Simple Processor Design
Single Cycle Implementation

Chapter 5.1-5.4
EEC170 FQ 2005

“How to eat an elephant? One
byte at a time”

If enhancement “E” speeds up
multiply, but other instructions
are unchanged, what is the
maximum speedup S?
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Attributed to Gene Amdahl -- “Amdahl’'s Law”

+Define “fields” of the following number
of bits each: 6 +5+5+5+5+ 6 =32

| 6 | 5 | 5[5 [ 5 | 6 |

+For simplicity, each field has a name:
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+1. Analyze instruction set => datapath requirements
» the meaning of each instruction is given by the register transfers

» datapath must include storage element for ISA registers
= possibly more

» datapath must support each register transfer

+2. Select set of datapath components
« establish clocking methodology

+3. Assemble datapath meeting the requirements

+4. Analyze implementation of each instruction to
determine setting of control points that effects the
register transfer.

+5. Assemble the control logic

+Define “fields” of the following number of
bits each:

+Each field has a name:

opcode immediate

+Key Concepts

» Keep opcode field identical to R-format and J-
format for consistency.

 Can specify jumps and address displacement
within (roughly) £215range.




+Define “fields” of the following number of
bits each:

+As usual, each field has a name: )
+Note: In Verilog,
target address {,,} means concatenation

{ 4 bits , 26 bits , 2 bits } = 32 bit address

+Key Concepts
Y P +{1010,11111111111111111111111111, 00}
* Keep opcode field identical to R-format and I- =1010111111111211111112111111111100
format for consistency.

sSummary:
* New PC = { PC[31..28], target address, 00 }

sUnderstand where each part came from!

* Combine all other fields to make room for large
target address.

* Increments to next word in instruction

+ Requires three components memory
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* Thirty-two 32-bit registers

* Register specifiers from instruction fields Rs, RegWrite
Rt and Rd
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+ We already know internal ALU design + Register-file output goes directly to ALU

» Will see ALU Operation control-line
specification later
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+ Converts a 16-bit signed integer to a 32-bit + Separate memory units for Instructions
signed integer to make ALU input uniform and Data so they can be accessed during

* Only need to replicate (fan out) MSB of 16-bit int same cycle
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¢ ALU is used to compute Address = Rs + + ALU B input and Reg Write Data are
offset based on instruction type
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+ Not a barrel shifter as we saw in the ALU * Must compute PC + 4 + word offset using

design, rather simply a shift of the wiring dedicated Adder, Equal (Zero) using ALU

* Delete two MSBs (wires), insert two zero LSBs
(Wil'eS) — Branch
target

PC+4 from instruction path —s}

Instruction
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¢ Four ALU Operation lines are used to ¢ ALU Operation is based on ALUOp and
encode our MIPS instruction subset Funct Field inputs

Instruction ALUOp Instruction Operation  Funct Field ALU Action ALU
ALU Operation Function Opcode Operation

oo
0000 _m | oo |

o001 | or | Instruction[50] SW | 00 [storeword | xwooxx Jadd | o010 |
L

1100 Fhre | o Jor | o

+ Allows R-type, I-type, LW/SW and Branch + Control unit takes opcode as input,
produces control lines as output

Instruction [31-26]

—_—
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. . . ¢ HW #3 is online
+ Opcode in, various control lines out
« Due Friday November 4t at 5pm.
¢ 30~45 min Quiz
Instr  Reg ALU Memto Reg Mem Mem Branch ALUOpl ALUOp2 « On Monday
Dst_ Src_ Reg Write Read  Write o yes, this coming Monday, i.e., 10/31
« Chapter 1, 2 and 3.
* You have finished homework on these chapters by
Monday => should be straight forward.
+ Midterm
* In two weeks (wed 11/9)
« Chapters 1-5
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+ By nature of design CPI=1 + Example timing for functional units

+ CCT is determined by the longest instruction, CREYRIEAIIES 055

Load, which uses all executions units * ALU and adders: 100ps
* Memory: 200ps

Instruction
Class Functional Units used by instruction class

+ Clock cycle time is determined by Load ¢ Good news: CPI =1 is excellent

instruction
+ Bad news:

e CCT = 600ps is poor
¢ Redundant hardware

. = Multiple adders
Instruction Reg Memory | Reg .
R- 200 50 100 - g a .
- + Figure of merit: average instruction
execution time (IET) = CPI x CCT =1 x
S00pe ~600ps
= | sops |

R I N N — T + Can we do better? Next attempt
Multicycle design




