
EEC 170
Computer Architecture

Fall 2005

Improving Cache Performance

Courtesy of Prof. Mary Jane Irwin (Penn State University)

Administrative
� Problem #6 is posted

z Last set of homework ☺
z You should be able to answer each of them in 10-15 min

� Quiz on Wednesday (12/7)
z Chapter 7: memory hierarchy, caches, virtual memory
z Lowest quiz grade will be dropped

� Last lecture (12/7)
z Final review

- I will email you a sample final by then

z Problem solving
z Come prepared with questions to discuss

Review: The Memory Hierarchy

Increasing
distance
from the
processor in
access time

L1$

L2$

Main Memory

Secondary Memory

Processor

(Relative) size of the memory at each level

Inclusive– what
is in L1$ is a
subset of what
is in L2$ is a
subset of what
is in MM that is
a subset of is
in SM

4-8 bytes (word)

1 to 4 blocks

1,024+ bytes (disk sector = page)

8-32 bytes (block)

� Take advantage of the principle of locality to present the
user with as much memory as is available in the cheapest
technology at the speed offered by the fastest technology

Review: Principle of Locality
� Temporal Locality

z Keep most recently accessed data items closer to the processor

� Spatial Locality
z Move blocks consisting

of contiguous words
to the upper levels

� Hit Time << Miss Penalty
z Hit: data appears in some block in the upper level (Blk X)

- Hit Rate: the fraction of accesses found in the upper level
- Hit Time: RAM access time + Time to determine hit/miss

z Miss: data needs to be retrieve from a lower level block (Blk Y)
- Miss Rate = 1 - (Hit Rate)
- Miss Penalty: Time to replace a block in the upper level with a block

from the lower level + Time to deliver this block’s word to the processor
- Miss Types: Compulsory, Conflict, Capacity

Lower Level
MemoryUpper Level

Memory
To Processor

From Processor Blk X
Blk Y

Processor

$

MEM

Memory

reference stream
<op,addr>, <op,addr>,<op,addr>,<op,addr>, . . .

op: i-fetch, read, write

Optimize the memory system
organization to minimize the
average memory access time for
typical workloads

Workload or
Benchmark
programs

The Art of Memory System Design Impact of Memory Hierarchy on Algorithms

� Today CPU time is a function of (ops, cache misses)
� What does this mean to Compilers, Data structures, Algorithms?

z Quicksort: fastest comparison based sorting algorithm when keys fit in
memory. Complexity O(n.log(n))

z Radix sort: also called “linear time” sort. Complexity O(n)
For keys of fixed length and fixed radix a constant number of passes

over the data is sufficient independent of the number of keys

� “The Influence of Caches on the Performance of Sorting” by A. LaMarca
and R.E. Ladner. Proceedings of the Eighth Annual ACM-SIAM
Symposium on Discrete Algorithms, January, 1997, 370-379.
z For Alphastation 250, 32 byte blocks, direct mapped L2 2MB cache, 8 byte

keys, from 4000 to 4000000

0

100

200

300

400

500

600

700

800

1000 10000 100000 1000000 1E+07

Quick (Instr/key)
Radix (Instr/key)

Job size in keys

Instructions/key

Radix sort

Quick
sort

Quicksort vs. Radix as vary number keys: Instructions

0

100

200

300

400

500

600

700

800

1000 10000 100000 1000000 1E+07

Quick (Instr/key)
Radix (Instr/key)
Quick (clocks/key)
Radix (clocks/key)

Time

Job size in keys

Radix sort

Quick
sort

Quicksort vs. Radix as vary number keys: Instrs & Time

Instructions/key

0

1

2

3

4

5

1000 10000 100000 1000000 1000000
0

Quick(miss/key)
Radix(miss/key)

Cache misses

Job size in keys

Radix sort

Quick
sort

What is proper approach to fast algorithms?

