
EEC170
Computer Architecture

Lecture 2
Addressing Modes and MIPS ISA

October 10, 2005
Soheil Ghiasi

Electrical and Computer Engineering
University of California, Davis

Announcements!

Slides are online
Password protected:

Username: EEC289Q
Password: FPGAsrcool!

TA office hours are Mondays right after class
M 4-6pm
2101 Kemper Hall

Key Design Principles

1. Simplicity favors regularity.

2. Smaller is faster.

3. Make the common case fast.

4. Good design demands good compromises.

Recap: Basic ISA Classes
Memory to Memory:

2 address add A B mem[A] ← mem[A] + mem[B]
3 address add A B C mem[A] ← mem[B] + mem[C]

Accumulator:
1 address add A acc ← acc + mem[A]
1+x address addx A acc ← acc + mem[A + x]

Stack:
0 address add tos ← tos + next

General Purpose Register:
2 address add A B reg[A] ← reg[A] + reg[B]
3 address add A B C reg[A] ← reg[B] + reg[C]

Comparison:
Bytes per instruction? Number of Instructions? Cycles per instruction?

Instruction Classes, Format, Addressing Modes

Instruction Classes
Expect new instruction set architectures to use general purpose register

Instruction Format
If code size is most important, use variable length instructions
If performance is most important, use fixed length instructions

Data Addressing Modes
Frequent: Displacement, Immediate, Register Indirect
Displacement size should be 12 to 16 bits
Immediate size should be 8 to 16 bits

Operand Sizes
Support these data sizes and types:
8-bit, 16-bit, 32-bit, 64-bit integers and
32-bit and 64-bit IEEE 754 floating point numbers

Addressing Modes

How do we specify the location of the operands?

Number of different possible Addressing Modes
Register (direct)
Immediate
Register Indirect
Relative
PC relative
Indexed

Register (Direct)

Idea: the instruction specifies the register which
stores the data

Number of memory accesses?
Number of bits in instruction needed to specify
operand?
Example: add R1, R2, R3

Zero

log2 (# registers)

op rs rt rd

register

Immediate Mode

Idea: the instruction contains the operand data
Used for “constant” operands

Number of memory accesses?
Number of bits in instruction to specify operand?

Example: add R1, R2, 5

immedop rs rt

Zero

Depends on the precision

Register Indirect
Idea: a register contains the “address” in memory of the
operand

Basically, use a register as a pointer, instead of using a memory
variable

Number of memory accesses?
(must have previously loaded the address into the register)

Number of bits in instruction?
Example: vs.

la reg3, myvar la addr1, myvar
add [reg3], 3 add m(addr1), 3

1

log2 (# registers)

op rs rt

register

Memory

Relative Mode

Idea: a register contains an “address”; add a “small”
constant to get the effective address of the operand

Number of memory addresses?
Number of bits in instruction?
Example:

load_address reg3, myarray
add 4[reg3], 3

Called base or displacement addressing by the book

immedop rs rt

register +

Memory

1

log2(# reg) + precision(immed)

PC-relative Mode

Modification to relative mode; the base register is
implicit = to the program counter (PC)

PC contains address of the next instruction to execute
So branch to a location some displacement away from next
instruction
Sole benefit: displacements are smaller than absolute address

Number of memory accesses?
Number of bits in instruction?

immedop rs rt

PC +

Memory

1
precision(immed)

Idea: one register contains an “address”, add value in
another register to get the effective address of the
operand

Number of memory accesses?
Number of bits in instruction?
Example:

load_address reg1, myarray
load_address reg2, displacement
add [reg1 + reg2], 3 –or– add[reg1][reg2], 3

Indexed Mode

op rs rt

register +

Memoryregister

1
2 * log2(# reg)

Summary: Addressing Modes

op rs rt rd

immed

register

Register (direct)

op rs rt

register

Relative
Register = PC for

PC relative +

Memory

immedop rs rtImmediate

op rs rt

register

MemoryRegister Indirect

op rs rt

register +
Memoryregister

Indexed

MIPS I Operation Overview

Arithmetic/Logical:
Add, AddU, Sub, SubU, And, Or, Xor, Nor,
SLT, SLTU
AddI, AddIU, SLTI, SLTIU, AndI, OrI,
XorI
SLL, SRL, SRA, SLLV, SRLV, SRAV

