EEC 170: Computer Architecture

Multicycle Control /
Microprogramming

© John Owens / UCD 2003

Summary of Multicycle Datapath

Differences from single cycle:
= All intermediate results -> intermediate registers
* Logical RTL -> more complex physical RTL
* Possible reuse of hardware (as in book)

Goal:
* Not all instructions take same amount of time
« Savings from shorter instructions
* Costs:
* More hardware (intermediate registers, control)
* Imbalance between cycles
This is only an intermediate representation!

Example Multicycle Datapath

oReg

emT

[ReqDst
=i

Reg.
File

[
— e

[o '—|—'_11

Instruction
Fetch
Result Store

Critical Path?

Our Control Model

State => set up control logic for Register Transfer
State + Inputs => next state
Transfer occurs upon exiting state (same clock edge)

N

State X

inputs (conditions)

Next State
Logic

p Control State
Output Logic

[|

outputs (control points)

Register Transfer
Control Points

7 Depends on Input

Control Spec for multicycle proc

IR <= MEM[PC] ThStruction fetch
/—~ :

R[rt] <=§
PC<=PC +

Execute

Write-back Memory

Traditional FSM Controller

next
state | op [cond || state | control points

Truth Table
next control points

Equal

i — NextState = f(state,
datapath State op, conditions)

datapath + state diagram = control)

Translate RTs into control points
Assign states

Then go build the controller

Mapping Register Transfers to Control Points

TR <= MEM[PC] “instruction fetch”

S imem_rd, IRen

“decode”

S<=Afung pC <= 2
= 2

ALUfun, Sen Next(PC,Equal), 3
2

4

] i “
MEMS] <= B fal

PC<=PC+4 g

Rlrd] <= 3
PC<=PC+4] =
RegDst, R[rt] <= %
Regwr, PC <= PC + 4 Pg[‘);giﬂ, g
PCen B Q

I

2

2

Assigning States

IR <= MEM[PC] “instruction fetch”
/ 00'50
]
A<= R[rs]
B <=R[rt]
0001
w \
SW
BEQ

fC <= Next(PC)
0011

“decode™

Execute

MEM(S] <= B
PC <= PC +4

1100

R[rd] <=
PC<=PC+4

0101

R[rt] <=§
PC<=PC+4

0111

R[rt] <=M
PC<=PC+4
1010

Write-back Memory

(Mostly) Detailed Control Specs (missing=0)

Controller Design

The state diagrams that define the controller for an
instruction set processor are highly structured

Use this structure to construct a simple
“microsequencer”

Control reduces to programming this very simple
device
® = microprogramming

sequencer | datapath control
control

* Goal: Simpler
implementation!

microinstfuction

!

micro-PC
bequencer

Flate Opfield Eq [Next |IR JPC Ops |Exec Mem Write-Back
en sel ABE |ExSrcALUS RWM R-M Wr Dst
0000 272772 ? 10001]1
0001 BEQ x (0011 11 1)
0001 R-type x 0100 111))
0001 ORI x o110 111 -all same in Mpore machife
0001 LW X [1000 111 Setting fontrol $ignals: not
0001 SW x (1011 113/ much different fhan SC!
BEQ: 0011 xxxxxx 0 (0000| |1 0O X 0 x
0011 xxxxxx_1 (0000 11 X 0 x
R:]0100 xxxxxx Xx 0101 0 1fun1l
0101 xxxxxx X _|0000 10 0 11
ORi:[0110 xxxxxx x |0111 0 0 or1
0111 xxxxxx_x_ {0000 10 0 10
LW:{1000 xxxxxx x [1001 1 0 add1
1001 xxxxxx x |1010 101
1010 xxxxxx_x__|0000 10 1 10
SW:11011 xxxxxx x |1100 1 0 add1
1100 xxxxxx x_ (0000 10 010
Example: Jump-Counter
N\ /-
zero inc ® load ®
T o> b
Map ROM None of above: Do nothing
op-code (for wait states)

zero

inc
Counter
load

Using a Jump Counter

IR <= MEM[PC] “instruction fetch”
s
l inc

“decode™

A <=RIrs]
B <=R[rt]

S<=AfunB
0100

||
a
|
=
a
Execute

Write-back Memory

PC<=PC+4
1100

R[rd] <=
PC<=PC+4

R[rt] <= S
PC<=PC+4

R[rt] <= M
PC<=PC+4

1010

zero

Our Microsequencer

taken 41_,_.

