Computer Arithmetic
Multiplication & Shift
Chapter 3.4
EEC170 FQ 2005

Layout 8-bit Pipelined Multiplier

How Humans Multiply

+ We first generate all partial product terms

&« Multiplicand
&« Multiplier

€« Partial Product

How Humans Multiply

+ We first generate all partial product terms

&« Multiplicand

&« Partial Product

Multiply

+ We will start with unsigned multiply and
contrast how humans and computers
multiply

How Humans Multiply

+ We first generate all partial product terms

1010 <« Multiplicand
<« Multiplier

€« Partial Product

How Humans Multiply

+ We first generate all partial product terms

<« Multiplicand
< Multiplier

<« Partial Product

How Humans Multiply

¢ Then add column by column, right to left

€« Product

How Humans Multiply

+ Then add column by column, right to left

<« Product

How Humans Multiply

+ Sometimes with one or more carry digits

€« Product

How Humans Multiply

+ Then add column by column, right to left

<« Product

How Humans Multiply

+ Sometimes with one or more carry digits

< Product

How Humans Multiply

¢ Sometimes with one or more carry digits

€« Product

How Humans Multiply

+ Sometimes with one or more carry digits

&« Product

How Humans Multiply

+ Sometimes with one or more carry digits

<« Product

Shift & Add Multiply

+ Simplest computer multiply is to shift
Multiplicand left one bit per iteration to
generate partial product

+ Each iteration if corresponding Multiplier
bitis 1:
¢ Product = Product + Multiplicand

+ NxN bit multiply takes N iterations (N
clock cycles)

How Humans Multiply

+ Sometimes with one or more carry digits

0000010 <« Product

Human Method Not Best for Computers

+ Each partial product must be stored =
extra hardware

¢ Columns vary in size = complexity
* Multiple-digit carries = complexity

+ Need a simpler method for low-cost
multipliers

Shift & Add Multiply

Multiplicand
Multiplier

Old Product
00001010 New Product

Shift & Add Multiply Shift & Add Multiply

1010 Multiplicand 1010 Multiplicand
Multiplier Multiplier

Old Product Old Product
New Product 00110010 New Product

Shift & Add Multiply Shift & Add Multiply

+ Computer multiply also shifts multiplier
right so current multiplier bit is at a fixed
position, the least significant bit (LSB)

Multiplicand
Multiplier

Old Product
New Product

Shift & Add Multiply Shift & Add Multiply

Multiplicand 10? Multiplicand
Multip r Multiplier

Old Product 00001010 Old Product
New Product 00001010 New Product

Shift & Add Multiply

Multiplicand

Multiplier

0 Old Product
(0] New Product

Software Multiple

+ Very simple processors don’t have
hardware, implement shift & add in
software

Multiply in C:
int product = 0;
for(int i 1<32; i++)

if((multiplier>>i % 2) == 1)
product = product + multiplicand<<i;

Simple Hardware Multiply
+ Like shift & add we have already seen

* Multiplier LSB is write enable for Product latch

Multiplicand Multiplier

Product

Shift & Add Multiply

Multiplicand
Multiplier

Old Product
10000010 New Product

MIPS Assembly Multiply

cand is in $a0, need not save
ier is in $al, need not save

move $vO0,0 #$v0 is the product

andi $t1,%al,1 #get multiplier bit

beq $t1,%$0,Next #test bit

add $v0,$v0,%a0 #add partial product

sll $a0,%a0,1 #get next partial product
sir $al,$al,1 #position multiplier bit
bne $al,$0,Loop #got any bits left?

Simple Hardware Multiply

Multiplicand Multiplier

Product

Simple Hardware Multiply

Multiplicand Multiplier

Simple Hardware Multiply

Multiplicand Multiplier

8-bit ALU

Product

Refined Hardware Multiply
¢ ALU input is accept/not accept based on

WE
Start of 1st Iteration

5 1010| Multiplicand

Product/Multiplier

Simple Hardware Multiply

Multiplicand Multiplier

Product

Refined Multiply Hardware

+ Notice the following about the simple
shift & add hardware:

* Only N significant bits are being summed
each cycle, but we are using a 2N-bit adder, a
WESE

« Each cycle one new bit of the product is
resolved, while one old bit of the multiplier is
discarded

« Simple multiply shifts Multiplicand left and
keeps Product stationary. Itis equivalent to
keep Multiplicand stationary and shift
Product right (same relative motion).

