• RegDst: Rt or Rd

• RegWr: Do we write?

• MemToReg: WB from mem or ALU?

• So this takes 3 bits! HORIZONTAL UCODE

But what are our possibilities?But what are our possibilities?
• RegWr = 0, RegDst = MemToReg = X (00)

• RegWr = 1, RegDst = Rt, MemToReg = 1 (01)

• RegWr = 1, RegDst = Rt, MemToReg = 0 (10)

• RegWr = 1, RegDst = Rd, MemToReg = 0 (11)

• Only 2 bits! VERTICAL UCODE

Reg File

Ra

Rw

busW

Rb busA

busB

RegWr

M
ux

0

1

Rt

Rd

Mux 01

RegDst

MemtoReg

M
em

D
ata Reg

From ALUOut

Field NameField Name WidthWidth Control Signals SetControl Signals Set
wide wide narrownarrow

ALU ControlALU Control 44 22 ALUOpALUOp
SRC1SRC1 22 11 ALUSelAALUSelA
SRC2SRC2 55 33 ALUSelBALUSelB, , ExtOpExtOp
ALU DestinationALU Destination 33 22 RegWriteRegWrite, , MemtoRegMemtoReg, , RegDstRegDst
MemoryMemory 33 22 MemReadMemRead, , MemWriteMemWrite, , IorDIorD
Memory RegisterMemory Register 11 11 IRWriteIRWrite
PCWritePCWrite ControlControl 33 22 PCWritePCWrite, , PCWriteCondPCWriteCond, , PCSourcePCSource
SequencingSequencing 33 22 AddrCtlAddrCtl
Total widthTotal width 2424 1515 bitsbits

3&4) Microinstruction Format: unencoded vs. encoded fields3&4) Microinstruction Format: unencoded vs. encoded fields

Field NameField Name Values for FieldValues for Field Function of Field with Specific ValueFunction of Field with Specific Value
ALUALU AddAdd ALU addsALU adds

SubtSubt. . ALU subtractsALU subtracts
FuncFunc codecode ALU does function codeALU does function code
OrOr ALU does logical ORALU does logical OR

SRC1SRC1 PCPC 1st ALU input = PC1st ALU input = PC
rsrs 1st ALU input = 1st ALU input = Reg[rsReg[rs]]

SRC2SRC2 44 2nd ALU input = 42nd ALU input = 4
ExtendExtend 2nd ALU input = sign ext. IR[152nd ALU input = sign ext. IR[15--0]0]
Extend0Extend0 2nd ALU input = zero ext. IR[152nd ALU input = zero ext. IR[15--0] 0]
ExtshftExtshft 2nd ALU input = sign ex., 2nd ALU input = sign ex., slsl IR[15IR[15--0]0]
rtrt 2nd ALU input = 2nd ALU input = Reg[rtReg[rt]]

destinationdestination rd ALUrd ALU Reg[rdReg[rd] =] = ALUoutALUout
rtrt ALUALU Reg[rtReg[rt] =] = ALUoutALUout
rtrt MemMem Reg[rtReg[rt] =] = MemMem

MemoryMemory Read PCRead PC Read memory using PCRead memory using PC
Read ALURead ALU Read memory using Read memory using ALUoutALUout for for addraddr
Write ALUWrite ALU Write memory using Write memory using ALUoutALUout for for addraddr

Memory registerMemory register IRIR IR = IR = MemMem
PC writePC write ALUALU PC = ALUPC = ALU

ALUoutCondALUoutCond IF ALU Zero then PC = IF ALU Zero then PC = ALUoutALUout
SequencingSequencing SeqSeq Go to sequential Go to sequential µµinstructioninstruction

FetchFetch Go to the first microinstructionGo to the first microinstruction
DispatchDispatch Dispatch using ROM.Dispatch using ROM.

5) Legend of Fields and Symbolic Names5) Legend of Fields and Symbolic Names

6

CodeCode NameName RegWriteRegWrite MemToRegMemToReg RegDestRegDest
0000 ------ 00 XX XX
0101 rd ALUrd ALU 11 00 11
1010 rtrt ALUALU 11 00 00
1111 rtrt MEMMEM 11 11 00

CodeCode NameName ALUSelBALUSelB ExtOpExtOp
000000 ------ XX XX
001001 44 0000 XX
010010 rtrt 0101 XX
011011 ExtShftExtShft 1010 11
100100 ExtendExtend 1111 11
111111 Extend0Extend0 1111 00

Destination:

SRC2:

On your own time: what do these fieldnames mean?On your own time: what do these fieldnames mean? Horizontal vs. Vertical MicrocodeHorizontal vs. Vertical Microcode

HorizontalHorizontal
• Larger size

• More straightforward

• Possibly more general

VerticalVertical
• Smaller size

• Requires recoding

• More restrictive

Opcode

microPC

1

µAddress
Select
Logic

Adder

ROM

Mux

0
012

R-type 000000 0100
BEQ 000100 0011
ori 001101 0110
LW 100011 1000
SW 101011 1011

Specific Sequencer (from before)Specific Sequencer (from before)
SequencerSequencer--based control unit from earlierbased control unit from earlier

• Called “microPC” or “µPC” vs. state register

Code Code NameName Effect Effect
00 00 fetchfetch Next Next µµaddress = 0address = 0
0101 dispatchdispatch Next Next µµaddress = dispatch ROMaddress = dispatch ROM
10 10 seqseq Next Next µµaddress = address = µµaddress + 1address + 1

ROM:ROM:

Legacy Software and MicroprogrammingLegacy Software and Microprogramming

IBM bet company on 360 Instruction Set Architecture (ISA): IBM bet company on 360 Instruction Set Architecture (ISA):
single instruction set for many classes of machines single instruction set for many classes of machines
• (8-bit to 64-bit)

Stuart Tucker stuck with job of what to do about software Stuart Tucker stuck with job of what to do about software
compatibilitycompatibility
• If microprogramming could easily do same instruction set on many

different microarchitectures, then why couldn’t multiple
microprograms do multiple instruction sets on the same
microarchitecture?

• Coined term “emulation”: instruction set interpreter in microcode
for non-native instruction set

• Very successful: in early years of IBM 360 it was hard to know
whether old instruction set or new instruction set was more
frequently used

750750200020002500250015001500memory cycle (ns)memory cycle (ns)

353515157744Rental fee ($K/month)Rental fee ($K/month)

200200500500625625750750µµstorestore cycle (ns)cycle (ns)

BCROSBCROSBCROSBCROSTCROSTCROSCCROSCCROSµµstorestore technologytechnology

2.752.752.752.754444µµcodecode size (K size (K µµinstsinsts))

8787858552525050µµinstinst width (bits)width (bits)

64643232161688DatapathDatapath width (bits)width (bits)

M65M65M50M50M40M40M30M30

Microprogramming in IBM 360Microprogramming in IBM 360

Only fastest models (75 and 95) were hardwiredOnly fastest models (75 and 95) were hardwired

VLSI & MicroprogrammingVLSI & Microprogramming

By late seventiesBy late seventies
• technology assumption about ROM & RAM speed became

invalid

• micromachines became more complicated

• to overcome slower ROM, micromachines were pipelined
• complex instruction sets led to the need for subroutine and call

stacks in ucode
• need for fixing bugs in control programs was in conflict with

read-only nature of uROM
• VAX instruction set had 400-500 kb of control store!

• introduction of caches and buffers, especially for
instructions, made multiple-cycle execution of reg-reg
instructions unattractive

7

Modern UsageModern Usage
Microprogramming is far from extinctMicroprogramming is far from extinct
Played a crucial role in micros of the EightiesPlayed a crucial role in micros of the Eighties

• Motorola 68K series

• Intel 386 and 486

Microcode is present in most modern CISC micros in Microcode is present in most modern CISC micros in
an assisting role (e.g. AMD an assisting role (e.g. AMD AthlonAthlon, Intel Pentium, Intel Pentium--4)4)
• Most instructions are executed directly, i.e., with hard-wired

control

• Infrequently-used and/or complicated instructions invoke the
microcode engine

Patchable microcode common for postPatchable microcode common for post--fabrication fabrication
bug fixes, e.g. Intel Pentiums load bug fixes, e.g. Intel Pentiums load mcodemcode patches patches
at at bootupbootup

Microprogramming Pros and ConsMicroprogramming Pros and Cons
Ease of designEase of design
FlexibilityFlexibility

• Easy to adapt to changes in organization, timing, technology

• Can make changes late in design cycle, or even in the field

Can implement very powerful instruction sets (just more Can implement very powerful instruction sets (just more
control memory)control memory)

GeneralityGenerality
• Can implement multiple instruction sets on same machine.

• Can tailor instruction set to application.

