
11

Instruction Set ArchitectureInstruction Set Architecture
((ContdContd))

Lecture 3 (Chapter 2)Lecture 3 (Chapter 2)
EEC170 FQ 2005EEC170 FQ 2005

MIPS R3000
1988
110K Transistors
72mm2

20MHz
4watts

Intel 80486
1989
1200K Transistors
Size: 163mm2

50MHz

source: Prof. Kent source: Prof. Kent WilkenWilken 22

Review: MIPS Architecture Review: MIPS Architecture
Good example of Good example of RISCRISC processor: processor: RReduced educed
IInstructionnstruction--SSet et CComputeromputer

•• RISC really a misnomer: architecture goal is speed not RISC really a misnomer: architecture goal is speed not
small instruction set. However, certain simplicities result in small instruction set. However, certain simplicities result in
short clock cycleshort clock cycle

•• Alternate RISC definition: Alternate RISC definition: RRelegate the elegate the IInteresting nteresting SStuff to tuff to
the the CCompiler ompiler

Avoid runtime overhead if complexity can be resolved at Avoid runtime overhead if complexity can be resolved at
compile timecompile time
Old school view: software is hard, keep compiler simpleOld school view: software is hard, keep compiler simple
RISC view: complier writers are sharp, have good modern RISC view: complier writers are sharp, have good modern
development toolsdevelopment tools

MIPS company spun off from HennessyMIPS company spun off from Hennessy’’s MIPS s MIPS
processor project at Stanfordprocessor project at Stanford

•• MIPS: MIPS: MMicroprocessor without icroprocessor without IInterlocking nterlocking PPipeline ipeline SStagestages
Designed for efficient pipelining (see Chapter 6)Designed for efficient pipelining (see Chapter 6)

33

Review: MIPS General Architecture Review: MIPS General Architecture
CharacteristicsCharacteristics

3232--bit integer registers bit integer registers 3232--bit architecturebit architecture
•• 3232--bit integer arithmeticbit integer arithmetic

Higher precision must be done in softwareHigher precision must be done in software

•• Memory addresses up to 2Memory addresses up to 23232 = 4GBytes= 4GBytes
•• MIPSMIPS--64 extends architecture to 64 bits64 extends architecture to 64 bits

3232--bit fixedbit fixed--length instructions (for simplicity)length instructions (for simplicity)
•• More complex operations done as a sequence of More complex operations done as a sequence of

instructionsinstructions

Very few instruction formats (for simplicity)Very few instruction formats (for simplicity)

General Principle: Small/simple General Principle: Small/simple Fast Fast

44

Review: MIPS Arithmetic OperationsReview: MIPS Arithmetic Operations

Uses only 3 Uses only 3 specifierspecifier arithmetic instructions:arithmetic instructions:

•• Operation result, source1, source2Operation result, source1, source2
E.g.,: ADD a, b, c E.g.,: ADD a, b, c a = b + ca = b + c

Other architectures (e.g., x86) use 2 Other architectures (e.g., x86) use 2 specifierspecifier
instructionsinstructions

•• One One specifierspecifier is used as both a destination and source:is used as both a destination and source:

•• Operation destination/source1, source2Operation destination/source1, source2
E.g.,: ADD a, b E.g.,: ADD a, b a = a + ba = a + b

55

Review: 3 Review: 3 SpecifierSpecifier InstructionsInstructions

3 3 specifierspecifier is the most general form, reduces is the most general form, reduces
instruction count vs. two instruction count vs. two specifierspecifier, e.g.:, e.g.:

a = b + c;a = b + c; ADD a, b, c for 3 ADD a, b, c for 3 specifierspecifier

move move a,ba,b for 2 for 2 specifierspecifier
ADD ADD a,ca,c

Why do you suppose twoWhy do you suppose two--specifierspecifier was ever used?was ever used?