Refined Hardware Multiply

* When WE=0, shift but no ALU input

Start of 2"d Iteration

£ 1010] Multiplicand

Product/Multiplier

Refined Hardware Multiply

Start of 3" Iteration

Multiplicand

Product/Multiplier

Refined Hardware Multiply

Final Result: 10 x 13 =130

o| Multiplicand

Product

Booth’s Algorithm

+ Identify leading +1s and trailing in Multiplier
ibilt.position i by looking at Multiplier bit i and bit
for
» +1 for
«0 for
0 for

+ Examples:

lien = 000D &

Refined Hardware Multiply

Start of 4th Iteration

Multiplicand

Product/Multiplier

Signed Multiplication

+ Shift and Add only works for positive numbers
To include negative numbers must:

* Save XOR of sign bits to get product sign bit
« Convert multiplier/multiplicand to positive

« Do shift and add algorithm

« Negate result if product sign bitis 1

¢ Booth’s Algorithm handles positive /negative
numbers uniformly
« Based on observation that ..011..1110.. =
..100..0000...
- ..000..0010..

E.g., 01110, (14,,) = 10000, (16,0) - 00010, (2,0)

- 2 2

« l.e. convert string of 1s into leading +1 and a trialing

Booth’s Algorithm

+ |dentify leading +1s and trailing in Multiplier
bit position i by looking at Multiplier bit i and bit
i-1:

for
« +1 for

0 for
0 for

¢ Examples:

1 =

ten

Booth’s Algorithm Booth’s Algorithm

¢+ Identify leading +1s and trailing in Multiplier ¢ Identify leading +1s and trailing in Multiplier

ib_ilt.position i by looking at Multiplier bit i and bit itiiltlposition i by looking at Multiplier bit i and bit
(o]

» +1 for « +1 for

0 for 0 for

0 for i 0 for

¢ Examples: ¢ Examples:

lten = 01 E> 01 1ten = QO]' E> 001

Booth’s Algorithm Booth’s Algorithm

+ Identify leading +1s and trailing in Multiplier ¢+ |dentify leading +1s and trailing in Multiplier
bit position i by looking at Multiplier bit i and bit bit position i by looking at Multiplier bit i and bit
i-1: i-1:

for
» +1 for

for
o +1 for
0 for * 0 for
0 for * 0 for
+ Examples: ¢ Examples:
li(en = 0001 = 0011 lien = 0001 = 0011 = 2-1

Aoy = 11207 = Ao = 1100 = 0]

Booth’s Algorithm Booth’s Algorithm
+ Identify leading +1s and trailing in Multiplier + |dentify leading +1s and trailing in Multiplier
bit position i by looking at Multiplier bit i and bit bit position i by looking at Multiplier bit i and bit

i-1: i-1:
for
« +1 for

for
« +1 for
«0 for 0 for

«0 for 0 for

+ Examples: ¢ Examples:

1een = 0001 = 0011 leen = 0001 = 0011
Ayen = 1AL = 00 1, = @11 = 000

Booth’s Algorithm

¢+ Identify leading +1s and trailing in Multiplier
bit position i by looking at Multiplier bit i and bit

i-1: |I|
for 1 0
e+lfor O 1
«0 for 00O
«0 for 11
+ Examples:
= 0001 = 0011
-1en = 1111 = 0001

64y = 1010[] 2 O

1ten

Booth’s Algorithm

+ Identify leading +1s and trailing in Multiplier
bit position i by looking at Multiplier bit i and bit

i-1: |I|
for 1 0
e+lfor 0 1
«0 for 0O
«0 for 1 1

+ Examples:
l,en = 0001 = 0011
1 = 1111 = 0001

~—ten

—6n = 1000 = 110

Booth Hardware Implementation

+ Use ALU to ADD or based on the
trailing —1s, leading 1s from the Multiplier

Start of 1stiteration

S Multiplicand

Product/Multiplier

Booth’s Algorithm

¢+ |dentify leading +1s and trailing in Multiplier
ib_ilt.position i by looking at Multiplier bit i and bit
for
« +1 for
0 for
0 for

