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Review:  The Memory Hierarchy
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The Memory Hierarchy:  Why Does it Work?

Temporal Locality (Locality in Time):
⇒ Keep most recently accessed data items closer to the processor

Spatial Locality (Locality in Space):
⇒ Move blocks consisting of contiguous words to the upper levels 
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The Memory Hierarchy:  Terminology
Hit: data appears in some block in the upper level (Blk X) 

Hit Rate: the fraction of memory accesses found in the upper level
Hit Time: Time to access the upper level which consists of

RAM access time + Time to determine hit/miss

Miss: data needs to be retrieve from a block in the lower 
level (Blk Y)

Miss Rate  = 1 - (Hit Rate)
Miss Penalty: Time to replace a block in the upper level                   

+ Time to deliver the block the processor 
Hit Time << Miss Penalty
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How is the Hierarchy Managed?

registers ↔ memory
by compiler (programmer?)

cache ↔ main memory
by the cache controller hardware

main memory ↔ disks
by the operating system (virtual memory)
by the programmer (files)
virtual to physical address mapping assisted by the hardware 
(TLB)



Two questions to answer (in hardware):
Q1:  How do we know if a data item is in the cache?
Q2:  If it is, how do we find it?

Direct mapped
For each item of data at the lower level, there is exactly one 
location in the cache where it might be - so lots of items at 
the lower level share locations in the upper level

Address mapping:
(block address) modulo (# of blocks in the cache)

First consider when block is one word

Cache Caching:  A Simple First Example
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Q1: Is it there?

Compare the cache 
tag to the high order 2 
memory address bits to 
tell if the memory block 
is in the cache
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word (32-b words)

Q2: How do we find it?

Use next 2 low order 
memory address bits
– the index – to 
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cache block (i.e., 
modulo the number of 
blocks in the cache)
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Caching:  A Simple First Example
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Tag Data

Q1: Is it there?

Compare the cache 
tag to the high order 2 
memory address bits to 
tell if the memory block 
is in the cache

Valid
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Two low order bits 
define the byte in the 
word (32b words)

(block address) modulo (# of blocks in the cache)
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Direct Mapped Cache

0 1 2 3

4 3 4 15

Consider the main memory word reference string
0   1   2   3   4   3   4   14Start with an empty cache - all 

blocks initially marked as not valid

Direct Mapped Cache

0 1 2 3

4 3 4 15

Consider the main memory word reference string
0   1   2   3   4   3   4   15

00    Mem(0) 00    Mem(0)
00    Mem(1)

00    Mem(0) 00    Mem(0)
00    Mem(1)
00    Mem(2)

miss miss miss miss

miss misshit hit

00    Mem(0)
00    Mem(1)
00    Mem(2)
00    Mem(3)

01    Mem(4)
00    Mem(1)
00    Mem(2)
00    Mem(3)

01    Mem(4)
00    Mem(1)
00    Mem(2)
00    Mem(3)

01    Mem(4)
00    Mem(1)
00    Mem(2)
00    Mem(3)

01 4

11 15

00    Mem(1)
00    Mem(2)

00    Mem(3)

Start with an empty cache - all 
blocks initially marked as not valid

One word/block, cache size = 1K words
MIPS Direct Mapped Cache Example
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Read hits (I$ and D$)
this is what we want!

Write hits (D$ only)
allow cache and memory to be inconsistent

- write the data only into the cache block (write-back the cache 
contents to the next level in the memory hierarchy when that cache 
block is “evicted”)

- need a dirty bit for each data cache block to tell if it needs to be 
written back to memory when it is evicted

require the cache and memory to be consistent
- always write the data into both the cache block and the next level in 

the memory hierarchy (write-through) so don’t need a dirty bit
- writes run at the speed of the next level in the memory hierarchy – so 

slow! – or use a write buffer, a buffer that holds the data that is 
waiting to be written, so would only have to stall if the write buffer is 
full

Handling Cache Hits Write Buffer for Write-Through Caching

Write buffer between the cache and memory
Processor:  writes data into the cache and the write buffer
Memory controller:  writes contents of the write buffer to memory

The write buffer is just a FIFO:
Typical number of entries:  4
Works fine if   Store frequency (w.r.t. time) << 1 / DRAM write cycle

Memory system designer’s nightmare:
Store frequency (w.r.t. time)  → 1 / DRAM write cycle
write buffer saturation

- One solution is to use a write-back cache; another is to use an L2 
cache (next lecture)

Processor
Cache

write buffer

DRAM

Review: Why Pipeline? For Throughput!
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To keep the 
pipeline 

running at its 
maximum rate 
both I$ and D$ 
need to satisfy 
a request from 

the datapath
every cycle.

What happens     
when they 

can’t do that?