Quicksort vs. Radix as vary number keys: Cache misses

Control

Datapath

Processor

Registers

Main
Memory
(DRAM)

O
n-Chip
Cache

Consider a Simplified Memory System
� Single cache (on-chip) (like your bookshelf)

z Much smaller than main memory
z How do we build it? (big/small?)
z How do we look things up in it? (search/index/etc.?)
z How do we manage it? (when we run out of space?)

Measuring Cache Performance
� Assuming cache hit costs are included as part of the

normal CPU execution cycle, then
CPU time = IC × CPI × CC

= IC × (CPIideal + Memory-stall cycles) × CC

CPIstall

� Memory-stall cycles come primarily from cache misses (a
sum of read-stalls and write-stalls)

Read-stall cycles = reads/program × read miss rate
× read miss penalty

Write-stall cycles = (writes/program × write miss rate
× write miss penalty) + write buffer stalls

� For write-through caches, we can simplify this to
Memory-stall cycles = miss rate × miss penalty

Impacts of Cache Performance
� Relative cache penalty increases as processor

performance improves (faster clock rate and/or lower CPI)
z The memory system is unlikely to improve as fast as processor

cycle time. When calculating CPIstall, the cache miss penalty is
measured in processor clock cycles needed to handle a miss

z The lower the CPIideal, the more pronounced the impact of stalls

� A processor with a CPIideal of 2, a 100 cycle miss penalty,
36% load/store instr’s, and 2% I$ and 4% D$ miss rates

Memory-stall cycles = 2% × 100 + 36% × 4% × 100 = 3.44
So CPIstalls = 2 + 3.44 = 5.44

� What if the CPIideal is reduced to 1?
� What if the processor clock rate is doubled (doubling the

miss penalty)?

Reducing Cache Miss Rates #1
1. Allow more flexible block placement

� In a direct mapped cache a memory block maps to
exactly one cache block

� At the other extreme, could allow a memory block to be
mapped to any cache block – fully associative cache

� A compromise is to divide the cache into sets each of
which consists of n “ways” (n-way set associative). A
memory block maps to a unique set (specified by the
index field) and can be placed in any way of that set (so
there are n choices)

(block address) modulo (# sets in the cache)

Set Associative Cache Example

0

Cache

Main Memory

Q2: How do we find it?

Use next 1 low order
memory address bit to
determine which
cache set (i.e., modulo
the number of sets in
the cache)

Tag Data

Q1: Is it there?

Compare all the cache
tags in the set to the
high order 3 memory
address bits to tell if
the memory block is in
the cache

V

0000xx
0001xx
0010xx
0011xx
0100xx
0101xx
0110xx
0111xx
1000xx
1001xx
1010xx
1011xx
1100xx
1101xx
1110xx
1111xx

Two low order bits
define the byte in the
word (32-b words)
One word blocks

Set

1

0
1

Way

0

1

Another Reference String Mapping

0 4 0 4

� Consider the main memory word reference string
0 4 0 4 0 4 0 4Start with an empty cache - all

blocks initially marked as not valid

Another Reference String Mapping

0 4 0 4

� Consider the main memory word reference string
0 4 0 4 0 4 0 4

miss miss hit hit

000 Mem(0) 000 Mem(0)

Start with an empty cache - all
blocks initially marked as not valid

010 Mem(4) 010 Mem(4)

000 Mem(0) 000 Mem(0)

010 Mem(4)

� Solves the ping pong effect in a direct mapped cache
due to conflict misses since now two memory locations
that map into the same cache set can co-exist!

Four-Way Set Associative Cache
� 28 = 256 sets each with four ways (each with one block)

31 30 . . . 13 12 11 . . . 2 1 0
Byte
offset

DataTagV
0
1
2
.
.
.

253
254
255

DataTagV
0
1
2
.
.
.

253
254
255

DataTagV
0
1
2
.
.
.

253
254
255

Index DataTagV
0
1
2
.
.
.