Memory Access:
LB, LBU, LH, LHU, LW, LWL,LWR
SB, SH, SW, SWL, SWR

MIPS logical instructions
Instruction Example Meaning Comment
and and $1,$2,$3 $1 = $2 & $3 3 reg. operands; Logical AND
or or $1,$2,$3 $1 = $2 | $3 3 reg. operands; Logical OR
xor xor $1,$2,$3 $1 = $2 ^ $3 3 reg. operands; Logical XOR
nor nor $1,$2,$3 $1 = ~($2 |$3) 3 reg. operands; Logical NOR
and immediate andi $1,$2,10 $1 = $2 & 10 Logical AND reg, constant
or immediate ori $1,$2,10 $1 = $2 | 10 Logical OR reg, constant
xor immediate xori $1, $2,10 $1 = $2 ^ 10 Logical XOR reg, constant
shift left logical sll $1,$2,10 $1 = $2 << 10 Shift left by constant
shift right logical srl $1,$2,10 $1 = $2 >> 10 Shift right by constant
shift right arithm. sra $1,$2,10 $1 = $2 >> 10 Shift right (sign extend)
shift left logical sllv $1,$2,$3 $1 = $2 << $3 Shift left by variable
shift right logical srlv $1,$2, $3 $1 = $2 >> $3 Shift right by variable
shift right arithm. srav $1,$2, $3 $1 = $2 >> $3 Shift right arith. by variable

Q: How multiply by 2i ? Divide by 2i ? Mult by 15? Invert?

M I P S Reference Data: CORE INSTRUCTION SET

4hexif(R[rs]==R[rt])
PC=PC+4+
BranchAddr (4)

IbeqBranch On
Equal

8hexR[rt] = R[rs] +
SignExtImm (1)(2)

IaddiAdd
Immediate

0 / 20hexR[rd] = R[rs] + R[rt] (1) Radd Add

OPCODE
/FUNCT

(hex)

OPERATION (in
Verilog)

FOR-
MAT

MNE-
MON-

IC

NAME

(1) May cause overflow exception
(2) SignExtImm = { 16{immediate[15]}, immediate }
(3) ZeroExtImm = { 16{1b’0}, immediate }
(4) BranchAddr = { 14{immediate[15]}, immediate, 2’b0}

MIPS data transfer instructions
Instruction Comment
sw 500($4), $3 Store word
sh 502($2), $3 Store half
sb 41($3), $2 Store byte

lw $1, 30($2) Load word
lh $1, 40($3) Load halfword
lhu $1, 40($3) Load halfword unsigned
lb $1, 40($3) Load byte
lbu $1, 40($3) Load byte unsigned

lui $1, 40 Load Upper Immediate (16 bits shifted left by 16)

Q: Why need lui?

0000 … 0000

LUI R5

R5

Multiply / Divide

Start multiply, divide
MULT rs, rt
MULTU rs, rt
DIV rs, rt
DIVU rs, rt

Move result from multiply, divide
MFHI rd
MFLO rd

Move to HI or LO
MTHI rd
MTLO rd

Registers

HI LO

MIPS arithmetic instructions

Instruction Example Meaning Comments
add add $1,$2,$3 $1 = $2 + $3 3 operands; exception possible
subtract sub $1,$2,$3 $1 = $2 – $3 3 operands; exception possible
add immediate addi $1,$2,100 $1 = $2 + 100 + constant; exception possible
add unsigned addu $1,$2,$3 $1 = $2 + $3 3 operands; no exceptions
subtract unsigned subu $1,$2,$3 $1 = $2 – $3 3 operands; no exceptions
add imm. unsign. addiu $1,$2,100 $1 = $2 + 100 + constant; no exceptions
multiply mult $2,$3 Hi, Lo = $2 x $3 64-bit signed product
multiply unsigned multu$2,$3 Hi, Lo = $2 x $3 64-bit unsigned product
divide div $2,$3 Lo = $2 ÷ $3, Lo = quotient, Hi = remainder Hi = $2 mod $3
divide unsigned divu $2,$3 Lo = $2 ÷ $3, Unsigned quotient & remainder Hi = $2 mod $3
Move from Hi mfhi $1 $1 = Hi Used to get copy of Hi
Move from Lo mflo $1 $1 = Lo Used to get copy of Lo

Q: Which add for address arithmetic? Which add for integers?

