Computer Arithmetic MIPS Integer Representation

Logical, Integer Addition & Subtraction + 32-bit signed integers, e.g., for numeric operations
Chapter 3.1-3.3 . 2”5 com%lg/megt: one rebpresemac}ion_;or zlero, balanced,
allows al subtract to be treated uniform
EEC170 FQ 2005 oS adeisunl / _
¢ 32-bit unsigned integers, e.g., for address operations
« Address considered 32-bit unsigned integer

+ Provides distinct instructions for signed/unsigned:
« ADD, ADDI: add signed register, add signed immediate
© causes exception on overflow

« ADDU, ADDIU: add unsigned register, add unsigned
immediate

= no exception on overflow

Layout of a full adder cell

Comparison Sign Extension

+ Distinct instructions for comparison of « Sign of immediate data extended to form 32-bit
signed/unsigned integers representation:

* Which is larger: 1111...1111 or 0000...0000 ? Depends of type,
signed or unsigned

1111111111111111 10101010 [9]

0000000000000000

+ Two versions of slt for signed/unsigned:
* slt, sltu: set less than signed, unsigned

[op [relm [raf o [smw]

. . . . ¢ Thus, ALU always uses 32-bit operands
+ Two versions of immediate comparison also

provided:

« slti, sltiu: set less than immediate signed, unsigned « Extension occurs for signed and unsigned

arithmetic

Overflow Computer System, Top Level View

+ MIPS has no flag (status) register

« complicates pipeline (see Chapter 6) Compiler

¢ Overflow (underflow):

* Occurs if operands are same sign, result is

different sign.
Control
* Can be checked in software if necessary

* MIPS generates interrupt on overflow for
signed arithmetic to notify program

« C compiler only generates unsigned Datapath Output

arithmetic instructions (avoids interrupts)
o Representation of result is the same if signed/unsigned Processor

Simple Processor Datapath

+Includes registers and ALU
* Cycle 1: Register Fetch

Operand2 Operation

Simple Processor Datapath
+Includes registers and ALU

Registers

Operandl1

Operand?2 Operation

Inside the ALU

Operandl

result

[] eame
Operand2

Operation

Simple Processor Datapath

+Includes registers and ALU
* Cycle 2: ALU Operation

VAN

Operandl1

Operand?2 Operation

Processor Control

¢ Control directs actions in the data path.

Instruction is top level of control

operand2
Operation

Boolean Operations

¢ Each pair of inputs resolved using a
corresponding gate

AND Unit

One Bit Full Adder Full Adder Truth Table

+ Adder truth table maps inputs to the outputs

+ Multiple-bit adder can be built from series

of one-bit full adders

Carry In

Carry Out Carry_Out = b.Carry_In + a:Carry_In + a.b
Sum = a.b.Carry_in + a.b.Carry_in + a‘B‘Carry_in
+ ab.Carry_in

Carry_Out Implementation Two’s Complement Subtraction

* For two’s complement arithmetic the following
Carry In is true:

X+X=-1 Proof: result of X + X is all ones
101001 + 010110 = 111111

X+(§+1)=0

- X =X+1

¢ Our strategy for computing A — B: convert to

Carry Out A + (-B) and use the above rule for -B

One Bit Add/Subtract Cell Single Bit ALU

+ Modify the adder cell so that the B input + Combine gates with add/subtract unit to form 1-
is selectable bit ALU
» Operation selects

which result is sent
out

1-bit ALUs will be
connected in a chain
to form 32-bit ALU

Binvert Carry In

Carry Out

Support for Set Less Than
+ And an input Less to 1-bit ALU for SLT

* Input connections will be seen soon

32-Bit ALU

¢ 32 one-bhit ALUs are
cascaded to form
32-bit ALU

¢ SLT condition is
computed using
A-B, Set is sign-bit
of result
» All other Less
inputs set to 0
» Setis not accurate

when there’s
overflow, why?

AERGIE
corrected?

Ripple Carry Adder Performance

¢ This Ripple Carry Adder is very slow. Each
stage causes 3 two-input gate delays:

+ bc;

in

= ab + ac;

in

Cout

* For a 32-bit adder this would be 96 two-input
gate delays, much too slow

¢ Can speedup addition by using more hardware
« Carry-look ahead adder

Most Significant 1-Bit ALU

+ Specialize ALU Bit 31 to produce Overflow and

Set (for set less than)

» What's inside the
overflow detection
box?

Support for BEQ/BNE

+ Determine EQ/NE using subtract operation

e All zero result
is EQ, else NE

Vector Arithmetic

+ Allows arithmetic to be done in parallel
on subcomponents of a register, e.g.,
arithmetic on bytes:

24 23 16 15 8 7 (]

Vector Arithmetic (con

+ Vector arithmetic has been used for decades in
supercomputers for scientific applications

+ Also used for architecture extensions to
facilitate multimedia processing for RISC
processors and for x86 (MMX,SIMD), e.g.:

« The intensity of each display dot (pixel) is often
represented by 1 byte

« Arithmetic on a vector of bytes allows parallel pixel
arithmetic, e.g., adding two scenes together bit by bit

+ Simple extensions to our MIPS architecture and
the 32-bit adder implementation will allow both
32-bit arithmetic and byte-parallel arithmetic:

Addv Rd,Rs,Rt
Subv Rd,Rs,Rt

Multimedia Arithmetic

¢ Multimedia applications require unconventional
types of arithmetic. Multimedia architecture
extensions include new arithmetic operations

« E.g., saturating addition/subtraction:

= when altering the intensity of a pixel (e.g., adding two
scenes, increasing overall intensity by 2x), we do not
want overflow or underflow to cause wrap around (bright
pixel becomes dark).

Overflow or underflow detection/special processing is
not feasible

Rather, arithmetic result should saturate at maximum or
minimum value that can be represented. Thus for 8-bit
representation:

243 + 124 = 255

+ New multimedia operations require additional

