Quantifying Performance
EEC 170 Fall 2005
Chapter 4

“l can’t improve it if | don’t know how
to measure it”

Courtesy of Prof. John D. Owens, ECE dept, UC-Davis.

Performance

Measure, Report, and Summarize
Make intelligent choices
See through the marketing hype

Key to understanding underlying organizational
motivation

Why is some hardware better than others for
different programs?

What factors of system performance are hardware
related? (e.g., Do we need a new machine, or a new
operating system?)

How does the machine's instruction set affect
performance?

Metrics of performance

Answers per month
Application —
Useful Operations per second
Programming
Language

Compiler
(millions) of Instructions per second - MIPS
[’a (millions) of (F.P.) operations per second - MFLOP/s

Datapath

Control \—— Megabytes per second

Function Units

Transistors Wires Pins — Cycles per second (clock rate)

Each metric has a place and a purpose, and each can be misused

Two notions of “performance”

Plane DC to Paris Speed Passengers | Throughput

(pmph)
Boeing 747 | 6.5 hours 610 mph 470 286,700
BAD/Sud 3 hours 1350 mph 132 178,200

Concorde

Which has higher performance?

* Time to do the task (Execution Time)
= execution time, response time, latency

* Tasks per day, hour, week, sec, ns ... (Performance)
= throughput, bandwidth

* Response time and throughput often are in opposition

Example

Time of Concorde vs. Boeing 747?

« Concorde is 1350 mph / 610 mph = 2.2 times faster

. = 6.5 hours / 3 hours
Throughput of Concorde vs. Boeing 747 ?

= Concorde is 178,200 pmph / 286,700 pmph = 0.62 “times faster”

= Boeing is 286,700 pmph / 178,200 pmph = 1.60 “times faster”
Boeing is 1.6 times (“60%”) faster in terms of throughput
Concord is 2.2 times (“120%”) faster in terms of flying time
We will focus primarily on execution time for a single job

* But sysadmins may use throughput as their primary metric!

Latency vs. Throughput

Latency (Response Time)
= How long does it take for my job to run?

= How long does it take to execute a job?

= How long must | wait for the database query?
Throughput

= How many jobs can the machine run at once?

= What is the average execution rate?

= How much work is getting done?

If we upgrade a machine with a new processor what do we
increase?

If we add a new machine to the lab what do we increase?

Definitions

Performance is in units of things-per-time
= Miles per hour, bits per second, widgets per day ...
* Bigger is better

If we are primarily concerned with response
time:
* Performance(x) = 1 / ExecutionTime(x)

“X is n times faster than Y” means
* n = Performance(X) / Performance(Y) = Speedup

e If X is 1.yz times faster than Y, we can informally
say that X is yz% faster than Y. Speedup is better.

Execution Time

Elapsed Time

= counts everything (disk and memory accesses, 1/0, etc.)
= a useful number, but often not good for comparison purposes

CPU time
= doesn't count I/0 or time spent running other programs
= can be broken up into system time and user time
% /usr/bin/time du -s
81329656
104.44 real 0.50 user 9.86 sys
Our focus: user CPU time

= time spent executing the lines of code that are “in” our
program

Clock Cycles

Instead of reporting execution time in seconds, we often
use cycles:
seconds _ _cycles Xseconds

program program cycle

time

Clock “ticks” indicate when to start activities
Cycle time = time between ticks = seconds per cycle

Clock rate (frequency) = cycles per second (1 Hz =1
cycle/sec)
= A 200 MHz clock has a cycle time of ...

5 x10% = 5 nanoseconds
200 x10

Clock Speed Is Not The Whole Story

How to Improve Performance

seconds cycles™, seconds
program {progral cycle

So, to improve performance (everything else
being equal) you can either (increase/
decrease):

the # of required cycles for a program, or
the clock cycle time or, said another way,
the clock rate.

SPECint95 | SPECfp95
195 MHz MIPS R10000 11.0 17.0
400 MHz Alpha 21164 12.3 17.2
300 MHz UltraSPARC 12.1 15.5
300 MHz Pentium Il 11.6 8.8
300 MHz PowerPC G3| 14.8 11.4
135 MHz POWER2 6.2 17.6
Clock Rate

Comparing processor performance for
same or different architectures using
clocks rate is invalid. Ignores
instruction count and CPI, e.g.:

* 2.4GHz AMD Athlon processor is faster than
3.4GHz Intel Pentium 4 executing floating-
point code (P4 has higher CPI)

How many cycles in a program?

