
EEC 170
Computer Architecture

Fall 2005

Cache Introduction Review

Courtesy of Prof. Mary Jane Irwin (Penn State University)

Review: The Memory Hierarchy

Increasing
distance
from the
processor in
access time

L1$

L2$

Main Memory

Secondary Memory

Processor

(Relative) size of the memory at each level

Inclusive– what
is in L1$ is a
subset of what
is in L2$ is a
subset of what
is in MM that is
a subset of is
in SM

4-8 bytes (word)

1 to 4 blocks

1,024+ bytes (disk sector = page)

8-32 bytes (block)

Take advantage of the principle of locality to present the
user with as much memory as is available in the cheapest
technology at the speed offered by the fastest technology

Typical Memory Reference Patterns

Address

Time

Instruction
fetches

Stack
accesses

Data
accesses

n loop iterations
linear sequence

The Memory Hierarchy: Why Does it Work?

Temporal Locality (Locality in Time):
⇒ Keep most recently accessed data items closer to the processor

Spatial Locality (Locality in Space):
⇒ Move blocks consisting of contiguous words to the upper levels

Lower Level
MemoryUpper Level

Memory
To Processor

From Processor
Blk X

Blk Y

The Memory Hierarchy: Terminology
Hit: data appears in some block in the upper level (Blk X)

Hit Rate: the fraction of memory accesses found in the upper level
Hit Time: Time to access the upper level which consists of

RAM access time + Time to determine hit/miss

Miss: data needs to be retrieve from a block in the lower
level (Blk Y)

Miss Rate = 1 - (Hit Rate)
Miss Penalty: Time to replace a block in the upper level

+ Time to deliver the block the processor
Hit Time << Miss Penalty

Lower Level
MemoryUpper Level

Memory
To Processor

From Processor
Blk X

Blk Y

How is the Hierarchy Managed?

registers ↔ memory
by compiler (programmer?)

cache ↔ main memory
by the cache controller hardware

main memory ↔ disks
by the operating system (virtual memory)
by the programmer (files)
virtual to physical address mapping assisted by the hardware
(TLB)

Two questions to answer (in hardware):
Q1: How do we know if a data item is in the cache?
Q2: If it is, how do we find it?

Direct mapped
For each item of data at the lower level, there is exactly one
location in the cache where it might be - so lots of items at
the lower level share locations in the upper level

Address mapping:
(block address) modulo (# of blocks in the cache)

First consider when block is one word

Cache Caching: A Simple First Example

00
01
10
11

Cache
0000xx
0001xx
0010xx
0011xx
0100xx
0101xx
0110xx
0111xx
1000xx
1001xx
1010xx
1011xx
1100xx
1101xx
1110xx
1111xx

Main Memory

Tag Data

Q1: Is it there?

Compare the cache
tag to the high order 2
memory address bits to
tell if the memory block
is in the cache

Valid

Two low order bits
define the byte in the
word (32-b words)

Q2: How do we find it?

Use next 2 low order
memory address bits
– the index – to
determine which
cache block (i.e.,
modulo the number of
blocks in the cache)

(block address) modulo (# of blocks in the cache)

Index

Caching: A Simple First Example

00
01
10
11

Cache

Main Memory

Q2: How do we find it?

Use next 2 low order
memory address bits
– the index – to
determine which
cache block (i.e.,
modulo the number of
blocks in the cache)

Tag Data

Q1: Is it there?

Compare the cache
tag to the high order 2
memory address bits to
tell if the memory block
is in the cache

Valid

0000xx
0001xx
0010xx
0011xx
0100xx
0101xx
0110xx
0111xx
1000xx
1001xx
1010xx
1011xx
1100xx
1101xx
1110xx
1111xx

Two low order bits
define the byte in the
word (32b words)

(block address) modulo (# of blocks in the cache)

