Instruction Set Architecture
(Contd)

Lecture 3 (Chapter 2)
EEC170 FQ 2005

Intel 80486 MRS R3000
1989 J ﬁgsK T Aoy
ransistors
72mm?
| Hlont = 20MHz
7 = 4watts

1200K Transistors
Size: 163mm?
50MHz il

source: Prof. Kent Wilken

Review: MIPS General Architecture
Characteristics

+ 32-bit integer registers = 32-bit architecture

« 32-bit integer arithmetic

o Higher precision must be done in software

* Memory addresses up to 232 = 4GBytes

* MIPS-64 extends architecture to 64 bits
+ 32-bit fixed-length instructions (for simplicity)

* More complex operations done as a sequence of
instructions

+ Very few instruction formats (for simplicity)

¢ General Principle: Small/simple = Fast

Review: 3 Specifier Instructions

+ 3 specifier is the most general form, reduces
instruction count vs. two specifier, e.g.:

a=>b + c; =3 ADD a, b,c for 3 specifier

= move a,b for 2 specifier
ADD a,c

Why do you suppose two-specifier was ever used?

Review: MIPS Architecture

+ Good example of RISC processor: Reduced
Instruction-Set Computer

* RISC really amisnomer: architecture goal is speed not
small instruction set. However, certain simplicities result in
short clock cycle

+ Alternate RISC definition: Relegate the Interesting Stuff to
the Compiler
= Avoid runtime overhead if complexity can be resolved at
compile time
o Old school view: software is hard, keep compiler simple
RISC view: complier writers are sharp, have good modern
development tools

+ MIPS company spun off from Hennessy’s MIPS
processor project at Stanford

* MIPS: Microprocessor without Interlocking Pipeline Stages
= Designed for efficient pipelining (see Chapter 6)

Review: MIPS Arithmetic Operations

+ Uses only 3 specifier arithmetic instructions:

« Operation result, sourcel, source2
E.g.; ADD a,b,c = a=b+c

+ Other architectures (e.g., x86) use 2 specifier
instructions
» One specifier is used as both a destination and source:

* Operation destination/sourcel, source2
E.g.: ADD ab = a=a+b

Jump Register ()

+ Unconditional jump to address contained in
specified register, R-type format:

* “Wasted” bits a non-issue: memory is cheap

+ Allows branches to any of 230 word addresses
« (Bits 0-1 must be zero)
¢ Also used to implemented Case/Switch statements

Iw $t1,0($t0) #load address from jump table
Jjr $tl

Subroutine Calls/Returns

+ Some method needed for saving return address
MIPS (other RISCs) use Jump and Link (jal)

¢ jal unconditionally jumps to specified address,
Saves return address in $31 = $ra, Link Register

« Return address in register is faster than memory

+ J-type format

target address

6 26

¢ Subroutine return achieved using jr:
Jr $ra

Saving Return Address in Register

¢ Compiler can analyze call graph and register
usage, possibly save return address in a free
register rather than on stack (much faster!)

N
main sub. A /
PN

sub. B

\§<§

+ E.g., assume $t7 is free in subroutines A and B: g

* In A, before call to B: .
mov $t7,%ra # save return address in $t7

« To return from A: _ .
Jr $t7 #return address is in $t7, go for it

« Saves 3 instructions vs. stack: one for call, two for
return

Register 0

+ Register 0 is special purpose

+ Read from $0 always produces value 0

« used to synthesize instructions beyond base set
without added complexity

“move $7, $20" = add $7, $0, $20
* “load $7, immediate” = addi $7, $0, immediate
* Pseudo Instructions

+ Write to $0 does nothing
+ add $0, $12, $20 = NOP

+ Various other examples of exploiting $0 as we
review instruction set

Nested Subroutine Calls

+ Need to handle nested subroutine calls

« AcallsB,BcallsC,CcallsD ...
» Recursive subroutine calls (A conditionally calls A)

+ Must avoid overwriting return address in $31 = $ra

¢ General solution: Store return address on stack

* MIPS (other RISCs) does not have architected stack pointer
« Any general purpose register could be used as stack pointer
< Software convention uses $29 = $sp

« Save return address, push =
add $sp,$sp,-4 #expand stack by one word
sw $ra,0($sp) #save ret. addr. on top of stack

Restore return address, pop =
Iw $ra,0($sp) #get ret. addr. from top of stack
add $sp,$sp,4 #shrink stack by one word

Synthesizing Large Constants

+ RISC fixed-length instructions do not allow large
immediate constants (e.g., 32 bits)

