Simple Processor Design
Multiple Cycle Implementation

Chapter 5.5
EEC170 FQ 2005

Courtesy of Prof. Kent Wilken

Multicycle Implementation

+ Instructions that use more functional
units (e.g., Load) take more cycles

+ Instructions that use fewer units (e.g.,
Jump) take fewer cycles

+ Maybe CPI x CCT will be lower

Multicycle Implementation: LW

+ Instruction fetch

Multicycle Implementation

+ One clock cycle for each step
« shorter clock cycle

+ Single memory unit, single ALU shared
across cycles

Instruction|
Register
Address

Instruction
or data
Memory
Data

Multicycle Implementation

+ New latches hold intermediate results
between clock cycles

* IR and MDR get output of memory
« A and B get output of Register File
» ALUout gets output of ALU

Address
Instruction
or data
Memory
Data

Multicycle Implementation: LW

+ Register read

Address
Instruction
or data
Memory
Data

Multicycle Implementation: LW Multicycle Implementation

+ Address computation + Memory read

Instruction|
Register
Address

L35 Read Reg 1
Instruction
or data
Memory
Data

Multicycle Implementation: LW Multi-Use ALU

¢ More ALU input selection because one ALU shared f
+ Register write + R-type ALU ops, Branch condition
« Address computation, I-type ALU ops
+ PC+4
« Branch target

Address Instruction
Register

Instruction

or data
Memory Memory

Data

Data Register

Multi-Use ALU Multi-Use ALU

* R-type ALU ops, Branch condition
* Address computation, I-type ALU ops

write
-}
Register Read
data 2

Register Register

Multi-Use ALU Multi-Use ALU

* Branch target

[25-21)
Instruction
[2016]
Instruction
[15:0]

instruction
Register

Instruction
154 [15-0]

Register Register

Multicycle Control Lines Multicycle Control Lines

¢ Control more complex than Single Cycle: must activate ¢ Latches A, B, ALUout and Memory Data register are
for given instruction during specific clock cycle latched every cycle, don’t need control lines

0]
[
upgAddress 12s21]
X
Instruction
120161

Register

Instruction
15

Complete Multi-Cycle Design Instruction Fetch

Memory

Mematal

Compute PC + 4 Complete Instruction Fetch Cycle

Jump aump
address F,m,t,

M it y i
uuction Y~ R instruciion [LA
ol us1

3 1

I
Memory
data
register

Register Read Cycle ALU Cycle

M
§ jal Adcress register 1 geaq
dan
nstauetion Read
) Tter2
-9 [Write
nstcuction [~ [ROHRIY
JUESE datn
Regicter .
Instructic S
{1501 =

Memory Memory
a data” [
register register

Instruction

Register Write Cycle uction Fetch Cycle
Load Word

Jump
i

sump
51:0]

dress

o
M
U i Address
1

v I wiite
insuuction Y- [REHEN]
1, B

Instruction [5-0]

Register Read Cycle Address Computation Cycle
Load Word

MemRead
MemtoReg

aump
2
e

uction [5-0]

Memory Access Cycle Register Write Cycle
Load Word Load Word

U Zero

oy J ALuoutp!

Instruction
(1511

Instruction Fetch Cycle Register Read Cycle
Store Word Store Word

Instruction [5-0]

Address Computation Cycle Memory Access Cycle
Store Word d

PCsource
ALUOD
MemRead
femwit

MemioReg

i

wite
o il 9212 Registers
nstruction Y

{150

Memory
data
register

Instruction [5-0]

Instruction Fetch Cycle Register Read/Target Address Cycle
Branch Branch

Instruction|
(1511

Memory
data
register

Instruction

h Condition/PC Write Cycle

MemRead
MemWrite

MemtoReg

Jump

Read
\ v I wiite
nstruction Y-~ RSN
nsii (e o

w

|

Memory
data
register

Instruction [5-0] Instructio

Decode Cycle PC Write Cycle
Jump

Multicycle Clock Cycle Time Multicycle CPI

+ CCT determined by slowest functional + Cycles for each instruction class is:
unit: .+ Load: 5

- Register file: 50ps ° Siore 4

* ALUOp: 4

* ALU and adders: 100ps . Branch: 3

* Memory: 200ps e Jump: 3

¢ SPECIint2000 instruction mix
« Load: 25%
« Store: 10%
« ALU Op: 52%
Branch: 11%
Jump: 2%

Multicycle CPI Computation Multicycle Performance

CPI total =X CPI;x f;= + Good news:
» CCT = 200ps, 3x lower than single cycle design

5x0.25 + 4x0.10 + 4x0.52 + 3x0.11 + 3x0.02 = « Only one adder, one memory unit

1.25+ 0.4 + 2.08 + 0.33 + 0.06 = 4.12 + Bad

* CPlis higher by 4x than single cycle design
» Control unit is much more complex (see next
lecture)
+ Average instruction execution time (IET) =
CPI x CCT = 4.12 x 200ps = 824ps
* Worse performance than single cycle at 600ps!

