Computer Arithmetic Floating Point

Chapter 3.6 EEC170 FQ 2005

About Floating Point Arithmetic

- Arithmetic basic operations on floating point numbers are:
 - Add, Subtract, Multiply, Divide
 - Transcendental operations (sine, cosine, log, exp, etc.) are synthesized from these

Floating Point Addition

- Like addition using base 10 scientific representation: Align decimal points
 - Add
 - Normalize the result

Example:

 9.998×10^2 + 5.0 $\times 10^{-1}$ _____

Align (make smaller # same exp. as larger, why?):

 9.998×10^2 + $.005 \times 10^{2}$

Floating Point Addition (cont.)

Normalize (integer part must be => 1, <= 9)

 $10.003 \times 10^2 = 1.0003 \times 10^3$

 Observation: By hand, the precision is unlimited. For computer hardware, precision is limited to a fixed number of bits.

Example:

- Align: compare exponents by subtracting
 Sign of result tells which is larger

 - Magnitude of result tells how many places smaller must be moved B: 10000101

 - A: -01111101 00001000 # B is larger by 1000_{two} (8_{ten})

Binary Floating Point Add (cont.) Shift smaller number to the right, by magnitude of exponent subtraction, include hidden bit in shifting. Set smaller exponent equal to larger exponent

Add mantissas (including hidden bits)

Binary Floating Point Add (cont.)

- Normalize the result (get "hidden bit" to be 1)
 - This example is already normalized, when would the result not be normalized?

Floating Point Subtract

- Alignment binary point, like addition
- Then algorithm for sign magnitude numbers takes over
 - Negate the second operand, then add
- Must set sign bit of result to be consistent with outcome

Floating Point Multiply

- Similar to multiply in base 10 scientific:
 - Multiply mantissas
 - Add exponents
 - Normalize

Example:

- 3.0×10^2
- + 5.0 x 10^{-1}
- $15.0 \times 10^{1} \rightarrow 1.5 \times 10^{2}$

Binary Floating Point Multiply

 Similar to base 10, but must deal with standard floating point representation

Example (using only 4 mantissa bits):

x 1 00111100 0100 x 1 00111100 1100

• Multiply the mantissas, don't forget the hidden 1s:

1.0100 x 1.1100 00000 00000 10100 10100 10100 -------1000110000 -> 10.00110000

Binary Floating Point Multiply (cont.)

Add exponents:

- 10000100 00111100
- 11000000
- Exponent now has double bias (one for each term), so subtract 127:

- Compute the result sign bit
 XOR of operand sign bits
- Reconstruct the result
 - 1 01000001 10.00110000

Binary Floating Point Multiply (cont.)

Normalize the result

- Shift binary point if integer part is >1, increment exponent:
 1 01000010 1.001100000
- "Trim" excess bits low order bits and trim hidden bit

1 01000010 0011

Floating Point Division

Dual of multiplication

- Divide mantissas (include hidden hits)
- Subtract exponents. Must add back in bias (127) because it has been eliminated
- Normalize result
- hidden bit must be 1
- may require left shifts, exponent decrement
- Trim excess bits

Arithmetic Instructions

- MIPS processor has separate instructions for integer and floating point arithmetic
- Floating point operations are relatively slow, want to use integer if appropriate:

Integ	er Add	1 time unit

- Fl. Pt. Add 2 time units
- Fl. Pt. Multiply 3 time units
- Fl. Pt. Divide 20 time units

Floating Point Range: Maximum

• Floating point can represent very large numbers. The largest number is:

0 11111110 (1.)11111111111111111111111111111

- Maximum exponent is: 254 127 = 127 => weight of 2¹²⁷.
- Mantissa is: 1 + 1/2 + 1/4 + ... + 1/2²³ = 2 1/2²³ ≅ 2
- Thus the largest number $\simeq 2^{128} \simeq 10^{38}$
- Do we need larger numbers? Probably not:
 - Radius of the universe = age of the universe x speed of light = (10¹⁰ years) x (10^{2.5} days/year) x (10⁵ seconds/day) x (10^{8.5} meters/sec) = 10²⁶ meters
 - Bill Gates' net worth is < 10¹¹ dollars