When does MIPS sign extend?
When value is sign extended, copy upper bit to full value:

Examples of sign extending 8 bits to 16 bits:
00001010 ⇒ 00000000 00001010
10001100 ⇒ 11111111 10001100

When is an immediate operand sign extended?
Arithmetic instructions (add, sub, etc.) always sign extend immediates even for the
unsigned versions of the instructions!
Logical instructions do not sign extend immediates (They are zero extended)
Load/Store address computations always sign extend immediates

Multiply/Divide have no immediate operands however:
“unsigned” ⇒ treat operands as unsigned

The data loaded by the instructions lb and lh are extended as follows
(“unsigned” ⇒ don’t extend sign):

lbu, lhu are zero extended
lb, lh are sign extended

MIPS Compare and Branch

Compare and Branch
BEQ rs, rt, offset if R[rs] == R[rt] then PC-relative branch
BNE rs, rt, offset <>

Compare to zero and Branch
BLEZ rs, offset if R[rs] <= 0 then PC-relative branch
BGTZ rs, offset >
BLT <
BGEZ >=
BLTZAL rs, offset if R[rs] < 0 then branch and link (into R 31)
BGEZAL >=!

Remaining set of compare and branch ops take two instructions
Almost all comparisons are against zero!

MIPS jump, branch, compare instruction
Instruction Example Meaning
branch on equal beq $1,$2,100 if ($1 == $2) go to PC+4+100

Equal test; PC relative branch
branch on not eq. bne $1,$2,100 if ($1!= $2) go to PC+4+100

Not equal test; PC relative
set on less than slt $1,$2,$3 if ($2 < $3) $1=1; else $1=0

Compare less than; 2’s comp.
set less than imm. slti $1,$2,100 if ($2 < 100) $1=1; else $1=0

Compare < constant; 2’s comp.
set less than uns. sltu $1,$2,$3 if ($2 < $3) $1=1; else $1=0

Compare less than; natural numbers
set l. t. imm. uns. sltiu $1,$2,100 if ($2 < 100) $1=1; else $1=0

Compare < constant; natural numbers
jump j 10000 go to 10000

Jump to target address
jump register jr $31 go to $31

For switch, procedure return
jump and link jal 10000 $31 = PC + 4; go to 10000

For procedure call

Signed vs. Unsigned Comparison

$1= 0…00 0000 0000 0000 0001
$2= 0…00 0000 0000 0000 0010
$3= 1…11 1111 1111 1111 1111

After executing these instructions:
slt $4,$2,$1 ; if ($2 < $1) $4=1; else $4=0
slt $5,$3,$1 ; if ($3 < $1) $5=1; else $5=0
sltu $6,$2,$1 ; if ($2 < $1) $6=1; else $6=0
sltu $7,$3,$1 ; if ($3 < $1) $7=1; else $7=0
What are values of registers $4 - $7? Why?

$4 = ; $5 = ; $6 = ; $7 = ;

two

two

two

Signed vs. Unsigned Comparison

$1= 0…00 0000 0000 0000 0001
$2= 0…00 0000 0000 0000 0010
$3= 1…11 1111 1111 1111 1111

After executing these instructions:
slt $4,$2,$1 ; if ($2 < $1) $4=1; else $4=0
slt $5,$3,$1 ; if ($3 < $1) $5=1; else $5=0
sltu $6,$2,$1 ; if ($2 < $1) $6=1; else $6=0
sltu $7,$3,$1 ; if ($3 < $1) $7=1; else $7=0
What are values of registers $4 - $7? Why?

$4 = 0 ; $5 = 1 ; $6 = 0 ; $7 = 0 ;

two

two

two

Name Number Usage Preserved across
a call?