66

Jump Register (Jump Register (jrjr))

Unconditional jump to address contained in Unconditional jump to address contained in
specified register, Rspecified register, R--type format:type format:

•• ““WastedWasted”” bits a nonbits a non--issue: memory is cheapissue: memory is cheap

Allows branches to any of 2Allows branches to any of 23030 word addressesword addresses
•• (Bits 0(Bits 0--1 must be zero)1 must be zero)

Also used to implemented Case/Switch statementsAlso used to implemented Case/Switch statements
lwlw $t1,0($t0)$t1,0($t0) # load address from jump table# load address from jump table
jrjr $t1$t1

Rsop

66 5

(not used) jr

77

Subroutine Calls/ReturnsSubroutine Calls/Returns

Some method needed for saving return addressSome method needed for saving return address
MIPS (other MIPS (other RISCsRISCs) use) use Jump and LinkJump and Link ((jaljal))

jaljal unconditionally jumps to specified address,unconditionally jumps to specified address,
Saves return address in $31 = $Saves return address in $31 = $rara, , Link RegisterLink Register

•• Return address in register is faster than memoryReturn address in register is faster than memory

JJ--type formattype format

Subroutine return achieved using Subroutine return achieved using jrjr::
jrjr $$rara

target address jal

266

88

Nested Subroutine CallsNested Subroutine Calls
Need to handle Need to handle nested subroutine callsnested subroutine calls

•• A calls B, B calls C, C calls D ...A calls B, B calls C, C calls D ...
•• Recursive subroutine callsRecursive subroutine calls (A conditionally calls A)(A conditionally calls A)

Must avoid overwriting return address in $31 = $Must avoid overwriting return address in $31 = $rara

General solution: Store return address on stackGeneral solution: Store return address on stack
•• MIPS (other MIPS (other RISCsRISCs) does not have architected stack pointer) does not have architected stack pointer
•• Any general purpose register could be used as stack pointerAny general purpose register could be used as stack pointer
•• Software convention uses $29 = $spSoftware convention uses $29 = $sp

•• Save return address, Save return address, pushpush
add $sp,$sp,add $sp,$sp,--44 #expand stack by one word#expand stack by one word
swsw $ra,0($sp)$ra,0($sp) #save ret. #save ret. addraddr. on top of stack. on top of stack

•• Restore return address, Restore return address, poppop
lwlw $ra,0($sp)$ra,0($sp) #get ret. #get ret. addraddr. from top of stack. from top of stack
add $sp,$sp,4add $sp,$sp,4 #shrink stack by one word#shrink stack by one word

99

Saving Return Address in RegisterSaving Return Address in Register
Compiler can analyze Compiler can analyze call graphcall graph and register and register
usage, possibly save return address in a free usage, possibly save return address in a free
register rather than on stack (much faster!)register rather than on stack (much faster!)

E.g., assume $t7 is free in subroutines A and B:E.g., assume $t7 is free in subroutines A and B:
•• In A, before call to B:In A, before call to B:
movmov $t7,$ra$t7,$ra # save return address in $t7# save return address in $t7

•• To return from A:To return from A:
jrjr $t7$t7 # return address is in $t7, go for it# return address is in $t7, go for it

•• Saves 3 instructions vs. stack: one for call, two for Saves 3 instructions vs. stack: one for call, two for
return return

main sub. A
sub. B

main

A

B

1010

Synthesizing Large Constants Synthesizing Large Constants

RISC fixedRISC fixed--length instructions do not allow large length instructions do not allow large
immediate constants (e.g., 32 bits)immediate constants (e.g., 32 bits)

MIPS uses special instruction in twoMIPS uses special instruction in two--instruction instruction
sequence to create constants > 16 bits (uncommon sequence to create constants > 16 bits (uncommon
case)case)

•• Load Upper Immediate (Load Upper Immediate (luilui):):

•• Sets Rd upper 16 bits to immediate data, lower 16 bits to 0sSets Rd upper 16 bits to immediate data, lower 16 bits to 0s

•• 32 bit constant:32 bit constant:

luilui $t0,1234$t0,1234hexhex # $t0 has 12340000# $t0 has 12340000hexhex
addiaddi $t0,$t0,5678$t0,$t0,5678hexhex # $t0 has 12345678# $t0 has 12345678hexhex

N/A Rd immediate data lui

166 5 5

1111

Register 0Register 0

Register 0 is special purposeRegister 0 is special purpose

Read from $0 always produces value 0Read from $0 always produces value 0
•• used to synthesize instructions beyond base set used to synthesize instructions beyond base set

without added complexitywithout added complexity

•• ““move $7, $20move $7, $20”” = add $7, $0, $20= add $7, $0, $20
•• ““load $7, immediateload $7, immediate”” = = addiaddi $7, $0, immediate$7, $0, immediate
•• Pseudo InstructionsPseudo Instructions

Write to $0 does nothingWrite to $0 does nothing
•• add $0, $12, $20 = NOPadd $0, $12, $20 = NOP

Various other examples of exploiting $0 as we Various other examples of exploiting $0 as we
review instruction setreview instruction set