Floating Point Range: Minimum

 Floating point can represent very small positive numbers. Normally, the smallest positive number is:

0 0000001 (1.)000000000000000000000000

- Minimum exponent is: $1 127 = -126 \Rightarrow$ weight of 2^{-126} .
- Mantissa is: 1
- Thus the smallest number $\cong 2^{-126} \cong 10^{-38}$
- Do we need smaller numbers? Probably not:
 Mass of an electron: 10⁻²⁷ grams
- But somebody was small minded:

Denormalized Numbers

- There is no hidden 1 when the exponent is 00000000, i.e. the number is no longer normalized
- 00000000 exponent has same meaning as 00000001, i.e., 2⁻¹²⁶
- Denormalized number can have a leading 1 in any bit position, allowing even smaller numbers
 However smaller numbers have fewer bits of precision
- Smallest denormalized number is:

which represents 2⁻¹⁴⁹ ≅ 10⁻⁴⁵ • only has 1 bit of precision

 Denormalization complicates floating point hardware design, questionable usefulness

Overflow and Underflow

When a result is larger than

- 0 11111111 00000000000000000000000000
- -infinity is the same, but with a 1 in the sign bit
- Operations with infinity will produce the expected result: # + infinity = infinity
- Underflow occurs when the result is smaller than the smallest denormalized number
 result becomes 0

Precision

- The set of all real numbers is infinite.
- The set of floating point numbers is finite, 2³²
- We must map a range of real numbers onto a single floating point number
 - The mapping cannot be precise, some precision is lost. How much?

Truncation Precision

 With truncation, assuming real numbers are randomly distributed between integers, what is the expected loss in precision for a given number?

00	01	10	11	10)
t Loss 0					,

Cumulative Truncation Error

- Adding up a large list of numbers can quickly result in significant cumulative error.
- What is the expected roundoff error for adding a large list?
- What is the maximum roundoff error?
- The fastest computers can add more than 10⁹ numbers/second, => cumulative error can reach 32-bits (4 x 10⁹) in a few seconds

Rounding Precision

 With rounding to nearest integer, assuming real numbers are randomly distributed between integers, what is the magnitude of the expected loss in precision for a given number?

Cumulative Roundoff Error

- What is the expected cumulative roundoff error when adding up a large list of numbers?
- What is the maximum roundoff error?

Floating Point Precision

- Just as the precision of an integer is relative to the weight of the LSB (1), the precision of a floating point number is relative to the weight of the LSB
 - LSB weight is determined by the exponent
 - LSB weight is 2⁻²³ times 2^{exp}
- precision ranges from -0.5 to 0.5 LSB for rounding, 0 to 1 LSB for truncation

Double Precision Floating Point

 If computers can accumulate errors so quickly, what to do?

Larger representation, 2 words = 64 bits

• IEEE double precision format:

 exponent is biased by 1023, mantissa has a hidden 1.

Cumulative Double Precision Error

- Even the fastest computers will take a while to accumulate enough error to run out of precision using double precision FP
 - (10⁹ operations/sec) x (10⁵ seconds/day) x (10^{1.5} days/month) = 10^{15.5} operations/month = 2^{52} operations/month
- => a couple months before the max error magnitude approaches magnitude of mantissa
- Supercomputers have used quad precision floating point (128-bit) to avoid error accumulation for huge computations.

Double Precision Range

 Double precision allows much larger/smaller numbers due to larger exponent

 $2^{1023} \cong 10^{307}$

- For comparison, there are an estimated 10⁷⁰ atoms in the universe
- Increased precision is much more important than increased range.

Rounding Methods

- There are various methods for rounding, all of which are useful for certain situations
 - Truncation (rounding toward zero)
 - Rounding to nearest
 - Rounding toward +infinity:
 - 1.22 -> 1.3 1.28 -> 1.3
 - -2.81 -> -2.8 -2.89 -> -2.8
 - Rounding toward -infinity:
 - 1.22 -> 1.2 1.28 -> 1.2
 - -2.81 -> -2.9 -2.89 -> -2.9