(;IT datapath control
Micro-PC Zero
Increment
op-code Load
——| Map ROM
Stores “Load” -> Simpler than next state

Microprogram Control Specification

uPC Taken NextRPC [ops [Exec |[Mem Write-Bac
ensel |AB Ex Sr ALU S RWM M-R Wr Dst

0000 ? inc_ |1

0001 X load 11

0011 0 zero 10
BEQ 0011 1 | zero 1 1
r: | 0100 X inc 0 1 fun 1

0101 X zero 1 0 011
oRi{ 0110 X inc 00 or1l

0111 X zero 10 010
Lw:| 1000 X inc 1 0 add1

1001 X inc 101

1010 X zero 10 110
sw:| 1011 X inc 1 0 add1

1100 X zero 10 010

Adding the Dispatch ROM

Sequencer-based control
= Called “microPC” or “pPC” vs. state register

Control Value Effect
00 (Zero) Next paddress = 0
01 (Load) Next paddress =

1
dispatch ROM |

10 (Inc) Next paddress = “agder

paddress + 1

ROM: -
R-type 000000 0100 JAddress
BEQ 000100 0011 Select
ori 001101 0110 Logic

Lw 100011 1000

|

Example: Controlling Memory

This controller is powerful!
Example: What to do if memory is not ready?

e

| adar

chtapat!
ntrol

. fe— InstMem_rd
Instruction

Memory f—— IM_wait
== \

Z 1L stall F!ZIL

op-code
——| Map ROM

SW 101011 1011
Controller handles non-ideal memory

@ “instruction fetch”
| ~wait ¢ wait

A <=R[rs]
B <=R[r]

R[rd] <= S
PC<=PC+4

R[rt] <=M
PC<=PC+4

R[rt] <=§
PC<=PC+4

P
Next(PC)

“decode / operand fetch”

Execute

Write-back Memory

Multicycle Control Summary

What’s the same as SC:

= Setting of control signals, generally
What’s different from SC:

* Must handle intermediate registers

= New concept: states

= Need way to get from one state to another

* Traditional FSM Controller
* Jump table
* Microcode

Announcements

* Midterm coming up next Wednesday (11/9)
* You can pick up your graded hw
= HW #4 (chapter 5) is posted on class webpage
* As usual, due Friday (11/11) at 5pm.
= Try to finish it before the mid-term.
« | will be out of town next Monday (11/7)
= Christophe will be here to teach the class
= Mid-term review, problem solving, and questions

* Additional office hours before the test
* Wednesday (1179) 11am-1pm

End of Midterm Material

For the midterm, you need to know up to this
slide

* Know:

« Single cycle datapath/control
* Multiple cycle datapath
* Multiple cycle control, traditional FSM
* Multiple cycle control, micro-sequencing
— This is actually in the CD (section 5.7 of the book)

* Reading: Up to and including Ch. 5

Microprogramming

sequencer | datapath control

Inputs control

p-Code ROM

microinstruction ()

T

p-sequencer:
fetch,dispatch
sequential

Dispatch
ROM

Microprogramming is a fundamental concept

= implement an instruction set by building a very simple processor and interpreting
the instructions

I I
~ ‘ Decode Decode
T
To DataPath

Opcode

= essential for very complex instructions and when few register transfers are possible

= overkill when ISA matches datapath 1-1

Microprogramming

Microprogramming is a convenient method for implementing
structured control state diagrams:

= Random logic replaced by microPC sequencer and ROM

= Each line of ROM called a pinstruction:
contains sequencer control + values for control points

« limited state transitions: (jump table)
branch to zero, next sequential,
branch to pinstruction address from dispatch ROM

Horizontal pCode: one control bit in plnstruction for every
control line in datapath (like what we’ve done before)

Vertical uCode: groups of control-lines coded together in
plnstruction (e.g. possible ALU dest) (new!)

Control design reduces to Microprogramming

= Part of the design process is to develop a “language” that describes
control and is easy for humans to understand

“Macroinstruction” Interpretation

User program

Main o plus Data
Memory SUB. this can change!
—. AND

one of these is
DATA mapped into one
of these

execution
unit
CPU control —_ AND microsequence
memory
=, I e.g., Fetch Instr

Fetch Operand(s)

Calculate OR
Save Answer(s)

Designing a Microinstruction Set

1) Start with list of control signals

2) Group signals together that make sense (vs.
random): called “fields™

3) Place fields in some
(e.g., ALU operation

logical order
& ALU operands first and

microinstruction sequencing last)

4) To minimize the width, encode operations that
will never be used at the same time - vertical

Again: Alternative multicycle datapath (book)

5) Create a symbolic legend for the microinstruction
format, showing name of field values and how they
set the control signals

= Use computers to design computers

Goal here: Horizontal -> Vertical Microcode

PCWr PCWrCond PCSrc

g
o
=
g
S

N

2

3
5
1=
o
B
E
o
8
——— E
r
=
e
@
g
>

Reg File

o NV

Rw

Q

RO busa
%

busw busB H

== Control

MemtoReg ALUSelB

ALUOp

1&2) Start with list of control signals, grouped into fields

Signal name _Effect when deasserted Effect when asserted

RegWrite None

Reg. is written

'© MemtoReg Reg. write data input = ALU Reg. write data input = memory

‘= RegDst Reg. dest. no. = rt

Reg. dest. no. = rd

8 MemRead None

& MemWrite None

o lorD Memory address = PC

2 IRWrite None

Memory at address is read,
MDR <= Mem[addr]