1212

Instruction Set DesignInstruction Set Design

As seen, some operations can be synthesized As seen, some operations can be synthesized
with short sequence, e.g.:with short sequence, e.g.:

•• Can also create 32Can also create 32--bit constant w/o bit constant w/o luilui::

addiaddi $t0,$0,1234$t0,$0,1234hex hex # $t0 has 00001234# $t0 has 00001234hexhex
sllsll $t0,$t0,16 # $t0 has 12340000$t0,$t0,16 # $t0 has 12340000hexhex
addiaddi $t0,$t0,5678$t0,$t0,5678hex hex # $t0# $t0 has 12345678has 12345678hexhex

How to decide if specific instruction (e.g., How to decide if specific instruction (e.g., luilui))
is worthwhile?is worthwhile?

Experimentation/Quantitative AnalysisExperimentation/Quantitative Analysis

1313

Evaluating Instruction Sets?Evaluating Instruction Sets?
DesignDesign--timetime metrics:metrics:

°° Can it be implemented, in how long, at what cost?Can it be implemented, in how long, at what cost?

°° Can it be programmed? Ease of compilation?Can it be programmed? Ease of compilation?

Static Metrics:Static Metrics:

°° How many bytes does the program occupy in memory?How many bytes does the program occupy in memory?

Dynamic Metrics:Dynamic Metrics:

°° How many instructions are executed?How many instructions are executed?

°° How many bytes does the processor fetch to execute the programHow many bytes does the processor fetch to execute the program??

°° How many clocks are required per instruction?How many clocks are required per instruction?

°° How "lean" a clock is practical?How "lean" a clock is practical?

Best MetricBest Metric: : Time to execute the program!Time to execute the program!

NOTE: this depends on instructions set, processor organization, and
compilation techniques.

CPI

Inst. Count Cycle Time

1414

Aspects of CPU PerformanceAspects of CPU Performance
CPU time = Seconds = Instructions x Cycles x Seconds

Program Program Instruction Cycle

CPU time = Seconds = Instructions x Cycles x Seconds
Program Program Instruction Cycle

instrinstr countcount CPICPI clock rateclock rate

Program Program XX

CompilerCompiler XX XX

InstrInstr. Set. Set XX XX

Organization Organization XX XX

TechnologyTechnology XX

1515

Architecture DevelopmentArchitecture Development

Benchmark
Programs

Compiler
Prototype

Instruction
Set

Hardware
Simulator

New Instruction

Machine
Code
Simulator

Cycles Per Instruction
Instruction Count

Clock Cycle Time

1616

Example Tradeoff: Example Tradeoff:
Auto Increment (Decrement)Auto Increment (Decrement)

Some architectures (Some architectures (notnot most most RISCsRISCs) include) include
instruction that auto increments base/index registerinstruction that auto increments base/index register

•• MIPS:MIPS: lwlw $t1,0($t0) # $t0 is index$t1,0($t0) # $t0 is index
addiaddi $t0,$t0,4 # increment index$t0,$t0,4 # increment index

•• Auto Inc:Auto Inc: lwlw+ $t1,0($t0) # load + $t1,0($t0) # load andand inc indexinc index

Auto Inc (Auto Inc (decdec) may be useful for incrementing) may be useful for incrementing
through arrays, butthrough arrays, but

•• not always increment by same value (e.g., 4)not always increment by same value (e.g., 4)
•• instruction complicates hardware because produces two instruction complicates hardware because produces two

results (two register writes):results (two register writes):
Value from memoryValue from memory
Updated indexUpdated index

1717

Example Tradeoff: Example Tradeoff:
Memory OperationsMemory Operations

Some architectures (Some architectures (notnot RISC) allow arithmetic RISC) allow arithmetic
operands from memoryoperands from memory

•• e.g., e.g., ADDM $s0,$s1,offset($t0)ADDM $s0,$s1,offset($t0)

Problems:Problems:
•• Limited offset field (e.g., 11 bits)Limited offset field (e.g., 11 bits)
•• requires 3 operations, hence very slow:requires 3 operations, hence very slow:

1. 1. compute address (compute address (r_baser_base + offset)+ offset)
2. 2. load data (memory is slow)load data (memory is slow)
3.3. ALU operationALU operation

•• significantly complicates pipeline designsignificantly complicates pipeline design
slower clock cycleslower clock cycle

1818

Example Tradeoff: Example Tradeoff:
Dedicated Loop Counter Dedicated Loop Counter