Could assume that # of cycles = # of instructions

c
[l c
s 2
2 B B
s 2 =
s § E
2 £ £
3 2 2 £ £ £
— N ™M < 1 ©

This assumption is incorrect:

= different instructions take different amounts of time on
different machines (even with the same instruction set).

* Why?

Different #s of cycles for diff’nt instrs

Multiplication takes more time than addition

Floating point operations take longer than integer
ones

Accessing memory takes more time than accessing
registers

Important point: changing the cycle time often
changes the number of cycles required for
various instructions (more later)

Example instruction latencies

Imagine Stream Processor:

On ALU: Other functional units:
*Integer adds: 2 cycles *Integer multiply: 4
*FP adds: 4 cycles *Integer divide: 22
*Logic ops (and, or, xor): 1 *Integer remainder: 23

*Equality: 1 *FP multiply: 4
e<or>:2 *FP divide: 17
*Shifts: 1 *FP sqrt: 16
*Float->int: 3

*Int->float: 4

*Select (a?b:c): 1

CPI

How many clock cycles, on average, does it
take for every instruction executed?

We call this CPI (“Cycles Per Instruction”).

Its inverse (1/CPl) is IPC (“Instructions Per
Cycle”).

CISC machines: this number is
* high(er)
RISC machines: this number is
* low(er)

CPI: Average Cycles per Instruction

CPI = (CPU Time * Clock Rate) / Instruction Count
= Clock Cycles / Instruction Count

n
CPI = Z CPIix Fi where Fi = |
i=1

i
Instruction Count

On Imagine, integer adds are 2 cycles, FP adds are 4.
Consider an application that has 1/3 integer adds and 2/3
FP adds.

What is its CPI?

Given a 3 GHz machine, how many instrs/sec?

Instruction Selection

Compiler typically can choose among various
instruction sequences to maximize

performance
Instruction Class CPI for this Class
A 1
B 2
[} 3

Instruction Count in Class

Code Sequence A B C
1 2 1 2
2 4 1 1

+ Sequence 2is longer, 6 vs. 5, but faster, 9 vs. 10

Program Profiling

Can measure instruction count using software
profiling tool:

= Compiler divides machine code into Basic Blocks,
machine instruction sequence always executed together

Inserts instructions that count each time a basic block is
executed

Instruction count per basic block = Count x Block size

Total instruction count = X Basic block instruction counts
inc cnt x

~Millions of Instructions Per Second |
(MIPS)

MIPS = Clock Rate / CPI x 10¢

Ignores program instruction count. Hence,
valid only for comparing processors running
same object code.

Can vary inversely with performance!
* E.g., optimizing compiler eliminates instructions

with relatively low cycle count. Causes CPI to

increase and MIPS to decrease, but performance
increases.

Sometime called Meaningless Indicator-of-
Performance Statistic

\ ‘\/ : l
| | inccnty|] [inccntz
megaFLOPS

Floating point performance metric: Million Floating
Point Operations Per Second
= for given program rate of fadd, fmult, etc.
Not valid for different architectures because
available floating point operations may differ
« E.g., some include div, sine, sqrt; other synthesize these
operations with other simpler floating point operations
* E.g., some include a single multiply/accumulate
Peak megaFLOPS: rate guaranteed not to exceed,
supercomputers may achieve only a few percent
of peak. Very misleading.

The Performance Equation

Time = Clock Speed * CPI * Instruction Count
* = seconds/cycle * cycles/instr * instrs/program

* => seconds/program

“The only reliable measure of computer
performance is time.”

Now that we understand cycles ...

A given program will require
= some number of instructions (machine instructions)
= some number of cycles
= some number of seconds
We have a vocabulary that relates these quantities:
= cycle time (seconds per cycle)
= clock rate (cycles per second)

= CPI (cycles per instruction)
a floating point intensive application might have a higher CPI

= MIPS (millions of instructions per second)
this would be higher for a program using simple instructions

Performance

Performance is determined by execution time

Do any of the other variables equal performance?
= # of cycles to execute program?

= # of instructions in program?
= # of cycles per second?
= average # of cycles per instruction?

= average # of instructions per second?

Common pitfall: thinking one of the variables is
indicative of performance when it really isn’t.

