
1

Quantifying PerformanceQuantifying Performance
EEC 170 Fall 2005EEC 170 Fall 2005

Chapter 4Chapter 4

Courtesy of Prof. John D. Owens, ECE dept, UC-Davis.

“I can’t improve it if I don’t know how
to measure it”

Measure, Report, and SummarizeMeasure, Report, and Summarize
Make intelligent choicesMake intelligent choices
See through the marketing hypeSee through the marketing hype
Key to understanding underlying organizational Key to understanding underlying organizational

motivationmotivation

Why is some hardware better than others for Why is some hardware better than others for
different programs?different programs?

What factors of system performance are hardware What factors of system performance are hardware
related? (e.g., Do we need a new machine, or a new related? (e.g., Do we need a new machine, or a new
operating system?)operating system?)

How does the machine's instruction set affect How does the machine's instruction set affect
performance?performance?

Performance

Compiler

Programming
Language

Application

Datapath
Control

Transistors Wires Pins

ISA

Function Units

(millions) of Instructions per second – MIPS
(millions) of (F.P.) operations per second – MFLOP/s

Cycles per second (clock rate)

Megabytes per second

Answers per month

Useful Operations per second

Each metric has a place and a purpose, and each can be misused

Metrics of performanceMetrics of performance

Which has higher performance?
• Time to do the task (Execution Time)

• execution time, response time, latency

• Tasks per day, hour, week, sec, ns … (Performance)
• throughput, bandwidth

• Response time and throughput often are in opposition

178,200178,2001321321350 mph1350 mph3 hours3 hoursBAD/BAD/SudSud
ConcordeConcorde

286,700286,700470470610 mph610 mph6.5 hours6.5 hoursBoeing 747Boeing 747

Throughput Throughput
((pmphpmph))

PassengersPassengersSpeedSpeedDC to ParisDC to ParisPlanePlane

Two notions of “performance”Two notions of “performance”

ExampleExample
Time of Concorde vs. Boeing 747?Time of Concorde vs. Boeing 747?

• Concorde is 1350 mph / 610 mph = 2.2 times faster

• = 6.5 hours / 3 hours

Throughput of Concorde vs. Boeing 747 ?Throughput of Concorde vs. Boeing 747 ?
• Concorde is 178,200 pmph / 286,700 pmph = 0.62 “times faster”

• Boeing is 286,700 pmph / 178,200 pmph = 1.60 “times faster”

Boeing is 1.6 times (Boeing is 1.6 times (““60%60%””) faster in terms of throughput) faster in terms of throughput
Concord is 2.2 times (Concord is 2.2 times (““120%120%””) faster in terms of flying time) faster in terms of flying time
We will focus primarily on execution time for a single jobWe will focus primarily on execution time for a single job

• But sysadmins may use throughput as their primary metric!

Latency vs. ThroughputLatency vs. Throughput
LatencyLatency (Response Time)(Response Time)

• How long does it take for my job to run?

• How long does it take to execute a job?

• How long must I wait for the database query?

ThroughputThroughput
• How many jobs can the machine run at once?

• What is the average execution rate?

• How much work is getting done?

If we upgrade a machine with a new processor what do we If we upgrade a machine with a new processor what do we
increase?increase?

If we add a new machine to the lab what do we increase?If we add a new machine to the lab what do we increase?

2

DefinitionsDefinitions

Performance is in units of thingsPerformance is in units of things--perper--timetime
• Miles per hour, bits per second, widgets per day …

• Bigger is better

If we are primarily concerned with response If we are primarily concerned with response
time:time:
• Performance(x) = 1 / ExecutionTime(x)

““X is n times faster than YX is n times faster than Y”” meansmeans
• n = Performance(X) / Performance(Y) = Speedup

• If X is 1.yz times faster than Y, we can informally
say that X is yz% faster than Y. Speedup is better.

Elapsed TimeElapsed Time
• counts everything (disk and memory accesses, I/O, etc.)

• a useful number, but often not good for comparison purposes

CPU timeCPU time
• doesn't count I/O or time spent running other programs

• can be broken up into system time and user time
% /% /usrusr/bin/time du /bin/time du --ss
81329656 .81329656 .