A special loopA special loop--counter register is counter register is
automatically decremented based on automatically decremented based on
branch branch opcodeopcode
•• Branch if LoopBranch if Loop--Counter = 0Counter = 0

•• ++ Allows larger branch offset (lower Allows larger branch offset (lower
instruction count, but small)instruction count, but small)

•• ++++ does not require separate increment does not require separate increment
instruction (lower instruction count)instruction (lower instruction count)

•• -- requires more work within branch requires more work within branch
instruction, may increase clock cycle timeinstruction, may increase clock cycle time

Bcond addr offset

1919

Example Tradeoff: Example Tradeoff:
VariableVariable--Length InstructionsLength Instructions

++ Allows more compact code by using as Allows more compact code by using as
many bits as neededmany bits as needed
•• Move R1,R2Move R1,R2

•• jump labeljump label

-- Must decode the instruction before Must decode the instruction before
knowing how long, where operator knowing how long, where operator
specifiersspecifiers can be found can be found higher CPIhigher CPI

opcode RdRs

opcode offset

opcode offset

2020

Announcement: HW #1Announcement: HW #1

Chapter 2: problems 4, 5, 6, 9, 15, 28, 30, Chapter 2: problems 4, 5, 6, 9, 15, 28, 30,
31, 37, 38, 54, 5531, 37, 38, 54, 55
•• Some are quick and easy questions.Some are quick and easy questions.

Due on Friday 10/21 at 5pmDue on Friday 10/21 at 5pm

EEC 170 homework boxEEC 170 homework box

2121

Compiler OptimizationCompiler Optimization
Chapter 2.11Chapter 2.11--2.12 2.12
EEC170 FQ 2005EEC170 FQ 2005

2222

Example: HLL MIPS AssemblyExample: HLL MIPS Assembly

swap: addi $sp, $sp, -12 # make room on stack for 3 regs
sw $t0, 0($sp) # save $t0 on stack
sw $s0,4($sp) # save $s0 on stack
sw $s1, 8($sp) # save $s1 on stack
muli $t0, $a0, 4 # $t0 = k * 4
add $t0,$a1, $t0 # $t0 = v + k*4 = the addr. of v[k]
lw $s0, 0($t0) # $s0 = temp = v[k]
lw $s1, 4($t0) # $s1 = v[k+1] = next element of v
sw $s1, 0($t0) # v[k] = v[k+1]
sw $s0, 4($t0) # v[k+1] = temp
lw $t0, 0($sp) # restore $t0 from stack
lw $s0, 4($sp) # restore $s0 from stack
lw $s1, 8($sp) # restore $s1 from stack
addi $sp, $sp, 12 # restore stack pointer
jr $ra # return to calling routine

swap(int v[], int k)
{ int temp;

temp = v[k];
v[k] = v[k+1];
v[k+1] = temp; }

C Code:

MIPS Code:

2323

CompilingCompiling

Translating a high level language program Translating a high level language program
to a machine language programto a machine language program

for (i=0; i<j; i++)for (i=0; i<j; i++)
a[ia[i]=]=b[i]+c[ib[i]+c[i];];

0100101010101010111010011100010101001010101010101110100111000101
1100101000101110101010110101010011001010001011101010101101010100
1111101010101010001010010101010111111010101010100010100101010101
0000101011101010101000110101011100001010111010101010001101010111

CompilerCompiler

2424

Compiling (cont.)Compiling (cont.)

Compilers have two Compilers have two
major parts:major parts:

•• FrontendFrontend interacts with interacts with
programmer/languageprogrammer/language

•• Backend Backend interacts with interacts with
architecture/processorarchitecture/processor

•• FrontendFrontend/Backend /Backend
communicate using a communicate using a
generic language generic language
((intermediate codeintermediate code,,
intermediate intermediate
representationrepresentation))

0100101010101010111010011100010101001010101010101110100111000101
1100101000101110101010110101010011001010001011101010101101010100
0101010101010001010111101001011001010101010100010101111010010110

FrontendFrontend

add i,i,1add i,i,1
sltslt t1,i,jt1,i,j
bnebne t1,r0 t1,r0 for_loopfor_loop

BackendBackend

ECS 142ECS 142

EEC 175EEC 175

for (i=0; i<j; i++)for (i=0; i<j; i++)
a[ia[i]=]=b[i]+c[ib[i]+c[i];];

2525

Compiler RetargetingCompiler Retargeting
FrontendFrontend/backend models allow easily retargeting of /backend models allow easily retargeting of
HLLsHLLs to different architectures to different architectures

