Simple Processor Design
Single Cycle Implementation

Chapter 5.1-5.4
EEC170 FQ 2005

“How to eat an elephant? One
byte at a time”

If enhancement “E” speeds up
multiply, but other instructions
are unchanged, what is the
maximum speedup S?

1

Attributed to Gene Amdahl -- “Amdahl’'s Law”

+Define “fields” of the following number
of bits each: 6 +5+5+5+5+ 6 =32

| 6 | 5 | 5[5 [5 | 6 |

+For simplicity, each field has a name:

Program
Machine CPI Instruction Mix

100

= 2.7 cycles/instruction
program
Muttiph

562 spends
its time
2

+1. Analyze instruction set => datapath requirements
» the meaning of each instruction is given by the register transfers

» datapath must include storage element for ISA registers
= possibly more

» datapath must support each register transfer

+2. Select set of datapath components
« establish clocking methodology

+3. Assemble datapath meeting the requirements

+4. Analyze implementation of each instruction to
determine setting of control points that effects the
register transfer.

+5. Assemble the control logic

+Define “fields” of the following number of
bits each:

+Each field has a name:

opcode immediate

+Key Concepts

» Keep opcode field identical to R-format and J-
format for consistency.

 Can specify jumps and address displacement
within (roughly) £215range.

+Define “fields” of the following number of
bits each:

+As usual, each field has a name:)
+Note: In Verilog,
target address {,,} means concatenation

{ 4 bits , 26 bits , 2 bits } = 32 bit address

+Key Concepts
Y P +{1010,11111111111111111111111111, 00}
* Keep opcode field identical to R-format and I- =1010111111111211111112111111111100
format for consistency.

sSummary:
* New PC = { PC[31..28], target address, 00 }

sUnderstand where each part came from!

* Combine all other fields to make room for large
target address.

* Increments to next word in instruction

+ Requires three components memory

Instruction
Address

Instruction

Instruction
Memory
Instruction

. Address
Instruction Memory Program Counter Adder

Instruction

Instruction
Memory

* Thirty-two 32-bit registers

* Register specifiers from instruction fields Rs, RegWrite
Rt and Rd

Read
register 1
Read

data 1

Read

Nl Read]
register 1 register 2 .
Read Rt - Registers

3 datal N \Write
Register Rd —}d register

5
Read
Specifiers g register 2 e

B Registers Write data 2
N \\rite Data
register Read T

5 data 2
Write RegDest
Data

Read data 1
g register 2

Registers
—’ Write 9

register

gist
RegWrite
0
Read
register 1
Read |EESNG Reglslerl D:tazfl

Read
data 2
Write
Data

RegDest

Read
Register 1

RegWrite
Register 0 Register 0 |
Write
— & N N - -to-1
D> Register 1 Register decoder
Data
30
- .
— wE
> Register 30 > Reg\sler 30
v »
P> Register 31 > Reglslev 31
Data

Read
Register 2

+ We already know internal ALU design + Register-file output goes directly to ALU

» Will see ALU Operation control-line
specification later

Read
register 1
§ead
ata 1
Instruction F;;,?g,er 2 ALU

Registers ALU

Result
Read
data 2

+ Converts a 16-bit signed integer to a 32-bit + Separate memory units for Instructions
signed integer to make ALU input uniform and Data so they can be accessed during

* Only need to replicate (fan out) MSB of 16-bit int same cycle

Data
Address

Data
Memory

Write
Data

¢ ALU is used to compute Address = Rs + + ALU B input and Reg Write Data are
offset based on instruction type

Read Read
register 1 register 1

(ST ?eega\gler 2 Instruction Feegag[er >
ALU Read
Write Result e Address Write e; Address Data
register register
Registers D . Data
Write Memory Memory
Write Write
Data Data

+ Not a barrel shifter as we saw in the ALU * Must compute PC + 4 + word offset using

design, rather simply a shift of the wiring dedicated Adder, Equal (Zero) using ALU

* Delete two MSBs (wires), insert two zero LSBs
(Wil'eS) — Branch
target

PC+4 from instruction path —s}

Instruction

— To branch
control logic

¢ Four ALU Operation lines are used to ¢ ALU Operation is based on ALUOp and
encode our MIPS instruction subset Funct Field inputs