Memory at address is written

Memory address = S

IR <= Memory

& PCWrite None
PCWriteCond None
PCSource PCSource = ALU

PC <= PCSource
IF ALUzero then PC <= PCSource
PCSource = ALUout

Compression of Fields

Only look at writeback control signals:

ExtOp Zero Extended Sign Extended
© Signal name Value Effect
g ALUOp 00 ALU adds
o 01 ALU subtracts
© 10 ALU does function code
o ALUSelB 00 2nd ALU input = 4
o 01 2nd ALU input = Reg[rt]
= 10 2nd ALU input = extended,shift left 2
s 11 2nd ALU input = extended

RegDst RegWr
= RegDst: Rt or Rd
* RegWr: Do we write? |
= MemToReg: WB from mem or ALU? :: bush
= So this takes 3 bits! HORIZONTALUCODE [] | ™™
But what are our possibilities? Hay i
* RegWr = 0, RegDst = MemToReg = X (00) &| [fmN—
= RegWr =1, RegDst = Rt, MemToReg = 1 (01)
= RegWr = 1, RegDst = Rt, MemToReg = 0 (10) e
* RegWr =1, RegDst = Rd, MemToReg = 0 (11) MemtoReg

* Only 2 bits! VERTICAL UCODE

3&4) Microinstruction Format: unencoded vs. encoded fields

Field Name Width Control Signals Set
wide narrow

ALU Control 4 2 ALUOp

SRC1 2 1 ALUSelA

SRC2 5 3 ALUSelB, ExtOp

ALU Destination 3 2 RegWrite, MemtoReg, RegDst
Memory 3 2 MemRead, MemWrite, lorD
Memory Register 1 1 IRWrite

PCWrite Control 3 2 PCWrite, PCWriteCond, PCSource
Sequencing 3 2 AddrCtl

Total width 24 15 bits

5) Legend of Fields and Symbolic Names

Field Name Values for Field Function of Field with Specific Value
ALU Add ALU adds
Subt. ALU subtracts
Func code ALU does function code
Or ALU does logical OR
SRC1 PC 1st ALU input = PC
rs 1st ALU input = Reg[rs]
SRC2 4 2nd ALU input = 4
Extend 2nd ALU input = sign ext. IR[15-0
ExtendO 2nd ALU input = zero ext. IR[15-
Extshft 2nd ALU input = sign ex., sl IR[15-0]
rt 2nd ALU input = Reg[rt]
destination rd ALU Reg[rd] = ALUout
rt ALU Reg[rt] = ALUout
rt Mem Reg[rt] = Mem
Memory Read PC Read memory using PC
Read ALU Read memory using ALUout for addr
Write ALU Write memory using ALUout for addr
Memory register IR IR = Mem
PC write ALU PC = ALU
ALUoutCond IF ALU Zero then PC = ALUout
Sequencing Seq Go to sequential pinstruction
Fetch Go to the first microinstruction

Dispatch

Dispatch using ROM.

On your own time: what do these fieldnames mean?

Destination:

Code Name RegWrite MemToReg RegDest
00 - 0 X X
01 rd ALU 1 0 1
10 rt ALU 1 0 0
11 rt MEM 1 1 0

SRC2:

Code Name ALUSelB ExtOp
000 - X X
001 4 00 X
010 rt 01 X
011 ExtShft 10 1
100 Extend 11 1
111 ExtendO 11 0

Horizontal vs. Vertical Microcode

Horizontal Vertical

* Larger size « Smaller size
* More straightforward « Requires recoding

* Possibly more general * More restrictive

Specific Sequencer (from before)

Sequencer-based control unit from earlier
= Called “microPC” or “pPC” vs. state register

Code Name Effect
00 fetch Next paddress = 0

1
o1 dispatch Next paddress = dispatch ROM

Legacy Software and Microprogramming

10 seq Next paddress = paddress + 1
Mux -
ROM:)

R-type 000000 0100 HAddress

BEQ 000100 0011 Select

ori 001101 0110 Logic 1

w 100011 1000 !

sw 101011 1011

IBM bet company on 360 Instruction Set Architecture (ISA):
single instruction set for many classes of machines
© (8-hit to 64-bit)
Stuart Tucker stuck with job of what to do about software
compatibility
= |If microprogramming could easily do same instruction set on many
different microarchitectures, then why couldn’t multiple

microprograms do multiple instruction sets on the same
microarchitecture?