104.44 real 0.50 user 9.86 sys104.44 real 0.50 user 9.86 sys

Our focus: user CPU time Our focus: user CPU time
• time spent executing the lines of code that are “in” our

program

Execution Time

Clock Cycles
Instead of reporting execution time in seconds, we often Instead of reporting execution time in seconds, we often

use cycles:use cycles:

Clock Clock ““ticksticks”” indicate when to start activitiesindicate when to start activities
Cycle time = time between ticks = seconds per cycleCycle time = time between ticks = seconds per cycle
Clock rate (frequency) = cycles per second (1 Hz = 1 Clock rate (frequency) = cycles per second (1 Hz = 1

cycle/sec)cycle/sec)
• A 200 MHz clock has a cycle time of …

time

seconds
program

=
cycles

program
×

seconds
cycle

1

200 ×106
×109 = 5 nanoseconds

Clock Speed Is Not The Whole StoryClock Speed Is Not The Whole Story

17.66.2135 MHz POWER2

11.414.8300 MHz PowerPC G3

8.811.6300 MHz Pentium II

15.512.1300 MHz UltraSPARC

17.212.3400 MHz Alpha 21164

17.011.0195 MHz MIPS R10000
SPECfp95SPECint95

[http://www.pattosoft.com.au/Articles/ModernMicroprocessors/]

seconds
program

=
cycles

program
×

seconds
cycle

How to Improve PerformanceHow to Improve Performance

So, to improve performance (everything else So, to improve performance (everything else
being equal) you can either (increase/ being equal) you can either (increase/
decrease):decrease):

________ the # of required cycles for a program, or________ the # of required cycles for a program, or
________ the clock cycle time or, said another way, ________ the clock cycle time or, said another way,
________ the clock rate.________ the clock rate.

Clock Rate

Comparing processor performance for Comparing processor performance for
same or different architectures using same or different architectures using
clocks rate is invalid. Ignores clocks rate is invalid. Ignores
instruction count and CPI, e.g.:instruction count and CPI, e.g.:

• 2.4GHz AMD Athlon processor is faster than
3.4GHz Intel Pentium 4 executing floating-
point code (P4 has higher CPI)

3

time

1s
t i

ns
tru

ct
io

n

2n
d

in
st

ru
ct

io
n

3r
d

in
st

ru
ct

io
n

4t
h

5t
h

6t
h ...

How many cycles in a program?How many cycles in a program?

Could assume that # of cycles = # of instructionsCould assume that # of cycles = # of instructions

This assumption is incorrect:This assumption is incorrect:
• different instructions take different amounts of time on

different machines (even with the same instruction set).

• Why?

time

Different #s of cycles for diff’nt instrsDifferent #s of cycles for diff’nt instrs

Multiplication takes more time than additionMultiplication takes more time than addition
Floating point operations take longer than integer Floating point operations take longer than integer

onesones
Accessing memory takes more time than accessing Accessing memory takes more time than accessing

registersregisters

Important point: changing the cycle time often Important point: changing the cycle time often
changes the number of cycles required for changes the number of cycles required for
various instructions (more later)various instructions (more later)

Example instruction latenciesExample instruction latencies
Imagine Stream Processor:Imagine Stream Processor:
On ALU:On ALU:
••Integer adds: 2 cyclesInteger adds: 2 cycles
••FP adds: 4 cyclesFP adds: 4 cycles
••Logic ops (and, or, Logic ops (and, or, xorxor): 1): 1
••Equality: 1Equality: 1
••< or >: 2< or >: 2
••Shifts: 1Shifts: 1
••FloatFloat-->>intint: 3: 3
••IntInt-->float: 4>float: 4
••Select (a?b:c): 1Select (a?b:c): 1

Other functional units:Other functional units:
••Integer multiply: 4Integer multiply: 4
••Integer divide: 22Integer divide: 22
••Integer remainder: 23 Integer remainder: 23
••FP multiply: 4FP multiply: 4
••FP divide: 17FP divide: 17
••FP FP sqrtsqrt: 16: 16

CPICPI

How many clock cycles, How many clock cycles, on averageon average, does it , does it
take for every instruction executed? take for every instruction executed?

We call this CPI (We call this CPI (““Cycles Per InstructionCycles Per Instruction””).).
Its inverse (1/CPI) is IPC (Its inverse (1/CPI) is IPC (““Instructions Per Instructions Per

CycleCycle””).).