Evaluating Instruction Sets

Design-time Metrics:
° Can it be implemented, in how long, at what cost?
° Can it be programmed? Ease of compilation?
Static Metrics:
° How many bytes does the program occupy in memory?
Dynamic Metrics:
° How many instructions are executed?
° How many bytes does the processor fetch to execute the
program? cPl
° How many clocks are required per
instruction?
° How “lean” a clock is practical?

Best Metric: Time to execute the program!
Inst. Count Cycle Time
NOTE: this depends on instruction set, processor organization, and compilation
techniques.

Brainiacs vs. Speed Demons

]

“Brainiacs”

[http://www. pattosoft.
com.au/Articles/Moder
nMicroprocessors/]

“Speed-Demons”

Modern processor design balances CPI and
clock speed

* Brainiacs do more work per clock cycle

* Speed demons have faster clock cycles

Aspects of CPU Performance

CPUtime = Seconds = Instructions x Cycles X Seconds
Program Program Instruction Cycle
Instr count CPI Clock rate
Program
ICompiler

nstruction Set

Organization

ITechnology

Aspects of CPU Performance

CPUtime = Seconds = Instructions x Cycles X Seconds
Program Program Instruction Cycle
Instr count CPI Clock rate

Program X
Compiler X X
Instruction Set X X X
Organization X X
Technology X

Remember

Performance is specific to a particular program/s
= Total execution time is a consistent summary of performance

For a given architecture performance increases come from:
* increases in clock rate (without adverse CPI affects)

* improvements in processor organization that lower CPI

= compiler enhancements that lower CPI and/or instruction count

Pitfall:

expecting the improvement of one aspect of a computer
to increase performance by an amount proportional to
the size of improvement.

Amdahl’s Law

Speedup due to enhancement E:

ExTime w/o E Performance w/ E
Speedup(E) = =

ExTime w/ E Performance w/o E

\ R | — | [|

Suppose that enhancement E accelerates a fraction F of
the task by a factor S and the remainder of the task is
unaffected:

ExTime (with E) = ((1-F) + F/S) * ExTime(without E)

1
Speedup (with E) = -=--=-eneeunee
(1-F) + F/S
Design Principle: Make the common case fast!

Undergrad Productivity

Average ECE student spends:

® 4 hours sleeping

* 2 hours eating

* 18 hours studying (yeah ... right!)

Magic pill gives you all sleeping, eating in 1
minute!

How much more productive can you get?

Undergrad Productivity

1
Speedup (with E) = -------mnmenme
(1-F) + F/S
F = accelerated fraction = 0.25 (6 hrs/24 hrs)
S = speedup = 6 hrs / 1 minute = 360

Overall speedup:
1/[(1-0.25) + (0.25/360)]
~=1/(1-0.25)

=1.33

33% more productive!

Benchmarks

Widely used programs for assessing execution time

Results must be reproducible => input is specified
along with program

Benchmark types:

« Application programs: Most accurate example, SPEC
benchmarks suite.

* Kernels: Key inner loops extracted from applications
(Program typically spend 90% of time in 10% of code).
Examples, Linpack & Livermore loops for supercomputers

* Toy benchmarks: Small enough to be entered by hand
(e.g., 100 lines).

= Synthetic Benchmarks: Non-real programs based on
instruction mix statistics

Problems with Small Benchmarks

Does not fully exercise memory hierarchy
(e.g., entire program data set may fit in
cache)

Encourages “benchmark specific
optimizations” (cheating?) in compiler or
processor hardware that do not benefit real
applications => do not accurately predict
application performance.

Proprietary Benchmarks

Results cannot be reproduced, leads to
unproductive debate

“Benchmark wars erupt again”
By Frank Williams, Chicago Tribune
Tuesday, October 6, 1998

The benchmark wars in the world of computer
hyping have erupted again. The latest major
offensive is by PC Magazine. In reality this is
but a belated counterattack to the Apple
offensive of last November. Wintel platform
proponents claim to have "proof" that their
machines are faster than Macintoshes. Apple
supporters claim to have "proof" that the
processor inside every new Mac is twice as fast
as those in Wintels....

SPEC Benchmark Suite

Cooperative formed by major companies (HP, SUN,
IBM) to develop standard application set for Unix
systems

* Later also used for Windows NT/2000/XP

SPEC CPU2000 includes set of 11 integer codes and
14 floating point codes, reported as SPECint and
SPECfp

* Int programs include FPGA place and route,
FP programs include crash simulation

Execution length > 10" instructions per code, code
size 10k-100k words and more. Exercises entire
system, including compiler.