+ MIPS uses special instruction in two-instruction
sequence to create constants > 16 bits (uncommon
case)

* Load Upper Immediate (

immediate data

16

« Sets Rd upper 16 bits to immediate data, lower 16 bits to 0s
32 bit constant:

Iui $t0,1234,, # $t0 has 12340000,
addi $t0,$t0,5678,., # $t0 has 12345678,

Instruction Set Design

+ As seen, some operations can be synthesized
with short sequence, e.g.:

« Can also create 32-bit constant w/o 1
addi $t0,$0,1234, ., # $t0 has 00001234,

sl $t0,$t0,16 # $t0 has 12340000,
addi $t0,$t0,5678,, # $t0 has 12345678

hex

+ How to decide if specific instruction (e.g.,
is worthwhile?

Experimentation/Quantitative Analysis

Evaluating Instruction Sets?
Design-time metrics:
° Can it be implemented, in how long, at what cost?
° Can it be programmed? Ease of compilation?
Static Metrics:
° How many bytes does the program occupy in memory?
Dynamic Metrics:

° How many instructions are executed?

° How many bytes does the processor fetch to execute the program?

° How many clocks are required per instruction? CPI
° How "lean" a clock is practical?

Best Metric: Time to execute the program!

Inst. Count Cycle Time

NOTE: this depends on instructions set, processor organization, and
compilation techniques.

Architecture Development

Benchmark Compiler Machine

Programs Prototype Caxl2
Simulator

|

Instruction

nstruction —*| set i Cycles Per Instruction

Instruction Count

Hardware | —)50k cye
Simulator ’

Example Tradeoff:
Memory Operations
¢ Some architectures (not RISC) allow arithmetic
operands from memory
* e.g., ADDM $s0,$s1,offset($t0)

* Problems:
« Limited offset field (e.g., 11 bits)
* requires 3 operations, hence very slow:

1. compute address (r_base + offset)
2. load data (memory is slow)
3. ALU operation

« significantly complicates pipeline design
= slower clock cycle

Aspects of CPU Performance

CPU time

clock rate
Program
Compiler
Instr. Set
Organization

Technology

Example Tradeoff:
Auto Increment (Decrement)

+ Some architectures (not most RISCs) include
instruction that auto increments base/index register

*« MIPS: Iw $t1,0($t0) # $tO0 is index
addi $t0,$t0,4 # increment index

» Auto Inc: lw+ $t1,0($t0) # load and inc index

+ Auto Inc (dec) may be useful for incrementing
through arrays, but
* not always increment by same value (e.g., 4)

« instruction complicates hardware because produces two
results (two register writes):

= Value from memory
o Updated index

Example Tradeoff:
Dedicated Loop Counter

+ A special loop-counter register is
automatically decremented based on
branch opcode

¢ Branch if Loop-Counter =0

« + Allows larger branch offset (lower
instruction count, but small)

* ++ does not require separate increment
instruction (lower instruction count)

- requires more work within b h
instruction, may increase clock cycle time

Example Tradeoff:
Variable-Length Instructions

+ Allows more compact code by using as
many bits as needed

« Move R1,R2
[_opcode [Rs [rd]

e jump label

Must decode the instruction before
knowing how long, where operator
specifiers can be found = higher CPI

Compiler Optimization

Chapter 2.11-2.12
EEC170 FQ 2005

Compiling

+ Translating a high level language program
to a machine language program

for (i=0; i<j; i++)
a[i]=b[i]+c[i];

Compiler

l

01001010101010101110100111000101
11001010001011101010101101010100
11111010101010100010100101010101
00001010111010101010001101010111

Announcement: HW #1
+ Chapter 2: problems 4, 5, 6, 9, 15, 28, 30,

31, 37, 38, 54, 55
* Some are quick and easy questions.

+ Due on Friday 10/21 at 5pm
¢+ EEC 170 homework box

Example: HLL MIPS Assembly

C Code: swap(int v[], int k)
{ inttemp;
temp = v[K];
VIK] = v[k+1];

MIPS Code: v[k+1] = temp; }

swap: i $sp, $sp, -12
$t0, 0($sp)
$s0,4($sp)
$s1, 8($sp)
$t0, $a0, 4
$t0,$al, $t0 $t0 = v + k*4 = the addr. of v[k]
$s0, 0($t0) $s0 = temp = v[k]

make room on stack for 3 regs
#
#
#
#
#
#
$s1, 4($t0) # $s1 = v[k+1] = next element of v
#
#
#
#
#
#
#

save $t0 on stack
save $s0 on stack
save $s1 on stack
$t0=k*4

$s1, 0($t0) V[K] = v[k+1]