CISC machines: this number is CISC machines: this number is
•• high(erhigh(er))
RISC machines: this number isRISC machines: this number is
•• low(erlow(er))

CPI = Σ CPI × F where F = I
i = 1

n

i i i i
Instruction Count

CPI = (CPU Time * Clock Rate) / Instruction Count
= Clock Cycles / Instruction Count

CPI: Average Cycles per InstructionCPI: Average Cycles per Instruction

On Imagine, integer adds are 2 cycles, FP adds are 4.
Consider an application that has 1/3 integer adds and 2/3
FP adds.
What is its CPI?

Given a 3 GHz machine, how many instrs/sec?

Instruction Selection
Compiler typically can choose among variousCompiler typically can choose among various

instruction sequences to maximize instruction sequences to maximize
performanceperformance

Instruction Class CPI for this Class

A 1
B 2
C 3

Instruction Count in Class

Code Sequence A B C

1 2 1 2
2 4 1 1

Sequence 2 is longer, 6 vs. 5, but faster, 9 vs. 10

4

Program Profiling
Can measure instruction count using software Can measure instruction count using software

profiling tool:profiling tool:
• Compiler divides machine code into Basic Blocks,

machine instruction sequence always executed together

• Inserts instructions that count each time a basic block is
executed

• Instruction count per basic block = Count x Block size

• Total instruction count = Σ Basic block instruction counts
inc cnt x

inc cnt y inc cnt z

Millions of Instructions Per Second
(MIPS)

MIPS = Clock Rate / CPI x 10MIPS = Clock Rate / CPI x 1066

Ignores program instruction count. Hence, Ignores program instruction count. Hence,
valid only for comparing processors running valid only for comparing processors running
same object code.same object code.

Can vary inversely with performance!Can vary inversely with performance!
• E.g., optimizing compiler eliminates instructions

with relatively low cycle count. Causes CPI to
increase and MIPS to decrease, but performance
increases.

Sometime called Sometime called MMeaningless eaningless IIndicatorndicator--ofof--
PPerformance erformance SStatistictatistic

megaFLOPS

Floating point performance metric: Floating point performance metric: MMillion illion FFloating loating
PPoint oint OOperations perations PPer er SSecondecond
• for given program rate of fadd, fmult, etc.

Not valid for different architectures because Not valid for different architectures because
available floating point operations may differavailable floating point operations may differ
• E.g., some include div, sine, sqrt; other synthesize these

operations with other simpler floating point operations

• E.g., some include a single multiply/accumulate

Peak Peak megaFLOPSmegaFLOPS: rate guaranteed not to exceed, : rate guaranteed not to exceed,
supercomputers may achieve only a few percent supercomputers may achieve only a few percent
of peak. Very misleading.of peak. Very misleading.

The Performance EquationThe Performance Equation

Time = Clock Speed * CPI * Instruction CountTime = Clock Speed * CPI * Instruction Count
• = seconds/cycle * cycles/instr * instrs/program

• => seconds/program

““The only reliable measure of computer The only reliable measure of computer
performance is time.performance is time.””

Now that we understand cycles …Now that we understand cycles …
A given program will requireA given program will require

• some number of instructions (machine instructions)

• some number of cycles

• some number of seconds

We have a vocabulary that relates these quantities:We have a vocabulary that relates these quantities:
• cycle time (seconds per cycle)

• clock rate (cycles per second)

• CPI (cycles per instruction)
a floating point intensive application might have a higher CPI

• MIPS (millions of instructions per second)
this would be higher for a program using simple instructions

PerformancePerformance

Performance is determined by execution timePerformance is determined by execution time
Do any of the other variables equal performance?Do any of the other variables equal performance?

• # of cycles to execute program?

• # of instructions in program?

• # of cycles per second?

• average # of cycles per instruction?

• average # of instructions per second?

Common pitfall: thinking one of the variables is Common pitfall: thinking one of the variables is
indicative of performance when it really isnindicative of performance when it really isn’’t.t.

5

DesignDesign--time Metrics:time Metrics:
°° Can it be implemented, in how long, at what cost?Can it be implemented, in how long, at what cost?
°° Can it be programmed? Ease of compilation?Can it be programmed? Ease of compilation?

Static Metrics:Static Metrics:
°° How many bytes does the program occupy in memory?How many bytes does the program occupy in memory?

