Computer Arithmetic
Division

Chapter 3.5
EEC170 FQ 2005

Human Division

Bring down next digit to Partial Remainder

Compare Divisor and Partial Remainder

« IF Partial Remainder < Divisor: put 0 digit in Quotient,
goto 1.

Estimate Quotient digit

Multiply Divisor by estimated digit

Subtract from Partial Remainder

« IFresultis negative, erase work,
decrement estimated digit, goto 4

* IFresult > Divisor, erase work,
increment estimated digit, goto 4

* ELSE put estimated digit in Quotient, goto 1

Simple Hardware Divider

+ Use ALU to subtract/add shifted Divisor from Remainder

« how to initialize?
« Conditionally add to ‘erase’ work after subtract

Divisor
Shift right

Quotient

Division Terms

+ Consider a long division example:

0005671, ., ~—— Quotient
Divisor 1234, [7006789,,, ~— Dividend
7006
-6170
8367 Partial Remainder
-7404
9638
-8638
10009
-9872

137, —— Remainder

Binary Division

Bring down next digit to Partial
Remainder

Subtract Divisor from Partial Remainder
“Estimate” Quotient bit will be 1

* [IFresultis negative, erase work,
put 0 in Quotient, goto 1

» ELSE put 1in Quotient, goto 1

Simple Division Algorithm
Step 1

1. Subtract Divisor register from Remainder register,
place result in Remainder register

Remainder >=0 Remainder <0

Test Remainder

Simple Division Algorithm
Steps 2 & 3

2a. Shift Quotient register to left, 2a. Restore original value by
set new rightmost bit to 1 adding Divisor register to
Remainder register, placing sum
in Remainder register. Shift

Quotient register to left, set new
rightmost bit to 0

3. Shift Divisor register ghtlblt

Improved Hardware Divider

+ Divisor, ALU are reduced in half
+ Remainder shifts left, Divisor fixed
+ Remainder/Quotient share register

ADD/SUB

Remainder/Quotient

Improved Division Algorithm
Steps 2 & 3

r register to 2a. Restore original value by
left, set new rightmost bit to 1 adding Divisor register to left half
Remainder register, placing sum
in Remainder register left half.
Shift Remainder register to left,
set new rightmost bit to 0

Simple Division Algorithm
Loop

L

‘ Shift Divisor register right 1 bit
to step 1.

No: < 32 iterations
32nd jteration?

Yes: 32 iterations

Improved Division Algorithm
Step 1

1. Subtract Divisor register from left half of
Remainder register, place result in left half of
Remainder register

Remainder >=0 Remainder <0
Test Remainder

Improved Division Algorithm
Loop

to step 1.

No: < 32 iterations
32nd jteration?

Yes: 32 iterations

Signed Division

+ Sign of Quotient is XOR of signs of
Dividend and divisor

+ Sign of Remainder matches sign of
dividend
122 /3 =40 remainder 2
-122 /-3 = 40 remainder -2
-122 /3 =-40 remainder -2
122 /-3 =-40 remainder 2

‘Fast’ Division
+ So far all ALU operations can be done in
log,N time units
* Carry Look-Ahead Adder: 1 clock cycle
» Wallace Tree Multiplier: 2 clock cycles
« Barrel Shifter: 1 clock cycle
+ Best division algorithms take N time
units (slow)

* Resolve 4 bits per iteration rather than 1, and
iterations are complex

= Intel floating point bug

* 20 to 40 cycles for MIPS R10000