$s0, 4($t0) v[k+1] = temp

$t0, 0($sp) restore $t0 from stack
$s0, 4($sp) restore $s0 from stack
$s1, 8($sp) restore $s1 from stack
$sp, $sp, 12 restore stack pointer
$ra return to calling routine

Compiling (cont.)

for (i 3 i++)

¢ Compilers have two af[i]=b[i]+c[i];

major parts:

» Frontend interacts with ECS 142

programmer/language

. . add i,i,1
» Backend interacts with sit t1,i,j

architecture/processor bne t1,r0 for_loop

* Frontend/Backend
communicate using a EEC 175
generic language
(intermediate code, 01001010101010101110100111000101

intermediate 11001010001011101010101101010100
. 01010101010100010101111010010110
representation)

Compiler Retargeting Compiler phases

* Frontend/backend models allow easily retargeting of + Compilers decompose the translation problem into
HLLs to different architectures smaller steps to manage the large complexity

HLL 1 HLL 2 HLL 3 Front End

l J |

Compiler Compiler Compiler
Front End 1 Front End 2 Front End 3

Intermediate Representation

Backend
Architecture A

Machine code A Machine code B Machine code C Object Code

Lexical Analysis Syntax Analysis (Parsing)

+ Translates character string to string of tokens + Groups tokens into syntactic structure, in

» Tokens are the basic lexical units in the HLL, e.g.: the form of a syntax tree (parse tree) to
= Akeyword: Then identify statements
° Aconstant: 17
An identifier: newdata sum: =Y +Z x12;
An operator: >= statement
Punctuation: ;

etc. sum = expr ;

. e Y + expr
» Token type and value are identified /|\
IF (New > MaxNum) ... =>token string: Z x 12
(Keyword, IF)
(Identifier, “New”")
(Operator, >) (Recall high school English)
(Identifier, “MaxNum™)

Semantic Analysis Compiler Optimization Basics

+ Performs static error checkin R .
) g . sually optimizations only occur in the
« Uses symbol table to check that variables are defined, .
declared backend, frontend produces simple

« Checks Operand/Result variables for type compatibility translation

¢ Backend attempts to improve code
¢ Generates intermediate representation used guality, some combination of code
by compiler backend speed, size and possibly power

* May resemble ‘generic’ assembly code, assumes Consumption
unlimited registers

Statement: S = A + B x C Becomes:
move R101,A
move R102,B
move R103,C
mult R104,R102,R103
add R105, R101,R104
move S,R105

General Optimization Framework

+ Backend is a series of optimization
phases

* Each phase lowers the intermediate
representation toward the machine code
and/or tries to improve the code quality

Control Flow Analysis

¢ Compiler divides program into basic
blocks (BB)

« Straight-line code with no branch in except at
start, no branch out except at end

* Optimizations within BB are local, across BB
are global

Loop Invariant Code Motion

If instruction J's
operands don’t change
during loop execution,
J produces same result
each loop iteration

If Jis also only
instruction to modify
its destination register,
can move J outside the
loop, only executed
once per loop entry

General Optimization Phase Structure

+ Each optimization phase is generally
structured as an analysis algorithm
followed by a code-improving
transformation algorithm

» Analysis is specific to the transformation

Transformation

Instruction Scheduling

¢ The compiler can reorder (schedule)
instructions to minimize delays from
pipelining (see Chapter 6)
* New schedule must produce same program
output

LW 10, O(ry00) LW 1505, O(ra00)
<stall> <stall> LW , 4(r00)
ADD 04, M103:M 101 <stall>

LW » 0(r101) LW , 0(r101)
<stall> <stall> ADD 104, 103, 101
SUB 06 100 T104 SwW 1 0(r104)
LW () SUB Ty, 1 T104
<stall>

SwW + 0(r104)

Loop Invariant Code Motion

¢ If instruction J's ey AL,
operands don’t change
during loop execution,
J produces same result
each loop iteration

If J is also only
instruction to modify
its destination register,
can move J outside the

loop, only executed
once

Partial Deadcode Elimination

If instruction’s result is move ri01,1
not used along a path, 2
the instruction can be

pushed down the path

itis used

« reduces instruction’s
execution count

add r101,r101,r106
sw r101,0(r108)

Common Sub-expression

+ Eliminate recomputed sub-expressions
by storing expression result in a register:

HLL:

A=B+C+D+E
F=G+H+D+E

Register Allocation

+ Until toward end of optimization phases
compiler assumes unlimited number of
symbolic registers