Dynamic Metrics:Dynamic Metrics:
°° How many instructions are executed?How many instructions are executed?
°° How many bytes does the processor fetch to execute the How many bytes does the processor fetch to execute the
program?program?
°° How many clocks are required perHow many clocks are required per
instruction?instruction?
°° How How ““leanlean”” a clock is practical?a clock is practical?

Best Metric: Time to execute the program!Best Metric: Time to execute the program!

NOTE: this depends on instruction set, processor organization, and compilation
techniques.

CPI

Inst. Count Cycle Time

Evaluating Instruction SetsEvaluating Instruction Sets Brainiacs vs. Speed DemonsBrainiacs vs. Speed Demons

[http://www.pattosoft.
com.au/Articles/Moder

nMicroprocessors/]

Modern processor design balances CPI and Modern processor design balances CPI and
clock speedclock speed
• Brainiacs do more work per clock cycle

• Speed demons have faster clock cycles

CPU time = Seconds = Instructions x Cycles x Seconds
Program Program Instruction Cycle

CPU time = Seconds = Instructions x Cycles x Seconds
Program Program Instruction Cycle

TechnologyTechnology

OrganizationOrganization

Instruction SetInstruction Set

CompilerCompiler

ProgramProgram

Clock rateClock rateCPICPIInstrInstr countcount

Aspects of CPU PerformanceAspects of CPU Performance
CPU time = Seconds = Instructions x Cycles x Seconds

Program Program Instruction Cycle

CPU time = Seconds = Instructions x Cycles x Seconds
Program Program Instruction Cycle

XXTechnologyTechnology

XXXXOrganizationOrganization

XXXXXXInstruction SetInstruction Set

XXXXCompilerCompiler

XXProgramProgram

Clock rateClock rateCPICPIInstrInstr countcount

Aspects of CPU PerformanceAspects of CPU Performance

RememberRemember
Performance is specific to a particular program/sPerformance is specific to a particular program/s

• Total execution time is a consistent summary of performance

For a given architecture performance increases come from:For a given architecture performance increases come from:
• increases in clock rate (without adverse CPI affects)

• improvements in processor organization that lower CPI

• compiler enhancements that lower CPI and/or instruction count

Pitfall: Pitfall:
expecting the improvement of one aspect of a computer expecting the improvement of one aspect of a computer
to increase performance by an amount proportional to to increase performance by an amount proportional to
the size of improvement.the size of improvement.

Speedup due to enhancement E:Speedup due to enhancement E:
ExTimeExTime w/o E Performance w/ Ew/o E Performance w/ E

Speedup(E) = Speedup(E) = -- = = --
ExTimeExTime w/ E Performance w/o Ew/ E Performance w/o E

Suppose that enhancement E accelerates a fraction F of Suppose that enhancement E accelerates a fraction F of
the task by a factor S and the remainder of the task is the task by a factor S and the remainder of the task is
unaffected:unaffected:

ExTimeExTime (with E) (with E) == ((1((1--F) + F/S) * F) + F/S) * ExTime(withoutExTime(without E) E)
1 1

Speedup (with E) Speedup (with E) == ----------------------------
(1(1--F) + F/SF) + F/S

Design Principle: Design Principle: Make the common case fast!Make the common case fast!

Amdahl’s LawAmdahl’s Law

6

Undergrad ProductivityUndergrad Productivity

Average ECE student spends:Average ECE student spends:
•• 4 hours sleeping4 hours sleeping
•• 2 hours eating2 hours eating
•• 18 hours studying (yeah 18 hours studying (yeah …… right!)right!)
Magic pill gives you all sleeping, eating in 1 Magic pill gives you all sleeping, eating in 1

minute!minute!
How much more productive can you get?How much more productive can you get?

Undergrad ProductivityUndergrad Productivity

1 1
Speedup (with E) Speedup (with E) == ----------------------------

(1(1--F) + F/SF) + F/S
F = accelerated fraction = F = accelerated fraction = 0.25 (6 hrs/24 hrs)0.25 (6 hrs/24 hrs)
S = speedup = S = speedup = 6 hrs / 1 minute = 3606 hrs / 1 minute = 360

Overall speedup:Overall speedup:
•• 1 / [(11 / [(1--0.25) + (0.25/360)]0.25) + (0.25/360)]
•• ~= ~= 1 / (11 / (1--0.25)0.25)
•• ~= ~= 1.331.33
•• 3333% more productive!% more productive!