= Compiler improvements have yielded 10s of percent
improvements for some systems

Reporting Performance

Result should be reproducible implies must
specify:
® processor model
= memory configuration (including cache, main &
disk)
= compiler version
= OS version
Best is to report execution time for all
applications
= Allows user of data to focus on data most relevant

Basis of Evaluation

Pros Cons

> representative Actual Target = very specific

Workload = non-portable

= difficult to run, or measure
= hard to identify

I portable Full Application e less representative
> widely used Benchmarks
i improvements useful
n reality
Small “kernel” ' easy to “fool”
> easy to run, early in benchmarks
design cycle
e identify peak Microbenchmarks = “peak” may be a long way
capability and potential from application performance

bottlenecks

SPEC ‘89

Compiler “enhancements” and performance

o0

w0

£
H
|3
bid

0

20

100

O g esesso spce doduc nasa? I equot mawx0 fpppp tomcav

Benchmark
Compler

I vvancea compaer

SPEC ‘95

Benchmark Description
g0 Artificial I plays the game of Go
m88ksim Motorola 88k chip simulator; runs test program
qcc The Gnu C compiler ing SPARC code
C and file in memon
li Lisp
iipeg Graphic and
perl strings and prime numbers in the special-purpose ing language Perl
vortex A database program
tomeaty. A mesh program
swim [Shallow water model with 513 x 513 grid
su2cor quantum physics; Monte Carlo
hydro2d ics: b Naiver Stokes equation:
marid Multiarid solver in 3-D potential field
applu iptic partial differential equations
trub3d. Simulates isotropic, in a cube
apsi Solves problems regarding wind velocity, and di ion of pollutant
fpppp [Quantum chemistry
waves [Plasma physics: etic particle

SPEC ‘95

Does doubling the clock rate double the
performance?

Can a machine with a slower clock rate have
better performance?

spect
speCh

3 — 3 /

0 00 150 200 0 E 100 150 20

coxmenn gy
[]

SPEC CPU 2000 (Integer)

Benchmark Description
gzip Compression
vpr FPGA circuit Place/Route
gcc C compiler
mcf Combinatorial optimization
crafty Game playing: Chess
parser Word processing
eon Visualization (C++)
perlbmk Perl
gap Group theory interpreter
vortex Object-oriented database
bzip2 Compression
twolf Place/route simulator

SPEC CPU 2000 (FP)

Benchmark Description
wupwise Physics/Quantum Chromodynamics (F77)
swim Shallow water modeling (F77)
mgrid Multi-grid solver: 3D potential field (F77)
applu Parabolic/elliptic PDEs (F77)
mesa 3D graphics library (C)
galgel Computational fluid dynamics (F90)
art Image processing / neural networks (F90)
equake Seismic wave propagation simulation (C)
facerec Image processing: face recognition (F90)
ammp Computational chemistry (C)
lucas Number theory / primality test (F90)
fma3D Finite-element crash simulation (F90)
sixtrack High-energy nuclear physics accelerator design (F77)
apsi Meteorology: pollutant distribution (F77)

SPEC 2000 Memory

Goals:

* Benchmarks larger
than cache sizes

= No memory footprints

> 200 MB

http://: P

Choosing SPEC Benchmarks

Bad benchmarks ...

= Can’t be ported in a
reasonable time

Good benchmarks ...
* Have many users

= Exercise significant
hardware resources = Are not compute bound

= Solve interesting technical (instead 1/0 bound)

Calculating Overall SPEC Values

problems
= Generate published results

= Add variety to benchmark
suite

[http://spec.unipv.it/cpu2000/papers
/COMPUTER_200007-
abstract.JLH.html]

= Have unchanged workloads
from previous SPEC suites

= Are code fragments
instead of complete apps

* Are redundant

= Do different work on
different platforms

= Normalize execution times to reference
machine (SPEC ‘95: Sun SparcStation 10/40)

* Average normalized execution times
* But what do we mean by “average”?