Multicycle Control Unit

+ Control line values are based on the instruction
opcode and the cycle within that instruction

+ Can be implemented as a Moore state machine where
outputs are determined by internal state register

PCSource
CWrite n
— ALUOp
lorD
Control EANSER:]
MemRead
mWrite

mtoReg

Opcode [IR 31-25] ‘Sfﬂ"

Machine State

+ One state for each
instruction cycle

Fetch Reg Read
. . Start— 4’.
¢ First two cycles is same
for all instructions,
states are shared

LW/SW R-type BEQ Jump

Store States

Fetch Reg Read

Start—*{

Address
Computation v

Memor
Write

Machine Next State
+ Outputs depend on current state
+ Next state depends on current state and inputs

Control

]

Output Logic
Next State Logic

Opcode

Load States

Fetch Reg Read

Start —* ‘

Address /
Computation /

Memory l

Reg
Write

R-Type States

Reg Read

Start — I

Write

BEQ States Jump States

Fetch e Fetch

eg z Reg Read
Start 4" Start —*|

State Assignment Next State Table

+ A number is assigned + Next state function of opcode and current state

to each state Fetch Reg Read
Many assignments St

are possible, 16!/6!

for this machine

Assignment usually
made to minimize
hardware cost

Here assignment
made to improve
clarity

XXXXXX
XXXXXX

Next State Table in Binary Control Lines

+ Really four tables for NS;, NS;, NS, and NS
y 0 2 S + Control lines are dependent only on the state

XXXXXX

] e
i

Fetch Reg Read

Instruction Fetch Cycle Register Read Cycle
Store Word Store Word

1
-~
Address

nstruction

Address Computation Cycle

Control Lines for LW & SW Load Word

N
o
\/\@

* Address
X

MemRead MemWrite
lorD=1 lorD=1

Write
data
wiite
o gl 9% Registers
»
Ul
x|

RegWrits
MemioReg = 1 to state 0

Memory Access Cycle Register Write Cycle
Load Word

[
ALU 2610 J
ALyl
result ALUOutl

Instruction
(15:0]

Memory Access Cycle

Store Word Control Lines for R-Type

MemRead
e

VemoReg

0

ALUOp = 10
nstryction|
15
mstryction|

[25-21]

RegDst = 1
RegWrite
MemtoReg =

I

to state 0

ALU Cycle Register Write Cycle

126-15]
Instruction|
[i5-0]

* Address
X

write
Instruction| register

Read
J ISV data

Instruction
Register wiite
a2 Registers

Branch Condition/PC Write Cycle

Control Lines for Branch
Branch

ALUSrcA =1

ALUSIcB =00

Ao 01 to state 0
PCWriteCond
PCSource =01

Control Lines for Jump

PCWrite
PCSource = 10 to state 0

Truth Table for Control Lines

Input Values S[3 0]

B ol o] e (D]
[rowniecons [[0 [0 o (oo ofofslo]
[ermess | 1 0 | 0|
(P o e W M AN
[irwre 1 [0 [0 [0 [0 oo o o 0]
g e e e Lo e Lo Lo o o o]
[Posoureer | 0 | 0| ENENEN
s e o
nnnnnn-nnn
[Awop 0 [0| oo []
n---nnnnn
o o[o] o]
[o e M NN
[Regwrie [0 [0 [[0 [3 [o o[1[0 0]
[Resost [0 [0 [0 oo o o s o]0]

Exception Handling

+ An exception is much like a procedure call

* Requires address of where exception occurred

= So OS can return to program after exception
handling, if appropriate
= So exception handler can identify instruction causing
exception for proper exception processing
* Requires a parameter indicating what caused
the exception

* Address and parameter cannot be written to
normal registers, otherwise current program
state would be destroyed

= Special exception registers are required

PC Write Cycle

Exceptions

+ An exception is an event that occurs within
the processor which requires intervention
from the OS

+ An exception causes execution to change
from current program to OS exception handler

+ Example of exceptions include:
* Address bounds violation
» Arithmetic Overflow
 Divide by Zero
« lllegal opcode
 Call to OS from user program

Datapath Support for Exceptions

+ All exceptions jump to a fixed, hard-wired
address within OS: exception handler entry
point

+ Address of where exception occurred is
stored in exception program counter (EPC)

* Read by exception handler using special
instruction

+ Exception parameter is stored in cause
register

Exception Support in Multicycle Design Control Unit Support for Exceptions

+ Exception control
cycle occurs just
after cycle where
exception happens

i
Read
’]
\

uction Fetch Cycle Register Read Cycle
R-type

Control Lines for R-Type Overflow
+ Set Cause =1

¢ Use ALU to compute (PC+4) —4 = PC
+ Set EPC = PC

Instryctio;
2

(et

Instryciios

(et
Instrycion|

feskid]
mstuction

IntCause = 1

Instruction
Register

EPCWrite
PCWrite
PCSource = 11

R-type Overflow

Overflow

Instruction [5-0]

Register Read/
lllegal Opcode

vite

Instruction|
1511]

Instrugtion Overflow
ro Overflow

51

Memory
data
register

Instruction [5-0]

lllegal Opcod

Y wie
insuuction [~ REATCEIE IS
1811 data 2 gt

3
register

Address
6

Instruction Fetch Cycle

lllegal Opcode

PCWriteCond

%)

Memory
data
register

Instruction [5-0]

Control Lines for lllegal Opcode

+ Set Cause =0

+ Use ALU to compute (PC+4) —4 =PC

+ Set EPC = PC

IntCause =0
Cause Write

p = 01
EPCWrite
PCWrite

PCSource = 11