Benchmarks
Widely used programs for assessing execution timeWidely used programs for assessing execution time
Results must be reproducible => input is specified Results must be reproducible => input is specified

along with programalong with program
Benchmark types:Benchmark types:

• Application programs: Most accurate example, SPEC
benchmarks suite.

• Kernels: Key inner loops extracted from applications
(Program typically spend 90% of time in 10% of code).
Examples, Linpack & Livermore loops for supercomputers

• Toy benchmarks: Small enough to be entered by hand
(e.g., 100 lines).

• Synthetic Benchmarks: Non-real programs based on
instruction mix statistics

Problems with Small Benchmarks

Does not fully exercise memory hierarchy Does not fully exercise memory hierarchy
(e.g., entire program data set may fit in (e.g., entire program data set may fit in
cache)cache)

Encourages Encourages ““benchmark specific benchmark specific
optimizationsoptimizations”” (cheating?) in compiler or (cheating?) in compiler or
processor hardware that do not benefit real processor hardware that do not benefit real
applications => do not accurately predict applications => do not accurately predict
application performance.application performance.

Proprietary Benchmarks
Results cannot be reproduced, leads to Results cannot be reproduced, leads to

unproductive debateunproductive debate
““Benchmark wars erupt againBenchmark wars erupt again””

By Frank Williams, Chicago TribuneBy Frank Williams, Chicago Tribune

Tuesday, October 6, 1998Tuesday, October 6, 1998

The benchmark wars in the world of computerThe benchmark wars in the world of computer
hyping have erupted again. The latest majorhyping have erupted again. The latest major
offensive is by PC Magazine. In reality this isoffensive is by PC Magazine. In reality this is
but a belated counterattack to the Applebut a belated counterattack to the Apple
offensive of last November. Wintel platformoffensive of last November. Wintel platform
proponents claim to have "proof" that theirproponents claim to have "proof" that their
machines are faster than Macintoshes. Applemachines are faster than Macintoshes. Apple
supporters claim to have "proof" that thesupporters claim to have "proof" that the
processor inside every new Mac is twice as fastprocessor inside every new Mac is twice as fast
as those in as those in WintelsWintels........

SPEC Benchmark Suite
Cooperative formed by major companies (HP, SUN, Cooperative formed by major companies (HP, SUN,

IBM) to develop standard application set for Unix IBM) to develop standard application set for Unix
systemssystems
• Later also used for Windows NT/2000/XP

SPEC CPU2000 includes set of 11 integer codes and SPEC CPU2000 includes set of 11 integer codes and
14 floating point codes, reported as 14 floating point codes, reported as SPECintSPECint and and
SPECfpSPECfp
• Int programs include FPGA place and route,

FP programs include crash simulation

Execution length > 10Execution length > 1010 10 instructions per code, code instructions per code, code
size 10ksize 10k--100k words and more. Exercises entire 100k words and more. Exercises entire
system, including compiler. system, including compiler.
• Compiler improvements have yielded 10s of percent

improvements for some systems

7

Reporting Performance

Result should be reproducible implies must Result should be reproducible implies must
specify:specify:
• processor model

• memory configuration (including cache, main &
disk)

• compiler version

• OS version

Best is to report execution time for all Best is to report execution time for all
applicationsapplications
• Allows user of data to focus on data most relevant

Basis of Evaluation

• “peak” may be a long way
from application performance

MicrobenchmarksMicrobenchmarks• identify peak
capability and potential
bottlenecks

• easy to “fool”Small Small ““kernelkernel””
benchmarksbenchmarks• easy to run, early in

