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About Floating Point ArithmeticAbout Floating Point Arithmetic

Arithmetic basic operations on floating Arithmetic basic operations on floating 
point numbers are:point numbers are:
•• Add, Subtract, Multiply, DivideAdd, Subtract, Multiply, Divide
•• Transcendental operations (sine, cosine, log, Transcendental operations (sine, cosine, log, 

exp, etc.) are synthesized from theseexp, etc.) are synthesized from these
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Floating Point AdditionFloating Point Addition
Like addition using base 10 scientific representation:Like addition using base 10 scientific representation:
•• Align decimal pointsAlign decimal points
•• AddAdd
•• Normalize the resultNormalize the result

Example:Example:

9.998 x 109.998 x 1022

+ 5.0   x 10+ 5.0   x 10--1 1 

------------------------

Align (make smaller # same exp. as larger, why?):Align (make smaller # same exp. as larger, why?):

9.998 x 109.998 x 1022

+  .005 x 10+  .005 x 1022

------------------------
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Floating Point Addition (cont.)Floating Point Addition (cont.)
Add:Add:

9.998 x 109.998 x 1022

+  .005 x 10+  .005 x 1022

------------------------
10.003 x 1010.003 x 1022

Normalize (integer part must be => 1, <= 9 )Normalize (integer part must be => 1, <= 9 )

10.003 x 1010.003 x 102 2 = 1.0003 x 10= 1.0003 x 1033

Observation: By hand, the precision is Observation: By hand, the precision is 
unlimited.  For computer hardware, precision is unlimited.  For computer hardware, precision is 
limited to a fixed number of bits. limited to a fixed number of bits. 
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IEEE Floating Point Standard (754)IEEE Floating Point Standard (754)

IEEE Single precision format:IEEE Single precision format:

exponent is biased by 127, mantissa has a exponent is biased by 127, mantissa has a 
hidden 1.hidden 1.

1 8 23

sign exponent mantissa
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Binary Floating Point AddBinary Floating Point Add
Similar to add in base 10 scientific, but must operate on Similar to add in base 10 scientific, but must operate on 
standard floating point representation, use basic standard floating point representation, use basic 
computer operations computer operations 

Example:Example:
0.25 = 0 01111101   000000000000000000000000.25 = 0 01111101   00000000000000000000000

(1.)(1.)
100  = 100  = 0 10000101   100100000000000000000000 10000101   10010000000000000000000

(1.)(1.)

Align:  compare exponents by subtracting  Align:  compare exponents by subtracting  
•• Sign of result tells which is largerSign of result tells which is larger
•• Magnitude of result tells how many places smaller must be movedMagnitude of result tells how many places smaller must be moved

B:  10000101 B:  10000101 
A: A: --0111110101111101
------------------------

00001000   # B is larger  by 100000001000   # B is larger  by 1000twotwo (8(8tenten))
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Binary Floating Point Add (cont.)Binary Floating Point Add (cont.)
Shift smaller number to the right, by magnitude of Shift smaller number to the right, by magnitude of 
exponent subtraction,  include hidden bit in shifting.  exponent subtraction,  include hidden bit in shifting.  

Set smaller exponent equal to larger exponentSet smaller exponent equal to larger exponent
0 10000101   00000001000000000000000 0 10000101   00000001000000000000000 

(0.)(0.)

0 10000101   10010000000000000000000 0 10000101   10010000000000000000000 
(1.)(1.)

Add mantissas (including hidden bits)Add mantissas (including hidden bits)
0 10000101   000000010000000000000000 10000101   00000001000000000000000

(0.)(0.)

++ 0 10000101   100100000000000000000000 10000101   10010000000000000000000
(1.)(1.)

----------------------------------------------------------------------
0 10000101   100100010000000000000000 10000101   10010001000000000000000

(1.)(1.)
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Binary Floating Point Add (cont.)Binary Floating Point Add (cont.)