Calculating Overall SPEC Values

Calculating Overall SPEC Values

Time on ATime on B

A, norm | B, norm | A, norm | B, norm
toA toA toB toB

Prog 1 1 10 10 0.1 1
Prog 2 1000 | 100 0.1 10 1
Arith 500.5 55 5.05 | 5.05 1
mean

mean

Time on A{Time on B A,tzo;m B,tzoArm A,tzo;m B,tr;o;m
Prog 1 1 10 10 0.1 1
Prog2 | 1000 | 100 0.1 10 1
:‘12;: 500.5 55 5.05 | 5.05 1
Geom | 316 | 31.6 1 1 1

Calculating The Mean

Arithmetic mean (n items):
[Z (Execution Time Ratio);]/n

i=1ton

Geometric mean (n items):
[T (Execution Time Ratio);]!/

i=1ton

Averaging normalized execution times requires the
geometric mean. Using it, mean of ratios and
ratio of means gives the same result.

The geometric mean does not predict relative
execution time.

Discussion Section

CPI Example

Suppose we have two implementations of the same
instruction set architecture (ISA).

For some program,
= Machine A has a clock cycle time of 10 ns and a CPI of 2.0
= Machine B has a clock cycle time of 20 ns and a CPI of 1.2
= What machine is faster for this program, and by how much?
If two machines have the same ISA, for a given
program which of our quantities (e.g., clock

rate, CPI, execution time, # of instructions,
MIPS) will always be identical?

of Instructions Example

A compiler designer is trying to decide between two
code sequences for a particular machine.
= Based on the hardware implementation, there are three
different classes of instructions: Class A, Class B, and Class C
= They require one, two, and three cycles (respectively).
= The first code sequence has 5 instructions: 2 of A, 1 of B, and
2 of C.

= The second sequence has 6 instructions: 4 of A, 1 of B, and 1
of C.

Which sequence will be faster? How much?
What is the CPI for each sequence?

MIPS example

Two different compilers are being tested for a 100 MHz machine
with three different classes of instructions: Class A, Class B,
and Class C, which require one, two, and three cycles
(respectively). Both compilers are used to produce code for a
large piece of software.

The first compiler's code uses 5 million Class A instructions, 1
million Class B instructions, and 1 million Class C instructions.

The second compiler's code uses 10 million Class A
instructions, 1 million Class B instructions, and 1 million Class
C instructions.

MIPS example

Which sequence will be faster according to MIPS?

Which sequence will be faster according to execution
time?

Example (RISC processor)

Base Machine (Reg / Reg)

Op Freq Cycles CPI(i) % Time
ALU 50% 1
Load 20% 5
Store 10% 3
Branch 20% 2

Typical Mix

What’s the CPI?

Example (RISC processor)

Base Machine (Reg / Reg)

Op Freq Cycles CPI(i) % Time

ALU 50% 1 .5 23%

Load 20% 5 1.0 45%

Store 10% 3 3 14%

Branch 20% 2 4 18%
2.2

Typical Mix

Example (RISC processor)

How much faster would the machine be if a
better data cache reduced the average load
time to 2 cycles?

Example (RISC processor)

How does this compare with using branch
prediction to shave a cycle off the branch
time?

Example (RISC processor)

What if two ALU instructions could be
executed at once?

(different than deleting half the ALU ops!)

Example (Amdahl’s Law 1)

Execution Time After Improvement =
Execution Time Unaffected + (Execution Time Affected
/ Amount of Improvement)

Example:
“Suppose a program runs in 100 seconds on a machine,
with multiply responsible for 80 seconds of this time.
How much do we have to improve the speed of
multiplication if we want the program to run 4 times
faster?”

How about making it 5 times faster?

10

Example (Amdahl’s Law 2)

Suppose we enhance a machine making all floating-point
instructions run five times faster. If the execution
time of some benchmark before the floating-point
enhancement is 10 seconds, what will the speedup be
if half of the 10 seconds is spent executing floating-
point instructions?

Example (Amdahl’s Law 2)

We are looking for a benchmark to show off the new floating-point unit
described in Part 2, and want the overall benchmark to show a
speedup of 3. One benchmark we are considering runs for 100
seconds with the old floating-point hardware. How much of the
execution time would floating-point instructions have to account for
in this program in order to yield our desired speedup on this
benchmark?

Example (Compiler Optimization)

You want to understand the performance of a
specific program on your 3.3 GHz machine.
You collect the following statistics for the
instruction mix and breakdown:

Part A

Calculate the CPI and MIPS for this program.

Instruction Class Frequency (%) Cycles
Arithmetic/logical 50 1
Load 20 2
Store 10 2
Jump 10 1
Branch 10 3
Part B

Your compiler team reports they can
eliminate 20% of ALU instructions (i.e. 10%
of all instructions). What is the speedup?

Part C

With the compiler improvements, what is the
new CPl and MIPS?

11