253
254
255

8
Index

22Tag

Hit Data

32

4x1 select

Range of Set Associative Caches
� For a fixed size cache, each increase by a factor of two

in associativity doubles the number of blocks per set (i.e.,
the number or ways) and halves the number of sets –
decreases the size of the index by 1 bit and increases
the size of the tag by 1 bit

Block offset Byte offsetIndexTag

Range of Set Associative Caches
� For a fixed size cache, each increase by a factor of two

in associativity doubles the number of blocks per set (i.e.,
the number or ways) and halves the number of sets –
decreases the size of the index by 1 bit and increases
the size of the tag by 1 bit

Block offset Byte offsetIndexTag

Decreasing associativity

Fully associative
(only one set)
Tag is all bits except
block and byte offset

Direct mapped
(only one way)
Smaller tags

Increasing associativity

Selects the setUsed for tag compare Selects the word in the block

Costs of Set Associative Caches
� When a miss occurs, which way’s block do we pick for

replacement?
z Least Recently Used (LRU): the block replaced is the one that

has been unused for the longest time
- Must have hardware to keep track of when each way’s block was

used relative to the other blocks in the set
- For 2-way set associative, takes one bit per set → set the bit when a

block is referenced (and reset the other way’s bit)

� N-way set associative cache costs
z N comparators (delay and area)
z MUX delay (set selection) before data is available
z Data available after set selection (and Hit/Miss decision). In a

direct mapped cache, the cache block is available before the
Hit/Miss decision

- So its not possible to just assume a hit and continue and recover later
if it was a miss

Benefits of Set Associative Caches
� The choice of direct mapped or set associative depends

on the cost of a miss versus the cost of implementation

0

2

4

6

8

10

12

1-way 2-way 4-way 8-way
Associativity

M
is

s
R

at
e

4KB
8KB
16KB
32KB
64KB
128KB
256KB
512KB

Data from Hennessy &
Patterson, Computer
Architecture, 2003

� Largest gains are in going from direct mapped to 2-way
(20%+ reduction in miss rate)

Reducing Cache Miss Rates #2
2. Use multiple levels of caches

� With advancing technology have more than enough
room on the die for bigger L1 caches or for a second
level of caches – normally a unified L2 cache – and in
some cases even a unified L3 cache

� For our example, CPIideal of 2, 100 cycle miss penalty
(to main memory), 36% load/stores, a 2% (4%) L1 I$
(D$) miss rate, add a UL2$ that has a 25 cycle miss
penalty and a 0.5% miss rate

CPIstalls = 2 + .02×25 + .36×.04×25 + .005×100 +
.36×.005×100 = 3.54

(as compared to 5.44 with no L2$)

Multilevel Cache Design Considerations
� Design considerations for L1 and L2 caches are very

different
z Primary cache should focus on minimizing hit time in support of

a shorter clock cycle
- Smaller with smaller block sizes

z Secondary cache(s) should focus on reducing miss rate to
reduce the penalty of long main memory access times

- Larger with larger block sizes

� The miss penalty of the L1 cache is significantly reduced
by the presence of an L2 cache – so it can be smaller
(i.e., faster) but have a higher miss rate

� For the L2 cache, hit time is less important than miss rate
z The L2$ hit time determines L1$’s miss penalty
z L2$ local miss rate >> than the global miss rate

Key Cache Design Parameters

0.1% to 2%2% to 5%Miss rates
(global for L2)

100 to 100010 to 25Miss penalty (clocks)
32 to 12832 to 64Block size (B)
500 to 800016 to 64Total size (KB)

4000 to
250,000

250 to 2000Total size (blocks)
L2 typicalL1 typical

Two Machines’ Cache Parameters

64 bytes64 bytesL1 block size

write-back
~LRU
16-way set assoc.
64 bytes
1024KB (1MB)
Unified
write-back
LRU
2-way set assoc.