Normalize the result (get Normalize the result (get ““hidden bithidden bit”” to be 1)to be 1)
•• This example is already normalized, when would the This example is already normalized, when would the 

result not be normalized?result not be normalized?
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Floating Point SubtractFloating Point Subtract

Alignment binary point, like additionAlignment binary point, like addition

Then algorithm for sign magnitude Then algorithm for sign magnitude 
numbers takes overnumbers takes over
•• Negate the second operand, then addNegate the second operand, then add

Must set sign bit of result to be consistent Must set sign bit of result to be consistent 
with outcomewith outcome
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Floating Point Add/Sub HardwareFloating Point Add/Sub Hardware
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Floating Point Add/Sub HardwareFloating Point Add/Sub Hardware
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Floating Point Add/Sub HardwareFloating Point Add/Sub Hardware
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Floating Point Add/Sub HardwareFloating Point Add/Sub Hardware
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Floating Point Add/Sub HardwareFloating Point Add/Sub Hardware
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Floating Point Add/Sub HardwareFloating Point Add/Sub Hardware
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Floating Point Add/Sub HardwareFloating Point Add/Sub Hardware
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Floating Point Add/Sub HardwareFloating Point Add/Sub Hardware
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Floating Point Add/Sub HardwareFloating Point Add/Sub Hardware
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Floating Point MultiplyFloating Point Multiply

Similar to multiply in base 10 scientific:Similar to multiply in base 10 scientific:
•• Multiply mantissasMultiply mantissas
•• Add exponentsAdd exponents
•• NormalizeNormalize

Example:Example:
3.0 x 103.0 x 1022

+ 5.0 x 10+ 5.0 x 10--1 1 

------------------
15.0 x 1015.0 x 101 1 --> 1.5 x 10> 1.5 x 1022
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Binary Floating Point MultiplyBinary Floating Point Multiply

Similar to base 10, but must deal with standard floating Similar to base 10, but must deal with standard floating 
point representationpoint representation

Example (using only 4 mantissa bits):Example (using only 4 mantissa bits):
0 10000100  01000 10000100  0100

x  1 00111100  1100x  1 00111100  1100
--------------------------------

•• Multiply the mantissas, donMultiply the mantissas, don’’t forget the hidden 1s:t forget the hidden 1s:
1.01001.0100

x  1.1100x  1.1100
------------------

0000000000
0000000000
1010010100

1010010100
1010010100
------------------

1000110000  1000110000  --> 10.00110000> 10.00110000
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Binary Floating Point Multiply (cont.)Binary Floating Point Multiply (cont.)
•• Add exponents:Add exponents:

1000010010000100
0011110000111100
----------------
1100000011000000

•• Exponent now has double bias (one for each term), Exponent now has double bias (one for each term), 
so subtract 127:so subtract 127:

1100000011000000
--0111111101111111
------------------
0100000101000001

•• Compute the result sign bitCompute the result sign bit
XOR of operand sign bitsXOR of operand sign bits

•• Reconstruct the resultReconstruct the result
1 01000001 10.001100001 01000001 10.00110000
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Binary Floating Point Multiply (cont.)Binary Floating Point Multiply (cont.)
•• Normalize the resultNormalize the result

Shift binary point if integer part is >1, increment exponent:Shift binary point if integer part is >1, increment exponent:

1 01000010 1.0011000001 01000010 1.001100000

•• ““TrimTrim”” excess bits low order bits and trim excess bits low order bits and trim 
hidden bithidden bit

1 01000010 00111 01000010 0011
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Floating Point DivisionFloating Point Division

Dual of multiplicationDual of multiplication
•• Divide mantissas (include hidden hits)Divide mantissas (include hidden hits)
•• Subtract exponents.  Must add back in bias (127) Subtract exponents.  Must add back in bias (127) 

because it has been eliminatedbecause it has been eliminated
•• Normalize resultNormalize result

hidden bit must be 1hidden bit must be 1
may require left shifts, exponent decrementmay require left shifts, exponent decrement

•• Trim excess bitsTrim excess bits
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Arithmetic InstructionsArithmetic Instructions

MIPS processor has separate instructions for MIPS processor has separate instructions for 
integer and floating point arithmeticinteger and floating point arithmetic

Floating point operations are relatively slow, Floating point operations are relatively slow, 
want to use integer if appropriate:want to use integer if appropriate:
•• Integer AddInteger Add 1 time unit1 time unit
•• Fl. Pt. AddFl. Pt. Add 2 time units2 time units
•• Fl. Pt. MultiplyFl. Pt. Multiply 3 time units3 time units
•• Fl. Pt. DivideFl. Pt. Divide 20 time units20 time units
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Floating Point Range: MaximumFloating Point Range: Maximum
Floating point can represent very large numbers.  Floating point can represent very large numbers.  
The largest number is:The largest number is:

0 11111110 (1.)111111111111111111111110 11111110 (1.)11111111111111111111111

•• Maximum exponent is:  254 Maximum exponent is:  254 -- 127 = 127 => weight of 2127 = 127 => weight of 2127127.  .  