Coined term “emulation”: instruction set interpreter in microcode
for non-native instruction set

Very successful: in early years of IBM 360 it was hard to know
whether old instruction set or new instruction set was more
frequently used

Microprogramming in IBM 360

M30 M40 M50 M65
Datapath width (bits) 8 16 32 64
pinst width (bits) 50 52 85 87
ucode size (K pinsts) 4 4| 275 2.75
ustore technology CCROS| TCROS| BCROS| BCROS
ustore cycle (ns) 750 625 500 200
memory cycle (ns) 1500| 2500| 2000 750
Rental fee ($K/month) 4 7 15 35

Only fastest models (75 and 95) were hardwired

VLSI & Microprogramming

By late seventies

= technology assumption about ROM & RAM speed became
invalid

= micromachines became more complicated

= to overcome slower ROM, micromachines were pipelined

= complex instruction sets led to the need for subroutine and call
stacks in ucode

= need for fixing bugs in control programs was in conflict with
read-only nature of uROM

= VAX instruction set had 400-500 kb of control store!

= introduction of caches and buffers, especially for
instructions, made multiple-cycle execution of reg-reg
instructions unattractive

Modern Usage

Microprogramming is far from extinct

Played a crucial role in micros of the Eighties
= Motorola 68K series
= Intel 386 and 486

Microcode is present in most modern CISC micros in
an assisting role (e.g. AMD Athlon, Intel Pentium-4)

= Most instructions are executed directly, i.e., with hard-wired
control

= Infrequently-used and/or complicated instructions invoke the
microcode engine

Patchable microcode common for post-fabrication
bug fixes, e.g. Intel Pentiums load mcode patches
at bootup

Microprogramming Pros and Cons

Ease of design
Flexibility
= Easy to adapt to changes in organization, timing, technology
= Can make changes late in design cycle, or even in the field
Can implement very powerful instruction sets (just more
control memory)
Generality
* Can implement multiple instruction sets on same machine.
* Can tailor instruction set to application.
Compatibility
= Many organizations, same instruction set
Costly to implement
Slow

Thought: Microprogramming one inspiration for RISC

If simple instruction could execute at very high
clock rate...

If you could even write compilers to produce
microinstructions...

If most programs use simple instructions and addressing
modes...

If microcode is kept in RAM instead of ROM so as to fix bugs ...

If same memory used for control memory could be used
instead as cache for “macroinstructions”...

Then why not skip instruction interpretation by a
microprogram and simply compile directly into lowest
language of machine? (microprogramming is overkill when
ISA matches datapath 1-1)

Overview of Control

Control may be designed using one of several initial representations. The
choice of sequence control, and how logic is represented, can then be
determined independently; the control can then be implemented with
one of several methods using a structured logic technique.

Initial Representation

Sequencing Control
Function

Logic Representation

Implementation
Technique

Finite State Diagram

)
/

Explicit Next State

/

|

Logic Equations

)

i

PLA

“hardwired control

Microprogram

Microprogram counter
+ Dispatch ROMs

Truth Tables

oM

nicroprogrammed control

Summary (1 of 3)

Disadvantages of the Single Cycle Processor
* Long cycle time

* Cycle time is too long for all instructions except the
Load

Multiple Cycle Processor:
= Divide the instructions into smaller steps
= Execute each step (instead of the entire instruction)
in one cycle
Partition datapath into equal size chunks to
minimize cycle time
* ~10 levels of logic between latches

Summary (cont’d) (2 of 3)

Control is specified by finite state diagram
Specialize state-diagrams easily captured by

microsequencer

= simple increment & “branch” fields

= datapath control fields

Control design reduces to Microprogramming
Control is more complicated with:
= complex instruction sets

= restricted datapaths (see the book)

Simple Instruction set and powerful datapath = simple

control

= could try to reduce hardware (see the book)

* rather go for speed => many instructions at once!

Summary (3 of 3)

Microprogramming is a fundamental concept

= implement an instruction set by building a very simple processor and
interpreting the instructions

= essential for very complex instructions and when few register transfers are
possible

* Control design reduces to Microprogramming

Design of a Microprogramming language
= Start with list of control signals

= Group signals together that make sense (vs. random): called “fields™

* Place fields in some logical order (e.g., ALU operation & ALU operands first
and microinstruction sequencing last)

= To minimize the width, encode operations that will never be used at the
same time

Create a symbolic legend for the microinstruction format, showing name of
field values and how they set the control signals

Where to get more information?

Multiple Cycle Controller: Appendix C of your
text book.

Microprogramming: Section 5.5 of your text
book.

D. Patterson, “Microprogramming’, Scientific
American, March 1983.

D. Patterson and D. Ditzel, “The Case for the
Reduced Instruction Set Computer,”
Computer Architecture News 8, 6 (October
15, 1980)