design cycle

• less representativeFull Application Full Application
BenchmarksBenchmarks

• portable
• widely used
• improvements useful
in reality

• very specific
• non-portable
• difficult to run, or measure
• hard to identify

Actual Target Actual Target
WorkloadWorkload

• representative

ConsPros

SPEC ‘89

Compiler Compiler ““enhancementsenhancements”” and performanceand performance

0

100

200

300

400

500

600

700

800

tomcatvfppppmatrix300eqntottlinasa7doducspiceespressogcc

Benchmark
Compiler

Enhanced compiler

S
P

E
C

 p
er

fo
rm

an
ce

 ra
tio

SPEC ‘95

Benchmark Description
go Artificial intelligence; plays the game of Go
m88ksim Motorola 88k chip simulator; runs test program
gcc The Gnu C compiler generating SPARC code
compress Compresses and decompresses file in memory
li Lisp interpreter
ijpeg Graphic compression and decompression
perl Manipulates strings and prime numbers in the special-purpose programming language Perl
vortex A database program
tomcatv A mesh generation program
swim Shallow water model with 513 x 513 grid
su2cor quantum physics; Monte Carlo simulation
hydro2d Astrophysics; Hydrodynamic Naiver Stokes equations
mgrid Multigrid solver in 3-D potential field
applu Parabolic/elliptic partial differential equations
trub3d Simulates isotropic, homogeneous turbulence in a cube
apsi Solves problems regarding temperature, wind velocity, and distribution of pollutant
fpppp Quantum chemistry
wave5 Plasma physics; electromagnetic particle simulation

Clock rate (MHz)

S
P

E
C

in
t

2

0

4

6

8

3

1

5

7

9

10

200 25015010050

Pentium

Pentium Pro
Pentium

Clock rate (MHz)

SP
EC

fp

Pentium Pro

2

0

4

6

8

3

1

5

7

9

10

200 25015010050

SPEC ‘95SPEC ‘95
Does doubling the clock rate double the Does doubling the clock rate double the

performance?performance?
Can a machine with a slower clock rate have Can a machine with a slower clock rate have

better performance? better performance?

SPEC CPU 2000 (Integer)SPEC CPU 2000 (Integer)

CompressionCompressiongzipgzip

Place/route simulatorPlace/route simulatortwolftwolf

CompressionCompressionbzip2bzip2

ObjectObject--oriented databaseoriented databasevortexvortex

Group theory interpreterGroup theory interpretergapgap

PerlPerlperlbmkperlbmk

Visualization (C++)Visualization (C++)eoneon

Word processingWord processingparserparser

Game playing: ChessGame playing: Chesscraftycrafty

Combinatorial optimizationCombinatorial optimizationmcfmcf

C compilerC compilergccgcc

FPGA circuit Place/RouteFPGA circuit Place/Routevprvpr

DescriptionDescriptionBenchmarkBenchmark

8

SPEC CPU 2000 (FP)SPEC CPU 2000 (FP)

FiniteFinite--element crash simulation (F90)element crash simulation (F90)fma3Dfma3D

HighHigh--energy nuclear physics accelerator design (F77)energy nuclear physics accelerator design (F77)sixtracksixtrack

Physics/Quantum Physics/Quantum ChromodynamicsChromodynamics (F77)(F77)wupwisewupwise

Meteorology: pollutant distribution (F77)Meteorology: pollutant distribution (F77)apsiapsi

Number theory / Number theory / primalityprimality test (F90)test (F90)lucaslucas

Computational chemistry (C)Computational chemistry (C)ammpammp

Image processing: face recognition (F90)Image processing: face recognition (F90)facerecfacerec

Seismic wave propagation simulation (C)Seismic wave propagation simulation (C)equakeequake

Image processing / neural networks (F90)Image processing / neural networks (F90)artart

Computational fluid dynamics (F90)Computational fluid dynamics (F90)galgelgalgel

3D graphics library (C)3D graphics library (C)mesamesa

Parabolic/elliptic Parabolic/elliptic PDEsPDEs (F77)(F77)appluapplu

MultiMulti--grid solver: 3D potential field (F77)grid solver: 3D potential field (F77)mgridmgrid

Shallow water modeling (F77)Shallow water modeling (F77)swimswim

DescriptionDescriptionBenchmarkBenchmark

SPEC 2000 MemorySPEC 2000 Memory

Goals:Goals:
• Benchmarks larger

than cache sizes

• No memory footprints
> 200 MB

http://spec.unipv.it/cpu2000/analysis/memory/#graphs

Choosing SPEC BenchmarksChoosing SPEC Benchmarks

Good benchmarks Good benchmarks ……
• Have many users

• Exercise significant
hardware resources

• Solve interesting technical
problems

• Generate published results

• Add variety to benchmark
suite

Bad benchmarks Bad benchmarks ……
• Can’t be ported in a

reasonable time

• Are not compute bound
(instead I/O bound)

• Have unchanged workloads
from previous SPEC suites

• Are code fragments
instead of complete apps

• Are redundant

• Do different work on
different platforms

[http://spec.unipv.it/cpu2000/papers
/COMPUTER_200007-
abstract.JLH.html]

Calculating Overall SPEC ValuesCalculating Overall SPEC Values

•• Normalize execution times to reference Normalize execution times to reference
machine (SPEC machine (SPEC ‘‘95: Sun 95: Sun SparcStationSparcStation 10/40)10/40)

•• Average normalized execution timesAverage normalized execution times
•• But what do we mean by But what do we mean by ““averageaverage””??