HLL 2HLL 2

Compiler Compiler
Front End 2Front End 2

Intermediate RepresentationIntermediate Representation

BackendBackend
Architecture AArchitecture A

BackendBackend
Architecture BArchitecture B

BackendBackend
Architecture CArchitecture C

Machine code AMachine code A Machine code BMachine code B Machine code CMachine code C

HLL 1HLL 1

Compiler Compiler
Front End 1Front End 1

HLL 3HLL 3

Compiler Compiler
Front End 3Front End 3

2626

Compiler phasesCompiler phases
Compilers decompose the translation problem into Compilers decompose the translation problem into
smaller steps to manage the large complexitysmaller steps to manage the large complexity

LexicalLexical
AnalysisAnalysis

SyntaxSyntax
AnalysisAnalysis

SemanticSemantic
AnalysisAnalysis

ArrayArray
OptimizationsOptimizations

Front EndFront End

Back EndBack End

SourceSource
CodeCode

Object CodeObject Code

Intermediate RepresentationIntermediate Representation

Machine IndependentMachine Independent
OptimizationsOptimizations

Machine DependentMachine Dependent
OptimizationsOptimizations

2727

Lexical AnalysisLexical Analysis
Translates character string to string of Translates character string to string of tokenstokens

•• Tokens are the basic lexical units in the HLL, e.g.:Tokens are the basic lexical units in the HLL, e.g.:
A keyword: A keyword: ThenThen

A constant: A constant: 1717

An identifier: An identifier: newdatanewdata

An operator: An operator: >=>=

Punctuation: Punctuation: ; ;
etc.etc.

•• Token type and value are identifiedToken type and value are identified
IF (New > IF (New > MaxNumMaxNum) ... => token string:) ... => token string:

(Keyword, IF)(Keyword, IF)
(Identifier, (Identifier, ““NewNew””))
(Operator, >)(Operator, >)
(Identifier, (Identifier, ““MaxNumMaxNum””))

2828

Syntax Analysis (Parsing)Syntax Analysis (Parsing)

Groups tokens into syntactic structure, in Groups tokens into syntactic structure, in
the form of athe form of a syntax tree (parse tree) to syntax tree (parse tree) to
identify statementsidentify statements

sum := Y + Z x 12 ;sum := Y + Z x 12 ;

sumsum :=:= exprexpr ;;

statementstatement

YY ++ exprexpr

ZZ xx 1212

(Recall high school English)(Recall high school English)

2929

Semantic AnalysisSemantic Analysis
Performs static error checkingPerforms static error checking

•• Uses symbol table to check that variables are defined, Uses symbol table to check that variables are defined,
declareddeclared

•• Checks Operand/Result variables for type compatibilityChecks Operand/Result variables for type compatibility

Generates Generates intermediate representationintermediate representation used used
by compiler backendby compiler backend

•• May resemble May resemble ‘‘genericgeneric’’ assembly code, assumes assembly code, assumes
unlimited registersunlimited registers

Statement: Statement: S = A + B x CS = A + B x C Becomes:Becomes:
move R101,Amove R101,A
move R102,Bmove R102,B
move R103,Cmove R103,C
multmult R104,R102,R103R104,R102,R103
add R105, R101,R104add R105, R101,R104
move S,R105move S,R105

3030

Compiler Optimization BasicsCompiler Optimization Basics

Usually optimizations only occur in the Usually optimizations only occur in the
backend, backend, frontendfrontend produces simple produces simple
translationtranslation

Backend attempts to improve Backend attempts to improve code code
qualityquality, some combination of code , some combination of code
speed, size and possibly power speed, size and possibly power
consumptionconsumption

3131

General Optimization FrameworkGeneral Optimization Framework

Backend is a series of optimization Backend is a series of optimization
phasesphases
•• Each phase Each phase lowerslowers the intermediate the intermediate

representation toward the machine code representation toward the machine code
and/or tries to improve the code qualityand/or tries to improve the code quality

3232

General Optimization Phase StructureGeneral Optimization Phase Structure

Each optimization phase is generally Each optimization phase is generally
structured as an analysis algorithm structured as an analysis algorithm
followed by a codefollowed by a code--improving improving
transformation algorithmtransformation algorithm
•• Analysis is specific to the transformationAnalysis is specific to the transformation