Instruction ALUOp Instruction Operation Funct Field ALU Action ALU
ALU Operation Function Opcode Operation

oo
0000 _m | oo |

o001 | or | Instruction[50] SW | 00 [storeword | xwooxx Jadd | o010 |
L

1100 Fhre | o Jor | o

+ Allows R-type, I-type, LW/SW and Branch + Control unit takes opcode as input,
produces control lines as output

Instruction [31-26]

—_—

Read
adaress Read|

. . . ¢ HW #3 is online
+ Opcode in, various control lines out
« Due Friday November 4t at 5pm.
¢ 30~45 min Quiz
Instr Reg ALU Memto Reg Mem Mem Branch ALUOpl ALUOp2 « On Monday
Dst_ Src_ Reg Write Read Write o yes, this coming Monday, i.e., 10/31
« Chapter 1, 2 and 3.
* You have finished homework on these chapters by
Monday => should be straight forward.
+ Midterm
* In two weeks (wed 11/9)
« Chapters 1-5

Branc
emRead
‘MemtoReg

Instr, [31-26]

Reag
data?

W]
VR reaisier

Instruction [20-16]

s
i e
12 Registers
W23,

Instruction [15-0]

Instruction [5-

RegDst

Branch

Memwiiie

Instruction [2:

Read Read

\ddress ad ddress

Instruction [2¢

Instruction|

[31-0]

instruction [l | (ETELEE
W

Instruction
emory.

[31-0]]
Instruction
Memory
Instruction [15.0

Instruction [25
Address a2
register
Memory o -
data
Memory Memor,

Instruction [15-0]
Instruction [5-0]

Instruction (5-0]

Instruction [20-16]

Memory

Instruction [5-

Branch

Read
\ddress

Instruction
310}

instruction I (ESTNICER
Memory

Memory

Instruction (5-0]

Memory

Instruction [2
nstruction
Address a0

Memory

Memor,

Instruction [15-0]

NMemRead

ALUOp
Nemilie

eqD:

Branch

Instruction [5-0]

Address g .

Memory

Address

nstrugtionl
{51%)

Instruction|
Memory

Memory

Instr, [31-26]
ALUOp
WermWille

Read
register 1
Instruction [20-16] [0
Tegister 2

W
Instr. [15-11] revister

e

12 Registers

Instruction [15-0]

Instruction [5-

RegDst

Branch

Reag
Teisier dataz

Instr. [15-11] o

wrie

% Registers

o
Tegister 2

il e
- s

Instruction [1

Instruction (5-0]

Memory

Read
ddress

Instruction|
[31-0)

Instruction|
Memory

Instruction [2:
Instruction

nddress {0 I

Memory

Memor,

Instruction [15-0]

eqD:

Branch
emioReg

ey

Instruction [5-0]

Memor,

Read

Branc
emRead
‘MemtoReg

MemWilie

Reag
data2

- R

insir. [15-11)
wie Memory
% Registers
Memor,

Instruction [5- Instructic

eqD:

Branch
MemRead

Instruction [2:
Read Read
\ddress ddress
Instruction [2¢
Instruction) Instruction|
310} [31-0]
wiite

U Tegister
‘a truction [l (XRRICED]

instruction | (EICEE Inst
M Memory

iemory

Instruction [15.0

Branch
MemRead

d Instruction
itz
"
- -
- s 53 I
e
e d
3 Registers
B3

Instruction (5-0] Instruction [5-0]

Al Read
Reag
Write Address fita.
register data2 dat
yrite
“'% Registers wite
data Data
Memory

+ By nature of design CPI=1 + Example timing for functional units

+ CCT is determined by the longest instruction, CREYRIEAIIES 055

Load, which uses all executions units * ALU and adders: 100ps
* Memory: 200ps

Instruction
Class Functional Units used by instruction class

+ Clock cycle time is determined by Load ¢ Good news: CPI =1 is excellent

instruction
+ Bad news:

e CCT = 600ps is poor
¢ Redundant hardware

. = Multiple adders
Instruction Reg Memory | Reg .
R- 200 50 100 - g a .
- + Figure of merit: average instruction
execution time (IET) = CPI x CCT =1 x
S00pe ~600ps
= | sops |

R I N N — T + Can we do better? Next attempt
Multicycle design