+ Register allocation assigns symbolic registers
to real registers

+ Traditional allocation algorithms use graph
coloring

Partial Deadcode Elimination

¢ If instruction’s result is IOV
not used along a path, FaSirrykr i
the instruction can be :
pushed down the path
itis used
* reduces instruction’s
execution count

add r101,r101,r106
sw r101,0(r108)

Eliminating Jumps in Loops
¢ Jumps can generally be eliminated from inside loops (e.g.,
For & While) by duplicating test outside loop
« Source:
WHILE (i < 14)
<body>

+ Naive compile:
move r101, i
test: slti r102,r101,14
beq r102,r0,out_of_loop
<body>

* Optimized compile:
move ri101,i
slti r102,r101,14
q r102,r0,0ut_of_loop
loop: <body>
slti r102,r101,14
bne r102,r0,loop

Graph Coloring

1. Identify live range of all variables:
riol=...
ri02=...
| ri03=...
...=r103 r101

| rlo4 = ... r102

Ve % ri03
.. = ... 1104
= 02

.= ..r101 rio4

2. Construct an interference graph
Symbolic are nodes, connection edge if both symbolic
registers live at some point

3. Color nodes so neighbors have different colors:
colors correspond to registers

Graph Coloring

+ Intermediate code is rewritten with
assigned real register numbers

rioi1

7/ r103

r104

r102

Register Spilling

¢+ When more symbolic registers live than real
registers, some symbolic register must spill to
memory

* Assume two real registers
riol=..
r102 = ...
rio3 = ...
... =r103
rio4 = ..
.. =..r104
... 1102
... r101

Loop Unrolling

¢ Can increase loop performance in exchange
code size increase
e HLL Code:
FOR (j = 0, j<1000, j++)
sum = sum + afj];
* Intermediate code for loop:
loop: Iw r102,0(r101) #r101 is address of j
add r103,r103,r102 #sum is r103, sum = sum + a[j]
addi r101,r101,1 #Hj++
slti r104,r101,1000 # (j<1000)
bne r104,r0,loop

» Three instructions of loop overhead per iteration

Register Spilling

¢ Program may have more live variables in a
region than architecture has registers

+ Can spill aregister to memory to make room in
register file for another variable:

store $4, 40($20) # store register 4 at location 40 in area
pointed to by $20

load $4,32($20) # get new variable from location 32

load $7,40($20) # restore variable that was spilled

+ Compiler use special algorithms to keep most
active variables in registers, minimize spilling

Register Spilling

+ To spill compiler inserts store/load instructions
to store/restore symbolic to/from memory

* Live ranges now shorter, graph may be colorable
jro1=..
r102 = ...
r103 = ...
... =r103
r104 = ...

.r104

. r102

01,48($sp)

Iw r101’,48($sp)

Unrolled Loop

+ Replicate the loop body to reduce per
iternation loop overhead

e HLL code
FOR (j = 0; j<1000; j=j+2)

sum = sum + afjl;
sum = sum + afj+1];

* Intermediate code

loop: Iw r102,0(r101) # load afj]
add r103,r103,r102 # sum afj]
Iw r105,4(r101) #load a[j+1]
add r103,r103,r105 #sum afj+1]
addi r101,r101 #i=j+2
slti r104,r101, 1! # (j<1000)
bne r104,r0,loop

» Loop Overhead is now 1.5 instructions per iteration

Subroutine In-Line Expansion

¢ Insert the body of a subroutine rather than a call

« Eliminates overhead of call/return

« Simplifies program structure, allowing better instruction
scheduling, register allocation

= Original code:
Load
Add
Call A
<next>

= Optimized Code
Load
Add
<body of A>
<next>

EECL175 Topics

Basic blocks

Control flow graph

Loops

Call graph

Program profiling
Instruction Scheduling
Loop-Invariant Code Motion
Procedure In-Lining

Branch Optimization
Branch Alignment
Unreachable Code Elimination
Data-Flow Analysis

Data Dependence

Aliasing

Reaching Definitions

Def-Use Chains

Bit-Vector Iterative Analysis

Live-Range Analysis

Symbolic-Register Renumbering

Symbolic-Register Interference

Available Expressions

Dead-Code Elimination

Code Hoisting/Sinking

Common Sub-Expression
Elimination

Partial Deadcode Elimination

Strength Reduction

Constant Propagation

EEC 175

¢ Complete course on compiler
optimization

+ Explores the software side of the
hardware/software interface

+ Project course/design elective

+ Spring Quarter, 5 units

