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Multicycle Implementation

+ Instructions that use more functional
units (e.g., Load) take more cycles

+ Instructions that use fewer units (e.g.,
Jump) take fewer cycles

+ Maybe CPI x CCT will be lower

Multicycle Implementation: LW

+ Instruction fetch

Multicycle Implementation

+ One clock cycle for each step
« shorter clock cycle

+ Single memory unit, single ALU shared
across cycles
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Multicycle Implementation

+ New latches hold intermediate results
between clock cycles

* IR and MDR get output of memory
« A and B get output of Register File
» ALUout gets output of ALU
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Multicycle Implementation: LW

+ Register read
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Multicycle Implementation: LW Multicycle Implementation

+ Address computation + Memory read
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Multicycle Implementation: LW Multi-Use ALU

¢ More ALU input selection because one ALU shared f
+ Register write + R-type ALU ops, Branch condition
« Address computation, I-type ALU ops
+ PC+4
« Branch target
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Multi-Use ALU Multi-Use ALU

* R-type ALU ops, Branch condition
* Address computation, I-type ALU ops
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Multi-Use ALU Multi-Use ALU

* Branch target
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Multicycle Control Lines Multicycle Control Lines

¢ Control more complex than Single Cycle: must activate ¢ Latches A, B, ALUout and Memory Data register are
for given instruction during specific clock cycle latched every cycle, don’t need control lines
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Compute PC + 4 Complete Instruction Fetch Cycle
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Register Read Cycle Address Computation Cycle
Load Word
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Memory Access Cycle Register Write Cycle
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Address Computation Cycle Memory Access Cycle
Store Word d
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Instruction Fetch Cycle Register Read/Target Address Cycle
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Decode Cycle PC Write Cycle
Jump

Multicycle Clock Cycle Time Multicycle CPI

+ CCT determined by slowest functional + Cycles for each instruction class is:
unit: .+ Load: 5

- Register file: 50ps ° Siore 4

* ALUOp: 4

* ALU and adders: 100ps . Branch: 3

* Memory: 200ps e Jump: 3

¢ SPECIint2000 instruction mix
« Load: 25%
« Store: 10%
« ALU Op: 52%
Branch: 11%
Jump: 2%

Multicycle CPI Computation Multicycle Performance

CPI total =X CPI;x f;= + Good news:
» CCT = 200ps, 3x lower than single cycle design

5x0.25 + 4x0.10 + 4x0.52 + 3x0.11 + 3x0.02 = « Only one adder, one memory unit

1.25+ 0.4 + 2.08 + 0.33 + 0.06 = 4.12 + Bad

* CPlis higher by 4x than single cycle design
» Control unit is much more complex (see next
lecture)
+ Average instruction execution time (IET) =
CPI x CCT = 4.12 x 200ps = 824ps
* Worse performance than single cycle at 600ps!




Multicycle Control Unit

+ Control line values are based on the instruction
opcode and the cycle within that instruction

+ Can be implemented as a Moore state machine where
outputs are determined by internal state register
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Machine State

+ One state for each
instruction cycle
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¢ First two cycles is same
for all instructions,
states are shared
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+ Outputs depend on current state
+ Next state depends on current state and inputs
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BEQ States Jump States
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State Assignment Next State Table

+ A number is assigned + Next state function of opcode and current state

to each state Fetch Reg Read
Many assignments St

are possible, 16!/6!

for this machine

Assignment usually
made to minimize
hardware cost

Here assignment
made to improve
clarity
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Next State Table in Binary Control Lines

+ Really four tables for NS;, NS;, NS, and NS
y 0 2 S + Control lines are dependent only on the state
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Instruction Fetch Cycle Register Read Cycle
Store Word Store Word
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Memory Access Cycle

Store Word Control Lines for R-Type
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Branch Condition/PC Write Cycle

Control Lines for Branch
Branch

ALUSrcA =1
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Ao 01 to state 0
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Control Lines for Jump

PCWrite
PCSource = 10 to state 0

Truth Table for Control Lines
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Exception Handling

+ An exception is much like a procedure call

* Requires address of where exception occurred

= So OS can return to program after exception
handling, if appropriate
= So exception handler can identify instruction causing
exception for proper exception processing
* Requires a parameter indicating what caused
the exception

* Address and parameter cannot be written to
normal registers, otherwise current program
state would be destroyed

= Special exception registers are required

PC Write Cycle

Exceptions

+ An exception is an event that occurs within
the processor which requires intervention
from the OS

+ An exception causes execution to change
from current program to OS exception handler

+ Example of exceptions include:
* Address bounds violation
» Arithmetic Overflow
 Divide by Zero
« lllegal opcode
 Call to OS from user program

Datapath Support for Exceptions

+ All exceptions jump to a fixed, hard-wired
address within OS: exception handler entry
point

+ Address of where exception occurred is
stored in exception program counter (EPC)

* Read by exception handler using special
instruction

+ Exception parameter is stored in cause
register




Exception Support in Multicycle Design Control Unit Support for Exceptions

+ Exception control
cycle occurs just
after cycle where
exception happens
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Control Lines for R-Type Overflow
+ Set Cause =1

¢ Use ALU to compute (PC+4) —4 = PC
+ Set EPC = PC
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R-type Overflow

Overflow
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Control Lines for lllegal Opcode

+ Set Cause =0

+ Use ALU to compute (PC+4) —4 =PC

+ Set EPC = PC

IntCause =0
Cause Write
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EPCWrite
PCWrite
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