Index

Direct Mapped Cache

0 1 2 3

4 3 4 15

Consider the main memory word reference string
0 1 2 3 4 3 4 14Start with an empty cache - all

blocks initially marked as not valid

Direct Mapped Cache

0 1 2 3

4 3 4 15

Consider the main memory word reference string
0 1 2 3 4 3 4 15

00 Mem(0) 00 Mem(0)
00 Mem(1)

00 Mem(0) 00 Mem(0)
00 Mem(1)
00 Mem(2)

miss miss miss miss

miss misshit hit

00 Mem(0)
00 Mem(1)
00 Mem(2)
00 Mem(3)

01 Mem(4)
00 Mem(1)
00 Mem(2)
00 Mem(3)

01 Mem(4)
00 Mem(1)
00 Mem(2)
00 Mem(3)

01 Mem(4)
00 Mem(1)
00 Mem(2)
00 Mem(3)

01 4

11 15

00 Mem(1)
00 Mem(2)

00 Mem(3)

Start with an empty cache - all
blocks initially marked as not valid

One word/block, cache size = 1K words
MIPS Direct Mapped Cache Example

20Tag 10
Index

DataIndex TagValid
0
1
2
.
.
.

1021
1022
1023

31 30 . . . 13 12 11 . . . 2 1 0
Byte
offset

What kind of locality are we taking advantage of?

20

Data

32

Hit

Read hits (I$ and D$)
this is what we want!

Write hits (D$ only)
allow cache and memory to be inconsistent

- write the data only into the cache block (write-back the cache
contents to the next level in the memory hierarchy when that cache
block is “evicted”)

- need a dirty bit for each data cache block to tell if it needs to be
written back to memory when it is evicted

require the cache and memory to be consistent
- always write the data into both the cache block and the next level in

the memory hierarchy (write-through) so don’t need a dirty bit
- writes run at the speed of the next level in the memory hierarchy – so

slow! – or use a write buffer, a buffer that holds the data that is
waiting to be written, so would only have to stall if the write buffer is
full

Handling Cache Hits Write Buffer for Write-Through Caching

Write buffer between the cache and memory
Processor: writes data into the cache and the write buffer
Memory controller: writes contents of the write buffer to memory

The write buffer is just a FIFO:
Typical number of entries: 4
Works fine if Store frequency (w.r.t. time) << 1 / DRAM write cycle

Memory system designer’s nightmare:
Store frequency (w.r.t. time) → 1 / DRAM write cycle
write buffer saturation

- One solution is to use a write-back cache; another is to use an L2
cache (next lecture)

Processor
Cache

write buffer

DRAM

Review: Why Pipeline? For Throughput!

I
n
s
t
r.

O
r
d
e
r

Time (clock cycles)

Inst 0

Inst 1

Inst 2

Inst 4

Inst 3

A
LUI$ Reg D$ Reg

A
LUI$ Reg D$ Reg

A
LUI$ Reg D$ Reg

A
LUI$ Reg D$ Reg

A
LUI$ Reg D$ Reg

To keep the
pipeline

running at its
maximum rate
both I$ and D$
need to satisfy
a request from

the datapath
every cycle.

What happens
when they

can’t do that?

To avoid a structural hazard need two caches on-chip:
one for instructions (I$) and one for data (D$)

Another Reference String Mapping

0 4 0 4

0 4 0 4

Consider the main memory word reference string
0 4 0 4 0 4 0 4Start with an empty cache - all

blocks initially marked as not valid

Another Reference String Mapping

0 4 0 4

0 4 0 4

Consider the main memory word reference string
0 4 0 4 0 4 0 4

miss miss miss miss

miss miss miss miss

00 Mem(0) 00 Mem(0)
01 4

01 Mem(4)
000

00 Mem(0)
01

4

00 Mem(0)
01 4

00 Mem(0)
01 4

01 Mem(4)
000

01 Mem(4)
000

Start with an empty cache - all
blocks initially marked as not valid

Ping pong effect due to conflict misses - two memory
locations that map into the same cache block

Sources of Cache Misses
Compulsory (cold start or process migration, first
reference):

First access to a block, “cold” fact of life, not a whole lot you
can do about it
If you are going to run “billions” of instruction, compulsory
misses are insignificant

Conflict (collision):
Multiple memory locations mapped to the same cache location
Solution 1: increase cache size
Solution 2: increase associativity

Capacity:
Cache cannot contain all blocks accessed by the program
Solution: increase cache size

Handling Cache Misses
Read misses (I$ and D$)

stall the entire pipeline, fetch the block from the next level in the
memory hierarchy, install it in the cache, then restart the pipeline
and reissue the read request