64KB for each of I$ and D$
Split I$ and D$

AMD Opteron

write-backL2 write policy
~LRUL2 replacement
8-way set assoc.L2 associativity
128 bytesL2 block size
512KBL2 cache size
UnifiedL2 organization
write-throughL1 write policy
~ LRUL1 replacement
4-way set assoc.L1 associativity

8KB for D$, 96KB for
trace cache (~I$)

L1 cache size
Split I$ and D$L1 organization

Intel P4

4 Questions for the Memory Hierarchy

� Q1: Where can a block be placed in the upper level?
(Block placement)

� Q2: How is a block found if it is in the upper level?
(Block identification)

� Q3: Which block should be replaced on a miss?
(Block replacement)

� Q4: What happens on a write?
(Write strategy)

Q1&Q2: Where can a block be placed/found?

of blocks in cache1Fully associative

Associativity (typically
2 to 16)

(# of blocks in cache)/
associativity

Set associative
1# of blocks in cacheDirect mapped

Blocks per set# of sets

of blocksCompare all blocks tagsFully associative

Degree of
associativity

Index the set; compare
set’s tags

Set associative
1IndexDirect mapped

of comparisonsLocation method

Q3: Which block should be replaced on a miss?

� Easy for direct mapped – only one choice
� Set associative or fully associative

z Random
z LRU (Least Recently Used)

� For a 2-way set associative cache, random
replacement has a miss rate about 1.1 times higher
than LRU.

� LRU is too costly to implement for high levels of
associativity (> 4-way) since tracking the usage
information is costly

Q4: What happens on a write?
� Write-through – The information is written to both the

block in the cache and to the block in the next lower level
of the memory hierarchy
z Write-through is always combined with a write buffer so write

waits to lower level memory can be eliminated (as long as the
write buffer doesn’t fill)

� Write-back – The information is written only to the block in
the cache. The modified cache block is written to main
memory only when it is replaced.
z Need a dirty bit to keep track of whether the block is clean or dirty

� Pros and cons of each?
z Write-through: read misses don’t result in writes (so are simpler

and cheaper)
z Write-back: repeated writes require only one write to lower level

Improving Cache Performance
1. Reduce the miss rate

z bigger cache
z more flexible placement (increase associativity)
z larger blocks (16 to 64 bytes typical)
z victim cache – small buffer holding most recently discarded blocks

2. Reduce the miss penalty
z smaller blocks
z use a write buffer to hold dirty blocks being replaced so don’t have

to wait for the write to complete before reading
z check write buffer on read miss – may get lucky
z for large blocks fetch critical word first
z use multiple cache levels – L2 cache not tied to CPU clock rate
z faster backing store/improved memory bandwidth

- wider buses
- memory interleaving, page mode DRAMs

Improving Cache Performance

3. Reduce the time to hit in the cache
z smaller cache
z direct mapped cache
z smaller blocks
z for writes

- no write allocate – no “hit” on cache, just write to write buffer
- write allocate – to avoid two cycles (first check for hit, then write)

pipeline writes via a delayed write buffer to cache

Summary: The Cache Design Space
� Several interacting dimensions

z cache size
z block size
z associativity
z replacement policy
z write-through vs write-back
z write allocation

� The optimal choice is a compromise
z depends on access characteristics

- workload
- use (I-cache, D-cache, TLB)

z depends on technology / cost

� Simplicity often wins

Associativity

Cache Size

Block Size

Bad

Good

Less More

Factor A Factor B

0 1 2 3 4 5 6 7Block
no.

Fully associative:
block 12 can go
anywhere

0 1 2 3 4 5 6 7Block
no.

Direct mapped:
block 12 can go
only into block 4
(12 mod 8)

0 1 2 3 4 5 6 7Block
no.

Set associative:
block 12 can go
anywhere in set 0
(12 mod 4)

Set
0

Set
1

Set
2

Set
3

0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1

Block-frame address

1 1 1 1 1 1 1 1 1 1 2 2 2 2 2 2 2 2 2 2 3 3Block
no.

Recap Q1: Where can a block be placed in the upper level?

� Block 12 placed in 8 block cache:
z Fully associative, direct mapped, 2-way set associative
z S.A. Mapping = Block Number Modulo Number Sets Block

offset
Block Address

Tag Index

Set Select

Data Select

Recap Q2: How is a block found if it is in the upper level?