+ Examples:
= 0001
-lien = 1111

_6ten = lo@

lten

Booth’s Algorithm

¢ |dentify leading +1s and trailing in Multiplier
bit position i by looking at Multiplier bit i and bit
i-1:

for
e +1 for
0 for
0 for
+ Examples:
1ien = 0001

Aoy = 1111
_6ten = @10

Booth Hardware Implementation

+ Product shift is arithmetic shift, sign bit
does not change

Start of 2"d jteration

> 1010| Multiplicand

Product/Multiplier

Booth Hardware Implementation

Start of 3" iteration

> Multiplicand

Product/Multiplier

Booth Hardware Implementation

Final Result: -6 x -3 =18

o| Multiplicand

Product/Multiplier

Wallace Tree Stage O

Partial products ¢ Partial products

produced sequentially produced using array

(slow) of AND gates (fast)

1010 Multiplicand Multiplier Multiplicand
1101 1010

1101 Multiplier

(0]0]0]0} 0000
1010 [JoN N6

Partial Products Partial Products

Booth Hardware Implementation

Start of 4th iteration

- Multiplicand

Product/Multiplier

Fast Multiply

+ Shift & Add is slow: 32x slower than
addition

+ Fast processors have fast multiply
hardware using more hardware than shift
& add

+ Basic example is a Wallace tree adder,
which uses an array of full adder cells

Wallace Tree Reducers

+ Full adder cells used to reduce column
segment of height 3 to row of width 2

¢ sum and carry out

+ Half adders used selectively for height-3
column that does not need full reduction

Full Adder Half Adder

Wallace Tree Strategy

+ In stages reduce column height from <=N
to height 2, then use fast adder

@000
0000
@000
[JoX Jo)

Wallace

Wallace Tree Multiplier: 4x4 Example

[JoN N©)

Stage 1 E
([
® 0

Wallace Tree Multiplier: 4x4 Example

Wallace Tree Multiplier: 4x4 Example

®0@®O0
0000
[NoN Ne)
[_NoN N

Wallace Tree Multiplier: 4x4 Example

[JoN N©)

Stage 1 E
([
® 0

Wallace Tree Multiplier: 4x4 Example

[JON N©)

Stage 1 B
[)
@0

(N _NON NoX Ne
O 00O
]

Wallace Tree Multiplier: 4x4 Example

[JON N©)

Stage 1)
([J
® O

000000
O®O0O0O0
®

Wallace Tree Multiplier: 4x4 Example

[JoN N©)

Wallace Tree Multiplier: 4x4 Example

| JON N©)

[JoN Ne

oo

Wallace Tree Multiplier: 4x4 Example

| JON N©)

Stage 1)
([J
® O

Stage 2

Wallace Tree Multiplier: 4x4 Example

[JoN N©)

Stage 1 E
([
® 0

Wallace Tree Multiplier: 4x4 Example

| JON N©)

Stage 1 B
[)
@0

Wallace Tree Multiplier: 4x4 Example

| JON N

oooo
oo

6-Bit Adder

Wallace Tree Multiplier: 4x4 Example

| JON N©)

Stage 1)
([J
® O

[NoN N©)

6-Bit Adder

REIN NoNoNoNoNoN Ne)

Wallace Tree Multiplier: 8x8 Example Wallace Tree Mult (cont.)

¢ Column height is reduced by about 2/3
during each level

Stage 0 + For NxN multiply, an estimate for number
of levels:
N x (2/3)*=2
(2/3y = 2IN
x 109,(2/3) = l0g,(2/N)
= _ _ x =l0g,(2/N) / log,(2/3)
Stage3 ° : x = [log(2) -log(N)] /-0.6
Stage 4 e : X =-1.7 x [1 -l0g,(N)]
14-Bit Adder 5 i x = 1.74l0g,(N) - 1.7
Result 00 ° 2 Levels for N=4, 4 Levels for N =8, 7 levels for N =32

Stage 1

Stage 2

Barrel Shifter Barrel Shifter

+ Want shifter that is fast, not shift one bit
position at a time Shift Amount

[s2[siTso] [o] _
« Can be done in N-1=31 shifts in log,N=5 []o] b “
stages using an array of N log,N= 160 . @), O
multiplexers _
Shifted Input ~ Unshifted Input [\.1.7 i i i.i.
- 000@0O0O0@O]

> | 1 |

Shift Control > .’MIT.’\.I\.I. @

Input

Barrel Shifter Barrel Shifter

Shift Amount Input Shift Amount Input

Barrel Shifter Barrel Shifter

Shift Amount Shift Amount Input

Barrel Shifter Barrel Shifter

Shift Amount Input Shift Amount Input

o 00 0 e e
0