Write misses (D$ only)
1. stall the pipeline, fetch the block from next level in the memory

hierarchy, install it in the cache (which may involve having to evict
a dirty block if a write-back cache), then restart the pipeline and
reissue the write request

or (normally used in write-back caches)
2. Write allocate – just write the word into the cache updating both

the tag and data, no need to check for cache hit, no need to stall
or (normally used in write-through caches with a write buffer)
3. No-write allocate – skip the cache write and just write the word to

the write buffer (and eventually to the next memory level), no need
to stall if the write buffer isn’t full; must invalidate the cache block
since it will become inconsistent (on a hit)

Multiword Block Direct Mapped Cache

8
Index

DataIndex TagValid
0
1
2
.
.
.

253
254
255

31 30 . . . 13 12 11 . . . 4 3 2 1 0 Byte
offset

20

20Tag

Hit Data

32

Block offset

Four words/block, cache size = 1K words

What kind of locality are we taking advantage of?

Taking Advantage of Spatial Locality

0

Let cache block hold more than one word
0 1 2 3 4 3 4 15

1 2

3 4 3

4 15

Start with an empty cache - all
blocks initially marked as not valid

Taking Advantage of Spatial Locality

0

Let cache block hold more than one word
0 1 2 3 4 3 4 15

1 2

3 4 3

4 15

00 Mem(1) Mem(0)

miss

00 Mem(1) Mem(0)

hit

00 Mem(3) Mem(2)
00 Mem(1) Mem(0)

miss

hit

00 Mem(3) Mem(2)
00 Mem(1) Mem(0)

miss

00 Mem(3) Mem(2)
00 Mem(1) Mem(0)

01 5 4
hit

00 Mem(3) Mem(2)
01 Mem(5) Mem(4)

hit

00 Mem(3) Mem(2)
01 Mem(5) Mem(4)

00 Mem(3) Mem(2)
01 Mem(5) Mem(4)

miss

11 15 14

Start with an empty cache - all
blocks initially marked as not valid

Miss Rate vs Block Size vs Cache Size

0

5

10

8 16 32 64 128 256

Block size (bytes)

M
is

s
ra

te
 (%

) 8 KB
16 KB
64 KB
256 KB

Miss rate goes up if the block size becomes a significant
fraction of the cache size because the number of blocks
that can be held in the same size cache is smaller
(increasing capacity misses)

Block Size Tradeoff

Larger block size means larger miss penalty
- Takes longer time to fill up the block

Miss
Penalty

Block Size

Miss
Rate Exploits Spatial Locality

Fewer blocks
compromises
Temporal Locality

Block Size

Average
Access

Time
Increased Miss

Penalty
& Miss Rate

Block Size

In general, Average Memory Access Time
= Hit Time + Miss Penalty x Miss Rate

Larger block sizes take advantage of spatial locality but
If the block size is too big relative to the cache size, the miss rate
will go up

- Too few cache blocks

Multiword Block Considerations
Read misses (I$ and D$)

Processed the same as for single word blocks – a miss returns
the entire block from memory
Miss penalty grows as block size grows

- Latency to first word in block + transfer time for remaining words
- Early restart – resume execution as soon as the requested word

of the block is returned
- Requested word first – requested word is transferred from the

memory to the cache first

Nonblocking cache – allows the processor to access the cache
while the cache is handling an earlier miss

Write misses (D$)
Can’t use write allocate or will end up with a “garbled” block in
the cache (e.g., for 4 word blocks, a new tag, one word of data
from the new block, and three words of data from the old
block), so must fetch the block from memory first and pay the
stall time

Cache Summary
The Principle of Locality:

Program likely to access a relatively small portion of the address
space at any instant of time

- Temporal Locality: Locality in Time
- Spatial Locality: Locality in Space

Three major categories of cache misses:
Compulsory misses: sad facts of life. Example: cold start misses
Conflict misses: increase cache size and/or associativity
Nightmare Scenario: ping pong effect!
Capacity misses: increase cache size

Cache design space
total size, block size, associativity (replacement policy)
write-hit policy (write-through, write-back)
write-miss policy (write allocate, write buffers)

