Computer Arithmetic
Floating Point

Chapter 3.6
EEC170 FQ 2005

Floating Point Addition

+ Like addition using base 10 scientific representation:
¢ Align decimal points
* Add
* Normalize the result

Example:

Align (make smaller # same exp. as larger, why?):

9.998 x 107
+ .005 x 10°

IEEE Floating Point Standard (754)

+ |EEE Single precision format:

1 8 23
I

sign exponent mantissa

+ exponent is biased by 127, mantissa has a
hidden 1.

About Floating Point Arithmetic

+ Arithmetic basic operations on floating
point numbers are:

* Add, Subtract, Multiply, Divide

* Transcendental operations (sine, cosine, log,
exp, etc.) are synthesized from these

Floating Point Addition (cont.)

Add:

9.998 x 102
+ _005 x 107

10.003 x 102

Normalize (integer part must be =>1,<=9)

10.003 x 10% = 1.0003 x 10°

+ Observation: By hand, the precision is
unlimited. For computer hardware, precision is
limited to a fixed number of bits.

Binary Floating Point Add

¢ Similar to add in base 10 scientific, but must operate on
standard floating point representation, use basic
computer operafions

Example:
0.25 = 0 01111101 00000000000000000000000

100 0 1000010 a)10010000000000000000000

¢ Align: compare exponents by subtracting
* Sign of result tells which is larger

* Magnitude of result tells how many places smaller must be moved

B: 10000101
: -01111101

00001000 # B is larger by 10004, (8¢en)

Binary Floating Point Add (cont.)

+ Shift smaller number to the right, by magnitude of
exponent subtraction, include hidden bit in shifting.

+ Set smaller exponent equal to larger exponent
0 10000101 00000001000000000000000
(D)

0 10000101 10010000000000000000000
(€39

+ Add mantissas (including hidden bits)
0 10000101(0)00000001000000000000000

10010000000000000000000

Floating Point Subtract

+ Alignment binary point, like addition

¢ Then algorithm for sign magnitude
numbers takes over

* Negate the second operand, then add

* Must set sign bit of result to be consistent
with outcome

Floating Point Add/Sub Hardware

[sur[Eponen] o [l
|

1. Compare
Exponents

Binary Floating Point Add (cont.)

* Normalize the result (get “hidden bit” to be 1)

* This example is already normalized, when would the
result not be normalized?

Floating Point Add/Sub Hardware

L el
Decenent s etor o]
shit et orright

Floating Point Add/Sub Hardware

1. Compare

Exponents | | G
y

Exponent
Difference

2. Route smaller #
’—» left, larger right
@ ==

Big ALU

S Eponen] —rscion]

Floating Point A

Sub Hardware

1. Compare

Exponents W
[

Exponent
Difference

Floating Point A

2. Route smaller #
left, larger right

3. Shift smaller #
right

Sub Hardware

[SonlEsponen] —Fcion]

1. Compare

Exponents w
[

Exponent
Difference
Big ALU

becrement s et oriont
Shit et or right

. Route smaller #
left, larger right

. Shift smaller #
right

. Add

. Select exponent,

computed fraction

Floating Point Add/Sub Hardware
[Sinlxponen | Fracion]

1. Compare
Exponents

Exponent
Difference

> —=m
Big ALU
Y3

. Route smaller #
left, larger right

. Shift smaller #
right

. Add

. Select exponent,
fraction

. Normalize

. Normalize

Floating Point Add/Sub Hardware

1. Compare

Exponents W
|

Difference
ey | ——
Decremen s oot |
Shit et or right

2. Route smaller #
left, larger right

3. Shift smaller #
right

4. Add

Floating Point Add/Sub Hardware

1. Compare
Exponents w
Exponent
Difference
0 1

|
Rounding

2. Route smaller #
left, larger right

. Shift smaller #
right
. Add

. Select exponent,
fraction

. Normalize

Floating Point Add/Sub Hardware

1. Compare
Exponents

Exponent
Difference

D =m

0 1

. Route smaller #
left, larger right

. Shift smaller #
right

. Add

. Select expon
fraction

. Normalize

. Normalize

. Done

Floating Point Multiply

¢ Similar to multiply in base 10 scientific:
® Multiply mantissas
* Add exponents

* Normalize

Example:

15.0 x 10* -> 1.5 x 10?

Binary Floating Point Multiply (cont.)

* Add exponents:

10000100
00111100

11000000

* Exponent now has double bias (one for each term),
so subtract 127:

11000000
-01111111

01000001

* Compute the result sign bit
" XOR of operand sign bits

* Reconstruct the result
1 01000001 10.00110000

Floating Point Division

¢ Dual of multiplication
* Divide mantissas (include hidden hits)

® Subtract exponents. Must add back in bias (127)
because it has been eliminated

* Normalize result
® hidden bit must be 1
® may require left shifts, exponent decrement

* Trim excess bits

Binary Floating Point Multiply

¢ Similar to base 10, but must deal with standard floating
point representation

Example (using only 4 mantissa bits):

0 10000100 0100
x 1 00111100 1100

* Multiply the mantissas, don’t forget the hidden 1s:
1.0100

1000110000 -> 10.00110000

Binary Floating Point Multiply (cont.)