$zero 0 the value 0 n/a
$v0-$v1 2-3 return values no
$a0-$a3 4-7 arguments no
$t0-$t7 8-15 temporaries no
$s0-$s7 16-23 saved yes
$t18-$t19 24-25 temporaries no
$sp 29 stack pointer yes
$ra 31 return address yes

MIPS assembler register convention

“caller saved” “callee saved”

On Green Card in Column #2 at bottom

What C code properly fills in the blank in loop on right?
1: A[i++] >= 10
2: A[i++] >= 10 | A[i] < 0
3: A[i] >= 10 || A[i++] < 0
4: A[i++] >= 10 || A[i] < 0
5: A[i] >= 10 && A[i++] < 0
6: None of the above

In class exercise: $s3=i, $s4=j, $s5=@A

do
j = j + 1

while (______);

Loop: addiu $s4,$s4,1 # j = j + 1
sll $t1,$s3,2 # $t1 = 4 * i
addu $t1,$t1,$s5 # $t1 = @ A[i]
lw $t0,0($t1) # $t0 = A[i]
slti $t1,$t0,10 # $t1 = $t0 < 10
beq $t1,$0, Loop # goto Loop
addiu $s3,$s3,1 # i = i + 1
slti $t1,$t0, 0 # $t1 = $t0 < 0
bne $t1,$0, Loop # goto Loop

What C code properly fills in the blank in loop on right?
1: A[i++] >= 10
2: A[i++] >= 10 | A[i] < 0
3: A[i] >= 10 || A[i++] < 0
4: A[i++] >= 10 || A[i] < 0
5: A[i] >= 10 && A[i++] < 0
6: None of the above

In class exercise: $s3=i, $s4=j, $s5=@A

Loop: addiu $s4,$s4,1 # j = j + 1
sll $t1,$s3,2 # $t1 = 4 * i
addu $t1,$t1,$s5 # $t1 = @ A[i]
lw $t0,0($t1) # $t0 = A[i]
slti $t1,$t0,10 # $t1 = $t0 < 10
beq $t1,$0, Loop # goto Loop if $t1 == 0 ($t0 >= 10)
addiu $s3,$s3,1 # i = i + 1
slti $t1,$t0, 0 # $t1 = $t0 < 0
bne $t1,$0, Loop # goto Loop if $t1 != 0 ($t0 < 0)

do
j = j + 1

while (______);

Instruction Formats

J-format: used for j and jal
I-format: used for instructions with
immediates, lw and sw (since the offset counts
as an immediate), and the branches (beq and
bne),

(but not the shift instructions; later)

R-format: used for all other instructions

It will soon become clear why the instructions
have been partitioned in this way.

R-Format Instructions (1/2)

Define “fields” of the following number of bits
each: 6 + 5 + 5 + 5 + 5 + 6 = 32

6 5 5 5 65

opcode rs rt rd functshamt

For simplicity, each field has a name:

R-Format Instructions (2/2)

More fields:
rs (Source Register): generally used to specify
register containing first operand
rt (Target Register): generally used to specify
register containing second operand (note that
name is misleading)
rd (Destination Register): generally used to
specify register which will receive result of
computation

J-Format Instructions (1/2)

Define “fields” of the following number of
bits each:

6 bits 26 bits

opcode target address

As usual, each field has a name:

Key Concepts
Keep opcode field identical to R-format and I-
format for consistency.
Combine all other fields to make room for large
target address.

J-Format Instructions (2/2)

Summary:
New PC = { PC[31..28], target address, 00 }

Understand where each part came from!
Note: In Verilog,
{ , , } means concatenation
{ 4 bits , 26 bits , 2 bits } = 32 bit address

{ 1010, 11111111111111111111111111, 00 } =
10101111111111111111111111111100

I-Format Instructions

Define “fields” of the following number of
bits each:

6 bits 16 bits

Each field has a name:

Key Concepts
Keep opcode field identical to R-format and J-
format for consistency.
Can specify jumps and address displacement
within (roughly) ±215 range.