•• Mantissa is: 1 + 1/2 + 1/4 + ... + 1/2Mantissa is: 1 + 1/2 + 1/4 + ... + 1/223 23 = 2 = 2 -- 1/21/22323 ≅  ≅  22

•• Thus the largest number Thus the largest number ≅  ≅  22128128 ≅ ≅ 10103838

•• Do we need larger numbers?  Probably not:Do we need larger numbers?  Probably not:
Radius of the universe = age of the universe x speed of lightRadius of the universe = age of the universe x speed of light
= (10= (101010 years) x (10years) x (102.52.5 days/year) x (10days/year) x (1055 seconds/day) x seconds/day) x 

(10(108.58.5 meters/sec) = 10meters/sec) = 102626 metersmeters

Bill GatesBill Gates’’ net worth is < 10net worth is < 101111 dollarsdollars
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Floating Point Range: MinimumFloating Point Range: Minimum
Floating point can represent very small positive Floating point can represent very small positive 
numbers.  Normally, the smallest positive numbers.  Normally, the smallest positive 
number is:number is:

0 00000001 (1.)000000000000000000000000 00000001 (1.)00000000000000000000000

•• Minimum exponent is:  1 Minimum exponent is:  1 -- 127 = 127 = --126 => weight of 2126 => weight of 2--126126.  .  

•• Mantissa is: 1Mantissa is: 1

•• Thus the smallest number Thus the smallest number ≅  ≅  22--126126 ≅ ≅ 1010--3838

•• Do we need smaller numbers?  Probably not:Do we need smaller numbers?  Probably not:
Mass of an electron: 10Mass of an electron: 10--27 27 gramsgrams

But somebody was small minded:But somebody was small minded:
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Denormalized NumbersDenormalized Numbers
There is no hidden 1 when the exponent is There is no hidden 1 when the exponent is 
00000000, i.e. the number is no longer normalized00000000, i.e. the number is no longer normalized
00000000 exponent has same meaning as 00000000 exponent has same meaning as 
00000001, i.e., 200000001, i.e., 2--126126

Denormalized number can have a leading 1 in any Denormalized number can have a leading 1 in any 
bit position, allowing even smaller numbersbit position, allowing even smaller numbers
•• However smaller numbers have fewer bits of precisionHowever smaller numbers have fewer bits of precision

Smallest denormalized number is:Smallest denormalized number is:

0 00000000 (0.)000000000000000000000010 00000000 (0.)00000000000000000000001

which represents 2which represents 2--149149 ≅ ≅ 1010--4545

•• only has 1 bit of precisiononly has 1 bit of precision

Denormalization complicates floating point Denormalization complicates floating point 
hardware design, questionable usefulnesshardware design, questionable usefulness
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Overflow and UnderflowOverflow and Underflow
When a result is larger thanWhen a result is larger than

0 11111110 (1.)111111111111111111111110 11111110 (1.)11111111111111111111111

overflow occurs, and the result becomes overflow occurs, and the result becomes 
+infinity, which is represented as:+infinity, which is represented as:

0 11111111 000000000000000000000000 11111111 00000000000000000000000

•• --infinity is the same, but with a 1 in the sign bitinfinity is the same, but with a 1 in the sign bit

Operations with infinity will produce the Operations with infinity will produce the 
expected result:  # + infinity = infinityexpected result:  # + infinity = infinity

Underflow occurs when the result is smaller Underflow occurs when the result is smaller 
than the smallest denormalized numberthan the smallest denormalized number
•• result becomes 0result becomes 0
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PrecisionPrecision

The set of all real numbers is infinite.  The set of all real numbers is infinite.  

The set of floating point numbers is finite, 2The set of floating point numbers is finite, 23232

We must map a range of real numbers onto a We must map a range of real numbers onto a 
single floating point numbersingle floating point number
•• The mapping cannot be precise, some precision is The mapping cannot be precise, some precision is 

lost.  How much?lost.  How much?
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Integer PrecisionInteger Precision
First, consider precision of mapping real numbers First, consider precision of mapping real numbers 
to binary integers:to binary integers:

The real numbers between two integers must be The real numbers between two integers must be 
mapped to one of those integers.  mapped to one of those integers.  
•• Simplest method is truncation, discard the fractional part:Simplest method is truncation, discard the fractional part:

...00 ...01 ...11...10 ...00

...00 ...01 ...11...10 ...00
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Truncation PrecisionTruncation Precision

With truncation, assuming real numbers With truncation, assuming real numbers 
are randomly distributed between are randomly distributed between 
integers, what is the expected loss in integers, what is the expected loss in 
precision for a given number?precision for a given number?