* Normalize the result
= Shift binary point if integer part is >1, increment exponent:

1 01000010 1.001100000
* “Trim” excess bits low order bits and trim
hidden bit

1 01000010 0011

Arithmetic Instructions

* MIPS processor has separate instructions for
integer and floating point arithmetic

+ Floating point operations are relatively slow,
want to use integer if appropriate:
* Integer Add 1 time unit
* FI. Pt. Add 2 time units
* Fl. Pt. Multiply 3 time units
* Fl. Pt. Divide 20 time units

Floating Point Range: Maximum

+ Floating point can represent very large numbers.
The largest number is:

0 11111110 (1-)111111111121111111111111

Maximum exponent is: 254 - 127 = 127 => weight of 2'#".
Mantissais: 1 +1/2 + 1/4 + ... + 1/2°=2-1/2% = 2
Thus the largest number = 2'%° = 1
Do we need larger numbers? Probably not:
= Radius of the universe = age of the universe x speed of light
= (10" years) x (10>° days/year) x (10° seconds/day) x
(10%° meters/sec) = 10°° meters

Bill Gates’ net worth is < 10* dollars

Denormalized Numbers

+ There is no hidden 1 when the exponent is
00000000, i.e. the number is no longer normalized

+ 00000000 exponent has same meaning as
00000001, i.e., 2%

+ Denormalized number can have a leading 1in any
bit position, allowing even smaller numbers
¢ However smaller numbers have fewer bits of precision

+ Smallest denormalized number is:
0 00000000 (0-)00000000000000000000001

which represents 2° = 10
¢ only has 1 bit of precision

+ Denormalization complicates floating point
hardware design, questionable usefulness

Precision

¢ The set of all real numbers is infinite.
+ The set of floating point numbers is finite, 2%

+ We must map a range of real numbers onto a
single floating point number

* The mapping cannot be precise, some precision is
lost. How much?

Floating Point Range: Minimum

¢ Floating point can represent very small positive
rmally, the smallest positive
number is:

0 00000001 (1-)00000000000000000000000
Minimum exponent is: 1-127 =-126 => weight of 2%,
Mantissa is: 1
Thus the smallest number = 2*?°=10%

Do we need smaller numbers? Probably not:

® Mass of an electron: 10’27grams
But somebody was small minded:

Overflow and Underflow

* When aresult is larger than
0 11111110 (2.)11111111111111111111111

overflow occurs, and the result becomes
+infinity, which is represented as:
0 11111111 00000000000000000000000

¢ -infinity is the same, but with a 1 in the sign bit

¢ Operations with infinity will produce the
expected result: # + infinity = infinity

+ Underflow occurs when the result is smaller
than the smallest denormalized number
* result becomes 0

Integer Precision

+ First, consider precision of mapping real numbers

to binary integers:

...00 corf QL D) oLl ...00

—_—tt——t——

¢ The real numbers between two integers must be

mapped to one of those integers.
* Simplest method is truncation, discard the fractional part:

...00 .01 1) ooadlib ...00
-y

Truncation Precision

+ With truncation, assuming real numbers
are randomly distributed between
integers, what is the expected loss in
precision for a given number?

Rounding Precision

Cumulative Truncation Error

+ Adding up alarge list of numbers can
guickly result in significant cumulative
error.

+ What is the expected roundoff error for
adding a large list?

+ What is the maximum roundoff error?
+ The fastest computers can add more than

10° numbers/second, => cumulative error
can reach 32-bits (4 x 109) in a few seconds

Cumulative Roundoff Error

+ With rounding to nearest integer, assuming
real numbers are randomly distributed between
integers, what is the magnitude of the expected
loss in precision for a given number?

+ What is the expected cumulative roundoff
error when adding up a large list of numbers?

¢ What is the maximum roundoff error?

Floating Point Precision

¢ Just as the precision of an integer is relative
to the weight of the LSB (1), the precision of a
floating point number is relative to the weight
of the LSB
* LSB weight is determined by the exponent
* LSB weight is 2% times 2%

¢ precision ranges from -0.5 to 0.5 LSB for
rounding, 0 to 1 LSB for truncation

Double Precision Floating Point

+ If computers can accumulate errors so
quickly, what to do?

Larger representation, 2 words = 64 bits

+ |[EEE double precision format:

1 11 52
o———Jj———— 1]

sign exponent mantissa

¢ exponent is biased by 1023, mantissa has a
hidden 1.

Cumulative Double Precision Error

Even the fastest computers will take a while to)
accumulate enough error to run out of precision using
double precision FP

(109 operations/sec) x (10° seconds/day) x
(10*® days/month) = 10"*® operations/month
= 2°2 operations/month

=>a couple months before the max error magnitude
approaches magnitude of mantissa

Supercomputers have used quad precision floating
point (128-bit) to avoid error accumulation for huge
computations.

Rounding Methods

¢ There are various methods for rounding, all of
which are useful for certain situations

* Truncation (rounding toward zero)
* Rounding to nearest
* Rounding toward +infinity:

1.22->1.3
1.28->1.3

-2.81->-2.8
-2.89->-2.8

Rounding toward -infinity:

1.22->1.2
1.28->1.2

-2.81->-2.9
-2.89 ->-2.9

Double Precision Range

¢ Double precision allows much larger/smaller
numbers due to larger exponent

21023 = 10307

* For comparison, there are an estimated 107 atoms
in the universe

¢ Increased precision is much more important
than increased range.