AnalysisAnalysis

TransformationTransformation

3333

Control Flow AnalysisControl Flow Analysis

Compiler divides program into Compiler divides program into basic basic
blocks (BB)blocks (BB)
•• StraightStraight--line code with no branch in except at line code with no branch in except at

start, no branch out except at endstart, no branch out except at end
•• Optimizations within BB are Optimizations within BB are locallocal,, across BB across BB

are are globalglobal

B1

B3B2

3434

Instruction SchedulingInstruction Scheduling

The compiler can reorder (The compiler can reorder (scheduleschedule))
instructions to minimize delays from instructions to minimize delays from
pipelining (see Chapter 6)pipelining (see Chapter 6)
•• New schedule must produce same program New schedule must produce same program

outputoutput

LW r101, 0(r102)
<stall> <stall>
ADD r104, r103,r101
LW r105, 0(r101)
<stall> <stall>
SUB r106, r105, r104
LW r107, 4(r102)
<stall>
SW r107, 0(r104)

LW r101, 0(r102)
LW r107, 4(r102)
<stall>
LW r105, 0(r101)
ADD r104, r103,r101
SW r107, 0(r104)
SUB r106, r105, r104

3535

Loop Invariant Code MotionLoop Invariant Code Motion

If instruction JIf instruction J’’s s
operands donoperands don’’t change t change
during loop execution, during loop execution,
J produces same result J produces same result
each loop iterationeach loop iteration

If J is also only If J is also only
instruction to modify instruction to modify
its destination register, its destination register,
can move J outside the can move J outside the
loop, only executed loop, only executed
once per loop entryonce per loop entry

move r101,1move r101,1
add add r102r102,r103,r104,r103,r104

lwlw r105,0(r102)r105,0(r102)
multmult r106,r105, 3r106,r105, 3

addiaddi r107,r107,1r107,r107,1
multmult r106,r107,r105r106,r107,r105 addiaddi r108,r108,1r108,r108,1

add r101,r101,r106add r101,r101,r106

swsw r101,0(r108)r101,0(r108)

3636

Loop Invariant Code MotionLoop Invariant Code Motion

move r101,1move r101,1
add add r102r102,r103,r104,r103,r104
lwlw r105,0(r102)r105,0(r102)

multmult r106,r105, 3r106,r105, 3

addiaddi r107,r107,1r107,r107,1
multmult r106,r107,r105r106,r107,r105 addiaddi r108,r108,1r108,r108,1

add r101,r101,r106add r101,r101,r106

swsw r101,0(r108)r101,0(r108)

If instruction JIf instruction J’’s s
operands donoperands don’’t change t change
during loop execution, during loop execution,
J produces same result J produces same result
each loop iterationeach loop iteration

If J is also only If J is also only
instruction to modify instruction to modify
its destination register, its destination register,
can move J outside the can move J outside the
loop, only executed loop, only executed
onceonce

3737

Partial Partial DeadcodeDeadcode EliminationElimination

If instructionIf instruction’’s result is s result is
not used along a path, not used along a path,
the instruction can be the instruction can be
pushed down the path pushed down the path
it is usedit is used

•• reduces instructionreduces instruction’’s s
execution countexecution count

move r101,1move r101,1
add r102,r103,r104add r102,r103,r104
lwlw r105,0(r102)r105,0(r102)

multmult r106,r105, 3r106,r105, 3

addiaddi r107,r107,1r107,r107,1
multmult r106,r107,r105r106,r107,r105 addiaddi r108,r108,1r108,r108,1

add r101,r101,add r101,r101,r106r106

swsw r101,0(r108)r101,0(r108)

3838

Partial Partial DeadcodeDeadcode EliminationElimination

If instructionIf instruction’’s result is s result is
not used along a path, not used along a path,
the instruction can be the instruction can be
pushed down the path pushed down the path
it is usedit is used

•• reduces instructionreduces instruction’’s s
execution countexecution count

move r101,1move r101,1
add r102,r103,r104add r102,r103,r104
lwlw r105,0(r102)r105,0(r102)

addiaddi r107,r107,1r107,r107,1
multmult r106,r107,r105r106,r107,r105

multmult r106,r105, 3r106,r105, 3
addiaddi r108,r108,1r108,r108,1

add r101,r101,add r101,r101,r106r106

swsw r101,0(r108)r101,0(r108)

3939

Common SubCommon Sub--expressionexpression
Eliminate recomputed subEliminate recomputed sub--expressions expressions
by storing expression result in a register:by storing expression result in a register:

HLL:HLL:
A = B + C + A = B + C + D + ED + E ……
F = G + H + F = G + H + D + ED + E

IR:IR:
TT11 = B + C= B + C
TT22 = D + E= D + E
A= TA= T11 + + TT22

……
TT33 = G + H= G + H
TT44 = D + E= D + E
F = TF = T33 + + TT44

TT11 = B + C= B + C
TT22 = D + E= D + E
A= TA= T11 + + TT22

……
TT33 = G + H= G + H
TT44 = D + E= D + E
F= TF= T33 + + TT22

4040

Eliminating Jumps in LoopsEliminating Jumps in Loops
Jumps can generally be eliminated from inside loops (e.g., Jumps can generally be eliminated from inside loops (e.g.,
For & While) by duplicating test outside loopFor & While) by duplicating test outside loop

•• Source:Source:
WHILE (i < 14)WHILE (i < 14)

<body><body>

•• Naive compile:Naive compile:
move r101, imove r101, i

test: test: sltislti r102,r101,14r102,r101,14
beq r102,r0,out_of_loopbeq r102,r0,out_of_loop
<body><body>
j testj test

•• Optimized compile:Optimized compile:
move r101,imove r101,i
sltislti r102,r101,14r102,r101,14
beq r102,r0,out_of_loopbeq r102,r0,out_of_loop

loop:loop: <body><body>
sltislti r102,r101,14r102,r101,14
bnebne r102,r0,loopr102,r0,loop

4141

Register AllocationRegister Allocation

Until toward end of optimization phases Until toward end of optimization phases
compiler assumes unlimited number of compiler assumes unlimited number of
symbolic registerssymbolic registers

Register allocation assigns symbolic registers Register allocation assigns symbolic registers
to real registersto real registers

Traditional allocation algorithms use Traditional allocation algorithms use graph graph
coloringcoloring

4242

Graph ColoringGraph Coloring
1.1. Identify Identify live rangelive range of all variables:of all variables:

r101 = ...r101 = ...
r102 = ...r102 = ...
r103 = ...r103 = ...
…… = r103= r103
r104 = ...r104 = ...
... = ... r104... = ... r104
... = ... r102... = ... r102
... = ... r101... = ... r101

2.2. Construct an Construct an interference graphinterference graph
Symbolic are nodes, connection edge if both symbolic Symbolic are nodes, connection edge if both symbolic
registers live at some point registers live at some point

3.3. Color nodes so neighbors have different colors: Color nodes so neighbors have different colors:
colors correspond to registerscolors correspond to registers

r101
r102 r103

r104

4343

Intermediate code is rewritten with Intermediate code is rewritten with
assigned real register numbersassigned real register numbers

r1r1 = ...= ...
r2 = ...= ...
r3r3 = ...= ...
…… = = r3r3
r3r3 = ...= ...
... = = ... r3r3
... = = ... r2
... = = ... r1r1

Graph ColoringGraph Coloring

r101
r102 r103

r104

4444

Register SpillingRegister Spilling

Program may have more Program may have more livelive variables in a variables in a
region than architecture has registersregion than architecture has registers

Can Can spillspill a register to memory to make room in a register to memory to make room in
register file for another variable:register file for another variable:

store $4, 40($20) # store register 4 at location 40 in area store $4, 40($20) # store register 4 at location 40 in area
pointed to by $20# pointed to by $20

load $4,32($20) # get new variable from location 32load $4,32($20) # get new variable from location 32
.
load $7,40($20) # restore variable that was spilledload $7,40($20) # restore variable that was spilled

Compiler use special algorithms to keep most Compiler use special algorithms to keep most
active variables in registers, minimize spilling active variables in registers, minimize spilling

4545

Register SpillingRegister Spilling

When more symbolic registers live than real When more symbolic registers live than real
registers, some symbolic register must spill to registers, some symbolic register must spill to
memorymemory

•• Assume two real registersAssume two real registers
r101 = ...r101 = ...
r102 = ...r102 = ...
r103 = ...r103 = ...
…… = r103= r103
r104 = ...r104 = ...
... = ... r104... = ... r104
... = ... r102... = ... r102
... = ... r101... = ... r101

3

3

4646

Register SpillingRegister Spilling

To spill compiler inserts store/load instructions To spill compiler inserts store/load instructions
to store/restore symbolic to/from memoryto store/restore symbolic to/from memory

•• Live ranges now shorter, graph may be colorableLive ranges now shorter, graph may be colorable
r101 = ...r101 = ...
r102 = ...r102 = ...
r103 = ...r103 = ...
…… = r103= r103
r104 = ...r104 = ...
... = ... r104... = ... r104
... = ... r102... = ... r102
... = ... r101... = ... r101’’