To avoid a structural hazard need two caches on-chip: 
one for instructions (I$) and one for data (D$)

Another Reference String Mapping

0 4 0 4

0 4 0 4

Consider the main memory word reference string
0   4   0   4   0   4   0   4Start with an empty cache - all 

blocks initially marked as not valid

Another Reference String Mapping

0 4 0 4

0 4 0 4

Consider the main memory word reference string
0   4   0   4   0   4   0   4

miss miss miss miss

miss miss miss miss

00    Mem(0) 00    Mem(0)
01 4

01    Mem(4)
000

00    Mem(0)
01

4
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01 4
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01 4

01    Mem(4)
000

01    Mem(4)
000

Start with an empty cache - all 
blocks initially marked as not valid

Ping pong effect due to conflict misses - two memory 
locations that map into the same cache block

Sources of Cache Misses
Compulsory (cold start or process migration, first 
reference):

First access to a block, “cold” fact of life, not a whole lot you 
can do about it
If you are going to run “billions” of instruction, compulsory 
misses are insignificant

Conflict (collision):
Multiple memory locations mapped to the same cache location
Solution 1: increase cache size
Solution 2: increase associativity

Capacity:
Cache cannot contain all blocks accessed by the program
Solution: increase cache size 



Handling Cache Misses
Read misses (I$ and D$)

stall the entire pipeline, fetch the block from the next level in the
memory hierarchy, install it in the cache, then restart the pipeline 
and reissue the read request

Write misses (D$ only)
1. stall the pipeline, fetch the block from next level in the memory 

hierarchy, install it in the cache (which may involve having to evict 
a dirty block if a write-back cache), then restart the pipeline and 
reissue the write request

or (normally used in write-back caches)
2. Write allocate – just write the word into the cache updating both 

the tag and data, no need to check for cache hit, no need to stall
or (normally used in write-through caches with a write buffer)
3. No-write allocate – skip the cache write and just write the word to 

the write buffer (and eventually to the next memory level), no need 
to stall if the write buffer isn’t full; must invalidate the cache block 
since it will become inconsistent (on a hit)

Multiword Block Direct Mapped Cache
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Four  words/block, cache size = 1K words

What kind of locality are we taking advantage of?

Taking Advantage of Spatial Locality 

0

Let cache block hold more than one word
0   1   2   3   4   3   4   15

1 2

3 4 3
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Start with an empty cache - all 
blocks initially marked as not valid

Taking Advantage of Spatial Locality 
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Let cache block hold more than one word
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hit
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11 15 14

Start with an empty cache - all 
blocks initially marked as not valid

Miss Rate vs Block Size vs Cache Size

0

5

10

8 16 32 64 128 256

Block size (bytes)

M
is

s 
ra

te
 (%

) 8 KB
16 KB
64 KB
256 KB

Miss rate goes up if the block size becomes a significant 
fraction of the cache size because the number of blocks 
that can be held in the same size cache is smaller 
(increasing capacity misses)

Block Size Tradeoff

Larger block size means larger miss penalty
- Takes longer time to fill up the block

Miss
Penalty

Block Size

Miss
Rate Exploits Spatial Locality

Fewer blocks 
compromises
Temporal Locality

Block Size
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Access

Time
Increased Miss 

Penalty
& Miss Rate

Block Size

In general, Average Memory Access Time
= Hit Time  +   Miss Penalty x Miss Rate

Larger block sizes take advantage of spatial locality but
If the block size is too big relative to the cache size, the miss rate 
will go up

- Too few cache blocks 



Multiword Block Considerations
Read misses (I$ and D$)

Processed the same as for single word blocks – a miss returns 
the entire block from memory
Miss penalty grows as block size grows

- Latency to first word in block + transfer time for remaining words
- Early restart – resume execution as soon as the requested word 

of the block is returned
- Requested word first – requested word is transferred from the 

memory to the cache first

Nonblocking cache – allows the processor to access the cache 
while the cache is handling an earlier miss

Write misses (D$)
Can’t use write allocate or will end up with a “garbled” block in 
the cache (e.g., for 4 word blocks, a new tag, one word of data 
from the new block, and three words of data from the old 
block), so must fetch the block from memory first and pay the 
stall time

Cache Summary
The Principle of Locality:

Program likely to access a relatively small portion of the address 
space at any instant of time

- Temporal Locality: Locality in Time
- Spatial Locality: Locality in Space

Three major categories of cache misses:
Compulsory misses: sad facts of life.  Example: cold start misses
Conflict misses:  increase cache size and/or associativity
Nightmare Scenario: ping pong effect!
Capacity misses: increase cache size

Cache design space
total size, block size, associativity (replacement policy)
write-hit policy (write-through, write-back)
write-miss policy (write allocate, write buffers)