5 bits 5 bits

opcode immediaters rt

R-Format Example

MIPS Instruction:
add $8,$9,$10

0 9 10 8 320

Binary number per field representation:

Decimal number per field representation:

hex representation: 012A 4020hex
decimal representation: 19,546,144ten

000000 01001 01010 01000 10000000000
hex

On Green Card: Format in column 1, opcodes in column 3

Green Card: OPCODES, BASE CONVERSION, ASCII (3)

SIf1500 1111floor.w.f synclui
24

2
0

Hexa-
deci-
mal

36

2
0

Deci
-mal

STX 00 0010 mul.fsrlj

$10 0100cvt.w.fand lbu

NUL 00 0000 add.fsll(1)

ASCIIBinary (2) MIPS
funct
(5:0)

(1)
MIPS
funct
(5:0)

MIPS
opcode
(31:26)

(1) opcode(31:26) == 0
(2) opcode(31:26) == 17 ten (11 hex);

if fmt(25:21)==16 ten (10 hex) f = s (single);
if fmt(25:21)==17 ten (11 hex) f = d (double)

Note: 3-in-1 - Opcodes, base conversion, ASCII!

Green Card

green card /n./ [after the "IBM System/360
Reference Data" card] A summary of an
assembly language, even if the color is not
green. Less frequently used now because of
the decrease in the use of assembly language.
Some green cards are actually booklets! For
example,

"I'll go get my green card so I can check the
addressing mode for that instruction."

www.jargon.netImage from Dave's Green Card Collection:
http://www.planetmvs.com/greencard/

In class exercise

Which instruction has same representation as 35ten?
A. add $0, $0, $0
B. subu $s0,$s0,$s0
C. lw $0, 0($0)
D. addi $0, $0, 35
E. subu $0, $0, $0
F. Trick question! Instructions are not numbers

Use Green Card handout to answer

In class exercise
Which instruction has same representation as 35ten?

A. add $0, $0, $0
B. subu $s0,$s0,$s0
C. lw $0, 0($0)
D. addi $0, $0, 35
E. subu $0, $0, $0
F. Trick question! Instructions are not numbers
Registers numbers and names:

0: $0, 8: $t0, 9:$t1, ..15: $t7, 16: $s0, 17: $s1, .. 23: $s7
Opcodes and function fields (if necessary)
add: opcode = 0, funct = 32
subu: opcode = 0, funct = 35
addi: opcode = 8
lw: opcode = 35

opcode rs rt offset

rd functshamtopcode rs rt

opcode rs rt immediate

rd functshamtopcode rs rt

rd functshamtopcode rs rt

In class exercise
Which instruction has same representation as 35ten?

A. add $0, $0, $0
B. subu $s0,$s0,$s0
C. lw $0, 0($0)
D. addi $0, $0, 35
E. subu $0, $0, $0
F. Trick question! Instructions are not numbers
Registers numbers and names:

0: $0, 8: $t0, 9:$t1, ..15: $t7, 16: $s0, 17: $s1, .. 23: $s7
Opcodes and function fields (if necessary)
add: opcode = 0, funct = 32
subu: opcode = 0, funct = 35
addi: opcode = 8
lw: opcode = 35

35 0 0 0

0 3200 0 0

8 0 0 35

16 3500 16 16

0 3500 0 0

Summary: Salient features of MIPS I

• 32-bit fixed format inst (3 formats)
• 32 32-bit GPR (R0 contains zero) and 32 FP registers (and HI LO)

– partitioned by software convention
• 3-address, reg-reg arithmetic instr.
• Single address mode for load/store: base+displacement

– no indirection, scaled
• 16-bit immediate plus LUI
• Simple branch conditions

– compare against zero or two registers for =,≠
– no integer condition codes

• Delayed branch
– execute instruction after a branch (or jump) even if the

branch is taken
(Compiler can fill a delayed branch with useful work about
50% of the time)

Conclusion
Instruction Set Architecture is the key abstraction
between hardware designer and software
developers
Machine Organizations

Memory-to-Memory Machines
Accumulator
Stack
General Purpose Register Machines

MIPS ISA
General Purpose Register, Load/Store Machine
32 registers, 32 bit operands, 32 bit main memory address
space
32 bit fixed length instructions - R, I and J instruction
formats

