
1

Computer ArithmeticComputer Arithmetic
DivisionDivision

Chapter 3.5 Chapter 3.5
EEC170 FQ 2005EEC170 FQ 2005

2

Division Terms Division Terms

CConsideronsider aa long long divisdivisiion example:on example:

00000056756711ttenen
11223434ttenen 70067006778989ttenen

70067006
--61617070

83678367
--74047404

96389638
--86388638
1100090009
--98987722

113377ttenen

DivisorDivisor DividendDividend
QuotientQuotient

RemainderRemainder

Partial RemainderPartial Remainder

3

Human DivisionHuman Division

1.1. Bring down next digit to Partial RemainderBring down next digit to Partial Remainder

2.2. Compare Divisor and Partial RemainderCompare Divisor and Partial Remainder
•• IF Partial Remainder < Divisor: put 0 digit in Quotient, IF Partial Remainder < Divisor: put 0 digit in Quotient,

gotogoto 1. 1.

3.3. Estimate Quotient digitEstimate Quotient digit

4.4. Multiply Divisor by estimated digitMultiply Divisor by estimated digit

5.5. Subtract from Partial RemainderSubtract from Partial Remainder
•• IF result is negative, erase work,IF result is negative, erase work,

decrement estimated digit, decrement estimated digit, gotogoto 44
•• IF result > Divisor, erase work,IF result > Divisor, erase work,

increment estimated digit, increment estimated digit, gotogoto 44
•• ELSE put estimated digit in Quotient, ELSE put estimated digit in Quotient, gotogoto 11

4

Binary DivisionBinary Division

1.1. Bring down next digit to Partial Bring down next digit to Partial
RemainderRemainder

2.2. Subtract Divisor from Partial RemainderSubtract Divisor from Partial Remainder
““EstimateEstimate”” Quotient bit will be 1Quotient bit will be 1
•• IF result is negative, erase work, IF result is negative, erase work,

put 0 in Quotient, put 0 in Quotient, gotogoto 11
•• ELSE put 1 in Quotient, ELSE put 1 in Quotient, gotogoto 11

5

Simple Hardware DividerSimple Hardware Divider
Use ALU to subtract/add shifted Divisor from Remainder Use ALU to subtract/add shifted Divisor from Remainder

•• how to initialize?how to initialize?
•• Conditionally add to Conditionally add to ‘‘eraseerase’’ work after subtractwork after subtract

0010000000100000

DivisorDivisor

88--bit ALUbit ALU

00000000

QuotientQuotient

0000011100000111
RemainderRemainder

ControlControl
TestTest

WriteWrite Shift leftShift left

ADD/SUBADD/SUB

Shift rightShift right

6

Simple Division AlgorithmSimple Division Algorithm
Step 1Step 1

StartStart

1. Subtract Divisor register from Remainder register, 1. Subtract Divisor register from Remainder register,
place result in Remainder registerplace result in Remainder register

Remainder < 0Remainder < 0
Test RemainderTest Remainder

Remainder >= 0Remainder >= 0

7

Simple Division AlgorithmSimple Division Algorithm
Steps 2 & 3Steps 2 & 3

2a. Shift Quotient register to left, 2a. Shift Quotient register to left,
set new rightmost bit to 1set new rightmost bit to 1

2a. Restore original value by 2a. Restore original value by
adding Divisor register to adding Divisor register to
Remainder register, placing sum Remainder register, placing sum
in Remainder register. Shift in Remainder register. Shift
Quotient register to left, set new Quotient register to left, set new
rightmost bit to 0rightmost bit to 0

3. Shift Divisor register right 1 bit3. Shift Divisor register right 1 bit

8

Simple Division AlgorithmSimple Division Algorithm
LoopLoop

3. Shift Divisor register right 1 bit3. Shift Divisor register right 1 bit

3232ndnd iteration?iteration?

DoneDone

Yes: 32 iterationsYes: 32 iterations

No: < 32 iterationsNo: < 32 iterations

to step 1.to step 1.

9

Improved Hardware DividerImproved Hardware Divider

Divisor, ALU are reduced in halfDivisor, ALU are reduced in half
Remainder shifts left, Divisor fixedRemainder shifts left, Divisor fixed
Remainder/Quotient share registerRemainder/Quotient share register

00100010 DivisorDivisor

44--bit ALUbit ALU

0000 01110000 0111

Remainder/QuotientRemainder/Quotient

ControlControl
TestTest

WriteWrite

ADD/SUBADD/SUB

ShiftShift

10

Improved Division AlgorithmImproved Division Algorithm
Step 1Step 1

StartStart

1. Subtract Divisor register from left half of 1. Subtract Divisor register from left half of
Remainder register, place result in left half of Remainder register, place result in left half of
Remainder registerRemainder register

Remainder < 0Remainder < 0
Test RemainderTest Remainder

Remainder >= 0Remainder >= 0

11

Improved Division AlgorithmImproved Division Algorithm
Steps 2 & 3Steps 2 & 3

2a. Shift 2a. Shift RemainderRemainder register to register to
left, set new rightmost bit to 1left, set new rightmost bit to 1

2a. Restore original value by 2a. Restore original value by
adding Divisor register to left half adding Divisor register to left half
Remainder register, placing sum Remainder register, placing sum
in Remainder register left half. in Remainder register left half.
Shift Shift RemainderRemainder register to left, register to left,
set new rightmost bit to 0set new rightmost bit to 0

12

Improved Division AlgorithmImproved Division Algorithm
LoopLoop

3232ndnd iteration?iteration?

DoneDone

Yes: 32 iterationsYes: 32 iterations

No: < 32 iterationsNo: < 32 iterations

to step 1.to step 1.

13

Signed DivisionSigned Division

Sign of Quotient is XOR of signs of Sign of Quotient is XOR of signs of
Dividend and divisorDividend and divisor

Sign of Remainder matches sign of Sign of Remainder matches sign of
dividenddividend

122 / 3 = 40 remainder 2122 / 3 = 40 remainder 2

--122 / 122 / --3 = 40 remainder 3 = 40 remainder ––22

--122 / 3 = 122 / 3 = --40 remainder 40 remainder ––22

122 / 122 / --3 = 3 = --40 remainder 2 40 remainder 2

14

‘‘FastFast’’ DivisionDivision

So far all ALU operations can be done in So far all ALU operations can be done in
loglog22N time unitsN time units
•• Carry LookCarry Look--Ahead Adder: 1 clock cycleAhead Adder: 1 clock cycle
•• Wallace Tree Multiplier: 2 clock cyclesWallace Tree Multiplier: 2 clock cycles
•• Barrel Shifter: 1 clock cycleBarrel Shifter: 1 clock cycle

Best division algorithms take N time Best division algorithms take N time
units (slow)units (slow)
•• Resolve 4 bits per iteration rather than 1, and Resolve 4 bits per iteration rather than 1, and

iterations are complex iterations are complex
Intel floating point bugIntel floating point bug

•• 20 to 40 cycles for MIPS R1000020 to 40 cycles for MIPS R10000