� Direct indexing (using index and block offset), tag
compares, or combination

� Increasing associativity shrinks index, expands tag

Recap Q3: Which block should be replaced on a miss?

� Easy for Direct Mapped
� Set Associative or Fully Associative:

z Random
z LRU (Least Recently Used)

1.12%1.12%1.13%1.13%1.17%1.15%256 KB

1.5%1.4%1.7%1.5%2.0%1.9%64 KB

5.0%4.4%5.3%4.7%5.7%5.2%16 KB

RandomLRURandomLRURandomLRUSize

8 way8 way4 way4 way2 way2 wayAssociativity

Know This!
� Calculate runtime given cache statistics (miss rate, miss penalty,

etc.)
� Calculate Average Memory Access Time (AMAT)
� Understand direct mapped, set-associative, fully associative

z Comparison between them
z Sources of cache misses
z Architecture
z Addressing into them (tag, index, byte)
z Cache behavior with them

Sample Problem: Impact on Performance
� Suppose a processor executes at

z Clock Rate = 2 GHz (.5 ns per cycle)
z Base CPI = 1.1 (assuming 1-cycle cache hits)
z 50% arith/logic, 30% ld/st, 20% control

� Suppose that 10% of data memory operations (lw, sw) get 50 cycle
miss penalty

� Suppose that 1% of instructions get same miss penalty
� What is CPI?
� What is AMAT?

� CPI = Base CPI + average stalls per instruction
1.1 (cycles/ins) +
[0.30 (DataMops/ins) x 0.10 (miss/DataMop) x 50(cycle/miss)] +
[1 (InstMop/ins)x 0.01 (miss/InstMop) x 50 (cycle/miss)]

= (1.1 + 1.5 + .5) cycle/ins = 3.1

� 64.5% of the time the proc is stalled waiting for memory!

� AMAT=(1/1.3)x[1+0.01x50]+(0.3/1.3)x[1+0.1x50]=2.54

Sample Problem: Impact on Performance

Sample Problem: Cache Performance
� Processor:

z CPI = 2
z Icache miss rate = 2%, miss penalty = 100 cycles
z Dcache miss rate = 4%, miss penalty = 100 cycles

� Using SPECint2000 load/store percentage of 36%:
z Speedup from this processor to one that never missed?
z What if CPI = 1?
z What if we doubled clock rate of computer without changing

memory speed (CPI = 2)?

Calculating Cache Performance, CPI=2
� I miss cycles = I * 2% * 100 = 2.00 * I
� D miss cycles = I * 4% * 36% * 100 = 1.44 * I
� So memory stalls/instr = 2.00 + 1.44 = 3.44

� CPU time with stalls = I * CPIstall * clkcycle
� CPU time, no stalls I * CPIperf * clkcycle

� CPIstall = 2 + 3.44; CPIperf = 2
� CPIstall / CPIperf = 5.44 / 2 = 2.72

Calculating Cache Performance, CPI=1
� I miss cycles = I * 2% * 100 = 2.00 * I
� D miss cycles = I * 4% * 36% * 100 = 1.44 * I
� So memory stalls/instr = 2.00 + 1.44 = 3.44

� CPU time with stalls = I * CPIstall * clkcycle
� CPU time, no stalls I * CPIperf * clkcycle

� CPIstall = 1 + 3.44; CPIperf = 1
� CPIstall / CPIperf = 4.44 / 4 = 4.44

Calculating Cache Performance, 2x
� I miss cycles = I * 2% * 200 = 4.00 * I
� D miss cycles = I * 4% * 36% * 200 = 2.88 * I
� So memory stalls/instr = 4.00 + 2.88 = 6.88

� CPU time (slow clk) = I * CPIslow * clkcycle
� CPU time (fast clk) I * CPIfast * clkcycle/2

� CPIfast = 2 + 6.88; CPIslow = 5.44
� Speedup = 5.44 / (8.88 * 0.5) = 1.23
� Ideal machine is 2x faster