CompatibilityCompatibility
• Many organizations, same instruction set

Costly to implementCostly to implement
Slow Slow

Thought: Microprogramming one inspiration for RISCThought: Microprogramming one inspiration for RISC

If simple instruction could execute at very high If simple instruction could execute at very high
clock rateclock rate……

If you could even write compilers to produce If you could even write compilers to produce
microinstructionsmicroinstructions……

If most programs use simple instructions and addressing If most programs use simple instructions and addressing
modesmodes……

If microcode is kept in RAM instead of ROM so as to fix bugs If microcode is kept in RAM instead of ROM so as to fix bugs ……
If same memory used for control memory could be used If same memory used for control memory could be used

instead as cache for instead as cache for ““macroinstructionsmacroinstructions”…”…
Then why not skip instruction interpretation by a Then why not skip instruction interpretation by a

microprogrammicroprogram and simply compile directly into lowest and simply compile directly into lowest
language of machine? (microprogramming is overkill when language of machine? (microprogramming is overkill when
ISA matches ISA matches datapathdatapath 11--1)1)

“hardwired control” “microprogrammed control”

Overview of ControlOverview of Control
Control may be designed using one of several initial representatControl may be designed using one of several initial representations. The ions. The

choice of sequence control, and how logic is represented, can thchoice of sequence control, and how logic is represented, can then be en be
determined independently; the control can then be implemented widetermined independently; the control can then be implemented with th
one of several methods using a structured logic technique.one of several methods using a structured logic technique.

Initial RepresentationInitial Representation Finite State DiagramFinite State Diagram MicroprogramMicroprogram

Sequencing ControlSequencing Control Explicit Next StateExplicit Next State MicroprogramMicroprogram countercounter
FunctionFunction + Dispatch ROMs + Dispatch ROMs

Logic RepresentationLogic Representation Logic EquationsLogic Equations Truth TablesTruth Tables

Implementation Implementation PLAPLA ROM ROM
TechniqueTechnique

Summary (1 of 3)Summary (1 of 3)

Disadvantages of the Single Cycle ProcessorDisadvantages of the Single Cycle Processor
• Long cycle time

• Cycle time is too long for all instructions except the
Load

Multiple Cycle Processor:Multiple Cycle Processor:
• Divide the instructions into smaller steps

• Execute each step (instead of the entire instruction)
in one cycle

Partition Partition datapathdatapath into equal size chunks to into equal size chunks to
minimize cycle timeminimize cycle time
• ~10 levels of logic between latches

Summary (cont’d) (2 of 3)Summary (cont’d) (2 of 3)
Control is specified by finite state diagramControl is specified by finite state diagram
Specialize stateSpecialize state--diagrams easily captured by diagrams easily captured by

microsequencermicrosequencer
• simple increment & “branch” fields

• datapath control fields

Control design reduces to Microprogramming Control design reduces to Microprogramming
Control is more complicated with:Control is more complicated with:

• complex instruction sets

• restricted datapaths (see the book)

Simple Instruction set and powerful Simple Instruction set and powerful datapathdatapath ⇒ ⇒ simple simple
controlcontrol
• could try to reduce hardware (see the book)

• rather go for speed => many instructions at once!

8

Summary (3 of 3)Summary (3 of 3)
Microprogramming is a fundamental conceptMicroprogramming is a fundamental concept

• implement an instruction set by building a very simple processor and
interpreting the instructions

• essential for very complex instructions and when few register transfers are
possible

• Control design reduces to Microprogramming

Design of a Microprogramming languageDesign of a Microprogramming language
• Start with list of control signals

• Group signals together that make sense (vs. random): called “fields”

• Place fields in some logical order (e.g., ALU operation & ALU operands first
and microinstruction sequencing last)

• To minimize the width, encode operations that will never be used at the
same time

• Create a symbolic legend for the microinstruction format, showing name of
field values and how they set the control signals

Where to get more information?Where to get more information?

Multiple Cycle Controller: Appendix C of your Multiple Cycle Controller: Appendix C of your
text book.text book.

Microprogramming: Section 5.5 of your text Microprogramming: Section 5.5 of your text
book.book.

D. Patterson, D. Patterson, ““MicroprogrammingMicroprogramming””, Scientific , Scientific
American, March 1983.American, March 1983.

D. Patterson and D. D. Patterson and D. DitzelDitzel, , ““The Case for the The Case for the
Reduced Instruction Set Computer,Reduced Instruction Set Computer,””
Computer Architecture News 8, 6 (October Computer Architecture News 8, 6 (October
15, 1980)15, 1980)