Calculating Overall SPEC ValuesCalculating Overall SPEC Values

115.055.055.055.05115555500.5500.5ArithArith
meanmean

1110100.10.11110010010001000ProgProg 22

110.10.1101011101011ProgProg 11

B, norm B, norm
to Bto B

A, norm A, norm
to Bto B

B, norm B, norm
to Ato A

A, norm A, norm
to Ato ATime on BTime on BTime on ATime on A

Calculating Overall SPEC ValuesCalculating Overall SPEC Values

115.055.055.055.05115555500.5500.5ArithArith
meanmean

1111111131.631.631.631.6GeomGeom
meanmean

1110100.10.11110010010001000ProgProg 22

110.10.1101011101011ProgProg 11

B, norm B, norm
to Bto B

A, norm A, norm
to Bto B

B, norm B, norm
to Ato A

A, norm A, norm
to Ato ATime on BTime on BTime on ATime on A

9

Calculating The MeanCalculating The Mean
Arithmetic mean (n items):Arithmetic mean (n items):
[[∑∑ (Execution Time Ratio)(Execution Time Ratio)i i] / n] / n
i = 1 to ni = 1 to n

GeometricGeometric mean (n items):mean (n items):
[[∏∏ (Execution Time Ratio)(Execution Time Ratio)i i]]1/n1/n

i = 1 to ni = 1 to n

Averaging normalized execution times requires the Averaging normalized execution times requires the
geometricgeometric mean. Using it, mean of ratios and mean. Using it, mean of ratios and
ratio of means gives the same result.ratio of means gives the same result.

The The geometricgeometric mean does mean does notnot predict relative predict relative
execution time. execution time.

Discussion SectionDiscussion Section

CPI ExampleCPI Example

Suppose we have two implementations of the same Suppose we have two implementations of the same
instruction set architecture (ISA). instruction set architecture (ISA).

For some program,For some program,
• Machine A has a clock cycle time of 10 ns and a CPI of 2.0

• Machine B has a clock cycle time of 20 ns and a CPI of 1.2

• What machine is faster for this program, and by how much?

If two machines have the same ISA, for a given If two machines have the same ISA, for a given
program which of our quantities (e.g., clock program which of our quantities (e.g., clock
rate, CPI, execution time, # of instructions, rate, CPI, execution time, # of instructions,
MIPS) will always be identical? MIPS) will always be identical?

A compiler designer is trying to decide between two A compiler designer is trying to decide between two
code sequences for a particular machine.code sequences for a particular machine.
• Based on the hardware implementation, there are three

different classes of instructions: Class A, Class B, and Class C

• They require one, two, and three cycles (respectively).

• The first code sequence has 5 instructions: 2 of A, 1 of B, and
2 of C.

• The second sequence has 6 instructions: 4 of A, 1 of B, and 1
of C.

Which sequence will be faster? How much?
What is the CPI for each sequence?

of Instructions Example

MIPS exampleMIPS example
Two different compilers are being tested for a 100 MHz machine Two different compilers are being tested for a 100 MHz machine

with three different classes of instructions: Class A, Class B,with three different classes of instructions: Class A, Class B,
and Class C, which require one, two, and three cycles and Class C, which require one, two, and three cycles
(respectively). Both compilers are used to produce code for a (respectively). Both compilers are used to produce code for a
large piece of software.large piece of software.

The first compiler's code uses 5 million Class A instructions, 1The first compiler's code uses 5 million Class A instructions, 1
million Class B instructions, and 1 million Class C instructionsmillion Class B instructions, and 1 million Class C instructions..

The second compiler's code uses 10 million Class A The second compiler's code uses 10 million Class A
instructions, 1 million Class B instructions, and 1 million Clasinstructions, 1 million Class B instructions, and 1 million Class s
C instructions.C instructions.