...00 ...01 ...11...10 ...00

Loss

0

1
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Cumulative Truncation ErrorCumulative Truncation Error

Adding up a large list of numbers can Adding up a large list of numbers can 
quickly result in significant cumulative quickly result in significant cumulative 
error.error.

What is the expected roundoff error for What is the expected roundoff error for 
adding a large list?adding a large list?

What is the maximum roundoff error?What is the maximum roundoff error?

The fastest computers can add more than The fastest computers can add more than 
101099 numbers/second, => cumulative error numbers/second, => cumulative error 
can reach 32can reach 32--bits (4 x 10bits (4 x 1099) in a few seconds) in a few seconds
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Rounding PrecisionRounding Precision

With rounding to nearest integer, assuming With rounding to nearest integer, assuming 
real numbers are randomly distributed between real numbers are randomly distributed between 
integers, what is the magnitude of the expected integers, what is the magnitude of the expected 
loss in precision for a given number?loss in precision for a given number?

...00 ...01 ...11...10 ...00

Loss

0

1

-1
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Cumulative Roundoff ErrorCumulative Roundoff Error

What is the expected cumulative roundoff What is the expected cumulative roundoff 
error when adding up a large list of numbers? error when adding up a large list of numbers? 

What is the maximum roundoff error?What is the maximum roundoff error?
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Floating Point PrecisionFloating Point Precision

Just as the precision of an integer is relative Just as the precision of an integer is relative 
to the weight of the LSB (1), the precision of a to the weight of the LSB (1), the precision of a 
floating point number is relative to the weight floating point number is relative to the weight 
of the LSBof the LSB
•• LSB weight is determined by the exponentLSB weight is determined by the exponent
•• LSB weight is 2LSB weight is 2--23 23 times 2times 2expexp

precision ranges from precision ranges from --0.5 to 0.5 LSB for 0.5 to 0.5 LSB for 
rounding, 0 to 1 LSB for truncationrounding, 0 to 1 LSB for truncation
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Double Precision Floating PointDouble Precision Floating Point

If computers can accumulate errors so If computers can accumulate errors so 
quickly, what to do?quickly, what to do?

Larger representation, 2 words = 64 bitsLarger representation, 2 words = 64 bits

IEEE double precision format:IEEE double precision format:

exponent is biased by 1023, mantissa has a exponent is biased by 1023, mantissa has a 
hidden 1.hidden 1.

1 11 52

sign exponent mantissa
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Cumulative Double Precision ErrorCumulative Double Precision Error
Even the fastest computers will take a while to Even the fastest computers will take a while to 
accumulate enough error to run out of precision using accumulate enough error to run out of precision using 
double precision FPdouble precision FP

(10(1099 operations/sec) x (10operations/sec) x (1055 seconds/day) xseconds/day) x
(10(101.51.5 days/month) = 10days/month) = 1015.515.5 operations/month operations/month 
= 2= 25252 operations/monthoperations/month

=> a couple months before the max error magnitude => a couple months before the max error magnitude 
approaches magnitude of mantissaapproaches magnitude of mantissa

Supercomputers have used quad precision floating Supercomputers have used quad precision floating 
point (128point (128--bit) to avoid error accumulation for huge bit) to avoid error accumulation for huge 
computations.     computations.     
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Double Precision RangeDouble Precision Range

Double precision allows much larger/smaller Double precision allows much larger/smaller 
numbers due to larger exponentnumbers due to larger exponent

2210231023 ≅ ≅ 1010307307

•• For comparison, there are an estimated 10For comparison, there are an estimated 107070 atoms atoms 
in the universe  in the universe  

Increased precision is much more important Increased precision is much more important 
than increased range.than increased range.
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Rounding MethodsRounding Methods
There are various methods for rounding, all of There are various methods for rounding, all of 
which are useful for certain situationswhich are useful for certain situations
•• Truncation (rounding toward zero)Truncation (rounding toward zero)
•• Rounding to nearestRounding to nearest
•• Rounding toward +infinity:Rounding toward +infinity:

1.22 1.22 --> 1.3> 1.3
1.28 1.28 --> 1.3> 1.3
--2.81 2.81 --> > --2.82.8
--2.89 2.89 --> > --2.8 2.8 

•• Rounding toward Rounding toward --infinity:infinity:
1.22 1.22 --> 1.2> 1.2
1.28 1.28 --> 1.2> 1.2
--2.81 2.81 --> > --2.92.9
--2.89 2.89 --> > --2.9 2.9 