2

2

sw r101,48($sp)

lw r101’,48($sp)

r101

r102 r103

r104

r101’

4747

Loop UnrollingLoop Unrolling

Can increase loop performance in exchange Can increase loop performance in exchange
code size increasecode size increase
•• HLL Code:HLL Code:

FOR (j = 0, j<1000, j++)FOR (j = 0, j<1000, j++)
sum = sum = sumsum + + a[ja[j];];

•• Intermediate code for loop:Intermediate code for loop:

loop: loop: lwlw r102,0(r101)r102,0(r101) # r101 is address of j # r101 is address of j
add r103,r103,r102add r103,r103,r102 # sum is r103, sum = # sum is r103, sum = sumsum + + a[ja[j]]
addiaddi r101,r101,1r101,r101,1 #j++#j++
sltislti r104,r101,1000r104,r101,1000 # (j<1000)# (j<1000)
bnebne r104,r0,loopr104,r0,loop

•• Three instructions of loop overhead per iterationThree instructions of loop overhead per iteration

4848

Unrolled LoopUnrolled Loop

Replicate the loop body to reduce per Replicate the loop body to reduce per
iternationiternation loop overheadloop overhead
•• HLL codeHLL code

FOR (j = 0; j<1000; j=j+2)FOR (j = 0; j<1000; j=j+2)
sum = sum = sumsum + + a[ja[j];];
sum = sum = sumsum + a[j+1];+ a[j+1];

•• Intermediate codeIntermediate code
loop:loop: lwlw r102,0(r101)r102,0(r101) # load # load a[ja[j]]

add r103,r103,r102add r103,r103,r102 # sum # sum a[ja[j]]
lwlw r105,4(r101)r105,4(r101) # load a[j+1]# load a[j+1]
add r103,r103,r105add r103,r103,r105 # sum a[j+1] # sum a[j+1]
addiaddi r101,r101,2r101,r101,2 #j=j+2#j=j+2
sltislti r104,r101,1000r104,r101,1000 # (j<1000)# (j<1000)
bnebne r104,r0,loopr104,r0,loop

•• Loop Overhead is now 1.5 instructions per iteration Loop Overhead is now 1.5 instructions per iteration

4949

Subroutine InSubroutine In--Line ExpansionLine Expansion

Insert the body of a subroutine rather than a callInsert the body of a subroutine rather than a call
•• Eliminates overhead of call/returnEliminates overhead of call/return

•• Simplifies program structure, allowing better instruction Simplifies program structure, allowing better instruction
scheduling, register allocationscheduling, register allocation

Original code:Original code:
LoadLoad
AddAdd
Call ACall A
<next><next>

Optimized CodeOptimized Code
LoadLoad
AddAdd
<body of A><body of A>
<next><next>

5050

EEC 175EEC 175

Complete course on compiler Complete course on compiler
optimizationoptimization

Explores the software side of the Explores the software side of the
hardware/software interfacehardware/software interface

Project course/design electiveProject course/design elective

Spring Quarter, 5 unitsSpring Quarter, 5 units

5151

EEC175 TopicsEEC175 Topics

Basic blocksBasic blocks
Control flow graphControl flow graph
LoopsLoops
Call graphCall graph
Program profilingProgram profiling
Instruction SchedulingInstruction Scheduling
LoopLoop--Invariant Code MotionInvariant Code Motion
Procedure InProcedure In--LiningLining
Branch OptimizationBranch Optimization
Branch AlignmentBranch Alignment
Unreachable Code EliminationUnreachable Code Elimination
DataData--Flow AnalysisFlow Analysis
Data DependenceData Dependence
AliasingAliasing

Reaching DefinitionsReaching Definitions
DefDef--Use ChainsUse Chains
BitBit--Vector Iterative AnalysisVector Iterative Analysis
LiveLive--Range AnalysisRange Analysis
SymbolicSymbolic--Register RenumberingRegister Renumbering
SymbolicSymbolic--Register InterferenceRegister Interference
Available ExpressionsAvailable Expressions
DeadDead--Code EliminationCode Elimination
Code Hoisting/SinkingCode Hoisting/Sinking
Common SubCommon Sub--Expression Expression

EliminationElimination
Partial Partial DeadcodeDeadcode Elimination Elimination
Strength ReductionStrength Reduction
Constant PropagationConstant Propagation