MIPS exampleMIPS example
Which sequence will be faster according to MIPS?Which sequence will be faster according to MIPS?

Which sequence will be faster according to execution Which sequence will be faster according to execution
time?time?

10

Typical Mix

Base Machine (Reg / Reg)
Op Freq Cycles CPI(i) % Time
ALU 50% 1
Load 20% 5
Store 10% 3
Branch 20% 2

What’s the CPI?

Example (RISC processor)Example (RISC processor)

Typical Mix

Base Machine (Reg / Reg)
Op Freq Cycles CPI(i) % Time
ALU 50% 1 .5 23%
Load 20% 5 1.0 45%
Store 10% 3 .3 14%
Branch 20% 2 .4 18%

2.2

Example (RISC processor)Example (RISC processor)

Example (RISC processor)Example (RISC processor)

How much faster would the machine be if a How much faster would the machine be if a
better data cache reduced the average load better data cache reduced the average load
time to 2 cycles?time to 2 cycles?

Example (RISC processor)Example (RISC processor)

How does this compare with using branch How does this compare with using branch
prediction to shave a cycle off the branch prediction to shave a cycle off the branch
time?time?

Example (RISC processor)Example (RISC processor)

What if two ALU instructions could be What if two ALU instructions could be
executed at once?executed at once?

(different than deleting half the ALU ops!)(different than deleting half the ALU ops!)

Example (Amdahl’s Law 1)Example (Amdahl’s Law 1)
Execution Time After Improvement = Execution Time After Improvement =

Execution Time Unaffected + (Execution Time Affected Execution Time Unaffected + (Execution Time Affected
/ Amount of Improvement)/ Amount of Improvement)

Example:Example:
““Suppose a program runs in 100 seconds on a machine, Suppose a program runs in 100 seconds on a machine,
with multiply responsible for 80 seconds of this time. with multiply responsible for 80 seconds of this time.
How much do we have to improve the speed of How much do we have to improve the speed of
multiplication if we want the program to run 4 times multiplication if we want the program to run 4 times
faster?faster?””

How about making it 5 times faster?How about making it 5 times faster?

11

Example (Amdahl’s Law 2)Example (Amdahl’s Law 2)
Suppose we enhance a machine making all floatingSuppose we enhance a machine making all floating--point point

instructions run five times faster. If the execution instructions run five times faster. If the execution
time of some benchmark before the floatingtime of some benchmark before the floating--point point
enhancement is 10 seconds, what will the speedup be enhancement is 10 seconds, what will the speedup be
if half of the 10 seconds is spent executing floatingif half of the 10 seconds is spent executing floating--
point instructions?point instructions?

Example (Amdahl’s Law 2)Example (Amdahl’s Law 2)
We are looking for a benchmark to show off the new floatingWe are looking for a benchmark to show off the new floating--point unit point unit

described in Part 2, and want the overall benchmark to show a described in Part 2, and want the overall benchmark to show a
speedup of 3. One benchmark we are considering runs for 100 speedup of 3. One benchmark we are considering runs for 100
seconds with the old floatingseconds with the old floating--point hardware. How much of the point hardware. How much of the
execution time would floatingexecution time would floating--point instructions have to account for point instructions have to account for
in this program in order to yield our desired speedup on this in this program in order to yield our desired speedup on this
benchmark?benchmark?

Example (Compiler Optimization)Example (Compiler Optimization)

You want to understand the performance of a You want to understand the performance of a
specific program on your 3.3 GHz machine. specific program on your 3.3 GHz machine.
You collect the following statistics for the You collect the following statistics for the
instruction mix and breakdown:instruction mix and breakdown:

331010BranchBranch

111010JumpJump

221010StoreStore

222020LoadLoad

115050Arithmetic/logicalArithmetic/logical

CyclesCyclesFrequency (%)Frequency (%)Instruction ClassInstruction Class

Part APart A

Calculate the CPI and MIPS for this program.Calculate the CPI and MIPS for this program.

Part BPart B

Your compiler team reports they can Your compiler team reports they can
eliminate 20% of ALU instructions (i.e. 10% eliminate 20% of ALU instructions (i.e. 10%
of all instructions). What is the speedup?of all instructions). What is the speedup?

Part CPart C

With the compiler improvements, what is the With the compiler improvements, what is the
new CPI and MIPS?new CPI and MIPS?

